Vanessa_Murdock.jpg

Vanessa Murdock is a classical pianist turned Amazon applied scientist

Vanessa Murdock, manager of Applied Science, talks about how her training as a classical pianist helps her be a better scientist, why she joined Amazon, and how her work at Amazon affects the lives of millions of customers.

Vanessa Murdock is a manager of Applied Science on the Amazon Alexa Shopping team. Vanessa is a trained classical pianist turned information retrieval researcher -- by no means your typical career journey. In this interview, Murdock talks about how her training as a classical pianist helps her be a better scientist, why she joined Amazon, and how her work at Amazon affects the lives of millions of customers.

Tell us a little about your background.

When I was younger, we lived with my grandparents for a few years. My grandfather was a labor lawyer. People often paid him in forms other than cash, and one of his clients paid him with a Steinway piano. I started by sounding out melodies on the piano, playing by ear. When I was four, my grandmother heard me piecing together a Mozart Symphony with both hands and a harmony, so she started to teach me. I didn’t take the lessons very seriously.

When I was 12, I broke my leg. I was bored because I had to stay inside a lot. As a result, I started practicing three or four hours a day. The difference between how well you play when you practice 20 minutes a day and when you practice four hours a day is vast. I started winning piano competitions, including one that sent me to Europe to give a concert at a music festival. Eventually, I received a scholarship at Texas Christian University (TCU), which hosts the Van Cliburn International Piano Competition. I went there to study with a Van Cliburn winner, Steven DeGroote – the Van Cliburn piano competition is held every four years; winners and runners-up receive cash prizes, in addition to the opportunity to perform at world-famous venues

What does it take to be a really good pianist?

You have to be very analytical and self-critical if you want to be a good pianist. You have to learn to hear how you sound as if you were sitting in the audience, and to be thoughtful about all the little choices you make. No detail is too small. Being analytical and self-critical have helped me a lot in computer science, at Amazon and in life in general.

How did you get into information retrieval?

When I started my career as a pianist, I took other work (I was a bookstore employee, I did housekeeping and food service, I worked in a dry cleaner) to supplement my income. As I became more established in the city I was living in, I was able to make a living solely from music jobs. I played in musical theaters, at weddings and parties, in churches, I taught privately and at a private school where I was also the staff accompanist, I performed as a soloist with orchestras and I had a trio that played concerts.

Although I was successful as a pianist, I was working 50 hours a week or more, and I was still struggling financially. When my son was born, it became clear that he would have fewer opportunities than I had, because I would not be able to give him a middle-class upbringing with extras like sports and music lessons. I was also a little burned out on teaching and accompanying. The part of music I loved was performing classical music, but I did not derive enough income from performing to do only that. I decided that I had to change paths.

I looked at a number of fields like journalism, political science and labor law. However, although they were interesting and would have been engaging, they also had long hours and low salaries. Then one day I was chatting with a friend on AOL messenger, and I started thinking about the magic of instant messaging: you can type a message and in an instant another person can read and respond, regardless of where they are in the world. I decided that I wanted to learn how computers work. My plan was to take a day job as a programmer, figuring it would provide a steady income with health insurance. It would only be 40 hours a week, which would leave me more time to focus on my performance career.

I enrolled at Colorado State University. To my great surprise, computer science was extremely fun, and much easier than piano. In the summer before my senior year, I took an internship at AT&T Research in New Jersey, working on machine translation with Srinivas Bangalore. The project was to mine the Web for parallel texts to train a machine translation system. A week into the internship I had an epiphany that computation was a tremendously powerful tool to understand fundamental questions about humanity, and I was hooked.

It was that internship, and Dr. Bangalore’s mentoring that showed me that instead of taking a “day job” testing printer drivers, I could do something really enriching. I was very fortunate that Dr. Bangalore encouraged open-ended exploration of the research questions. I had lofty goals at the time because I was inspired and idealistic, but I still find the big open questions about how people understand information to be the most compelling.

I decided that I wanted to do research, so I pursued a PhD. AT&T gave me a grant which included ongoing mentoring from Charles Thompson, who was on the board of the AT&T Fellowship program. Dr. Thompson helped me to understand that AT&T was supporting me because they saw in me a world class researcher. The combination of Dr. Bangalore’s big thinking and Dr. Thompson’s steady insistence that I could do significant science really changed the game for me. The lessons from the two of them infuse all of my work and all of my mentorship of new researchers.

Why did you join Amazon?

I am really excited about cloud-based voice services because voice will ultimately be a natural way for people to interact with their devices. Voice interfaces give us another picture of how people communicate. I like Amazon’s obsession for looking at problems from the customer perspective, and the potential to use science to directly improve the lives of millions of people.

The projects that I find most inspiring are the ones that allow me to understand customers better. My team is working on understanding what products are potentially embarrassing, and finding ways to be sensitive to these issues when providing experiences for our customers. For example, I don’t mind if people know I dye my hair because my hair is blue but another customer might be embarrassed if Alexa recommends dye with “full coverage for grey hair” in response to their shopping request.

I also love projects where we can help customers find what they are looking for or save them time. For example, people often reformulate their discovery query when they are not satisfied with their results. They might start by querying for “latte,” before reformulating their query to “espresso machines” to get more relevant results. My team’s research allows us to build experiences that help our customers find what they are looking for faster.

What’s different about working at Amazon?

One thing that’s really different at Amazon is how we discuss ideas and plans as a document that everyone reads through together. This seemed like overkill the first time I saw it, but a couple weeks in, I realized that a six-page narrative is a great equalizer. When ideas are presented verbally, they can be less convincing if the presenters are not skilled, or unduly credible if the presenters are charismatic and able to charm the audience into supporting a weak idea. Further, the audience may think they agree with a proposal, but actually misunderstand it, leading to serious friction down the line. Having the information presented as a document resolves much of this because the document is concrete and it can be edited to be clearer, and referred back to when there are questions later. If all the stakeholders agree on the substance of the document, it becomes their contract. It is the most effective way I have seen to come to an understanding as a group and make a rigorous group decision.

Amazon is optimized for shipping innovations quickly - the amount of time to go from first idea to customer-facing product is much shorter than at other places I have worked. People show genuine excitement and energy for what they are doing, and what they could do in the future. Everyone is completely focused on making a meaningful difference for customers. As a result, many good decisions are baked into our mechanisms, rather than being the result of an afterthought.

As scientists, our best ideas come from a deep understanding of a problem. You can have a certain depth of understanding by reading papers and running simulations, but it does not compare to the depth of understanding you gain from making scientific advances on real systems that are useful and relevant to people. The change from music to computer science was a huge change, but being at the front of a technological revolution is exciting and I am honored to play a part.

Related content

IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field or relevant science experience (publications/scientific prototypes) in lieu of Masters - Experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment - Papers published in AI/ML venues of repute
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
US, WA, Bellevue
Our mission is to provide consistent, accurate, and relevant delivery information to every single page on every Amazon-owned site. MILLIONS of customers will be impacted by your contributions: The changes we make directly impact the customer experience on every Amazon site. This is a great position for someone who likes to leverage Machine learning technologies to solve the real customer problems, and also wants to see and measure their direct impact on customers. We are a cross-functional team that owns the ENTIRE delivery experience for customers: From the business requirements to the technical systems that allow us to directly affect the on-site experience from a central service, business and technical team members are integrated so everyone is involved through the entire development process. You will have a chance to develop the state-of-art machine learning, including deep learning and reinforcement learning models, to build targeting, recommendation, and optimization services to impact millions of Amazon customers. Do you want to join an innovative team of scientists and engineers who use machine learning and statistical techniques to deliver the best delivery experience on every Amazon-owned site? Are you excited by the prospect of analyzing and modeling terabytes of data on the cloud and create state-of-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the DEX AI team. Key job responsibilities - Research and implement machine learning techniques to create scalable and effective models in Delivery Experience (DEX) systems - Solve business problems and identify business opportunities to provide the best delivery experience on all Amazon-owned sites. - Design and develop highly innovative machine learning and deep learning models for big data. - Build state-of-art ranking and recommendations models and apply to Amazon search engine. - Analyze and understand large amounts of Amazon’s historical business data to detect patterns, to analyze trends and to identify correlations and causalities - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.