Vanessa_Murdock.jpg

Vanessa Murdock is a classical pianist turned Amazon applied scientist

Vanessa Murdock, manager of Applied Science, talks about how her training as a classical pianist helps her be a better scientist, why she joined Amazon, and how her work at Amazon affects the lives of millions of customers.

Vanessa Murdock is a manager of Applied Science on the Amazon Alexa Shopping team. Vanessa is a trained classical pianist turned information retrieval researcher -- by no means your typical career journey. In this interview, Murdock talks about how her training as a classical pianist helps her be a better scientist, why she joined Amazon, and how her work at Amazon affects the lives of millions of customers.

Tell us a little about your background.

When I was younger, we lived with my grandparents for a few years. My grandfather was a labor lawyer. People often paid him in forms other than cash, and one of his clients paid him with a Steinway piano. I started by sounding out melodies on the piano, playing by ear. When I was four, my grandmother heard me piecing together a Mozart Symphony with both hands and a harmony, so she started to teach me. I didn’t take the lessons very seriously.

When I was 12, I broke my leg. I was bored because I had to stay inside a lot. As a result, I started practicing three or four hours a day. The difference between how well you play when you practice 20 minutes a day and when you practice four hours a day is vast. I started winning piano competitions, including one that sent me to Europe to give a concert at a music festival. Eventually, I received a scholarship at Texas Christian University (TCU), which hosts the Van Cliburn International Piano Competition. I went there to study with a Van Cliburn winner, Steven DeGroote – the Van Cliburn piano competition is held every four years; winners and runners-up receive cash prizes, in addition to the opportunity to perform at world-famous venues

What does it take to be a really good pianist?

You have to be very analytical and self-critical if you want to be a good pianist. You have to learn to hear how you sound as if you were sitting in the audience, and to be thoughtful about all the little choices you make. No detail is too small. Being analytical and self-critical have helped me a lot in computer science, at Amazon and in life in general.

How did you get into information retrieval?

When I started my career as a pianist, I took other work (I was a bookstore employee, I did housekeeping and food service, I worked in a dry cleaner) to supplement my income. As I became more established in the city I was living in, I was able to make a living solely from music jobs. I played in musical theaters, at weddings and parties, in churches, I taught privately and at a private school where I was also the staff accompanist, I performed as a soloist with orchestras and I had a trio that played concerts.

Although I was successful as a pianist, I was working 50 hours a week or more, and I was still struggling financially. When my son was born, it became clear that he would have fewer opportunities than I had, because I would not be able to give him a middle-class upbringing with extras like sports and music lessons. I was also a little burned out on teaching and accompanying. The part of music I loved was performing classical music, but I did not derive enough income from performing to do only that. I decided that I had to change paths.

I looked at a number of fields like journalism, political science and labor law. However, although they were interesting and would have been engaging, they also had long hours and low salaries. Then one day I was chatting with a friend on AOL messenger, and I started thinking about the magic of instant messaging: you can type a message and in an instant another person can read and respond, regardless of where they are in the world. I decided that I wanted to learn how computers work. My plan was to take a day job as a programmer, figuring it would provide a steady income with health insurance. It would only be 40 hours a week, which would leave me more time to focus on my performance career.

I enrolled at Colorado State University. To my great surprise, computer science was extremely fun, and much easier than piano. In the summer before my senior year, I took an internship at AT&T Research in New Jersey, working on machine translation with Srinivas Bangalore. The project was to mine the Web for parallel texts to train a machine translation system. A week into the internship I had an epiphany that computation was a tremendously powerful tool to understand fundamental questions about humanity, and I was hooked.

It was that internship, and Dr. Bangalore’s mentoring that showed me that instead of taking a “day job” testing printer drivers, I could do something really enriching. I was very fortunate that Dr. Bangalore encouraged open-ended exploration of the research questions. I had lofty goals at the time because I was inspired and idealistic, but I still find the big open questions about how people understand information to be the most compelling.

I decided that I wanted to do research, so I pursued a PhD. AT&T gave me a grant which included ongoing mentoring from Charles Thompson, who was on the board of the AT&T Fellowship program. Dr. Thompson helped me to understand that AT&T was supporting me because they saw in me a world class researcher. The combination of Dr. Bangalore’s big thinking and Dr. Thompson’s steady insistence that I could do significant science really changed the game for me. The lessons from the two of them infuse all of my work and all of my mentorship of new researchers.

Why did you join Amazon?

I am really excited about cloud-based voice services because voice will ultimately be a natural way for people to interact with their devices. Voice interfaces give us another picture of how people communicate. I like Amazon’s obsession for looking at problems from the customer perspective, and the potential to use science to directly improve the lives of millions of people.

The projects that I find most inspiring are the ones that allow me to understand customers better. My team is working on understanding what products are potentially embarrassing, and finding ways to be sensitive to these issues when providing experiences for our customers. For example, I don’t mind if people know I dye my hair because my hair is blue but another customer might be embarrassed if Alexa recommends dye with “full coverage for grey hair” in response to their shopping request.

I also love projects where we can help customers find what they are looking for or save them time. For example, people often reformulate their discovery query when they are not satisfied with their results. They might start by querying for “latte,” before reformulating their query to “espresso machines” to get more relevant results. My team’s research allows us to build experiences that help our customers find what they are looking for faster.

What’s different about working at Amazon?

One thing that’s really different at Amazon is how we discuss ideas and plans as a document that everyone reads through together. This seemed like overkill the first time I saw it, but a couple weeks in, I realized that a six-page narrative is a great equalizer. When ideas are presented verbally, they can be less convincing if the presenters are not skilled, or unduly credible if the presenters are charismatic and able to charm the audience into supporting a weak idea. Further, the audience may think they agree with a proposal, but actually misunderstand it, leading to serious friction down the line. Having the information presented as a document resolves much of this because the document is concrete and it can be edited to be clearer, and referred back to when there are questions later. If all the stakeholders agree on the substance of the document, it becomes their contract. It is the most effective way I have seen to come to an understanding as a group and make a rigorous group decision.

Amazon is optimized for shipping innovations quickly - the amount of time to go from first idea to customer-facing product is much shorter than at other places I have worked. People show genuine excitement and energy for what they are doing, and what they could do in the future. Everyone is completely focused on making a meaningful difference for customers. As a result, many good decisions are baked into our mechanisms, rather than being the result of an afterthought.

As scientists, our best ideas come from a deep understanding of a problem. You can have a certain depth of understanding by reading papers and running simulations, but it does not compare to the depth of understanding you gain from making scientific advances on real systems that are useful and relevant to people. The change from music to computer science was a huge change, but being at the front of a technological revolution is exciting and I am honored to play a part.

Related content

US, WA, Seattle
Amazon is seeking an experienced, self-directed data scientist to support the research and analytical needs of Amazon Web Services' Sales teams. This is a unique opportunity to invent new ways of leveraging our large, complex data streams to automate sales efforts and to accelerate our customers' journey to the cloud. This is a high-visibility role with significant impact potential. You, as the right candidate, are adept at executing every stage of the machine learning development life cycle in a business setting; from initial requirements gathering to through final model deployment, including adoption measurement and improvement. You will be working with large volumes of structured and unstructured data spread across multiple databases and can design and implement data pipelines to clean and merge these data for research and modeling. Beyond mathematical understanding, you have a deep intuition for machine learning algorithms that allows you to translate business problems into the right machine learning, data science, and/or statistical solutions. You’re able to pick up and grasp new research and identify applications or extensions within the team. You’re talented at communicating your results clearly to business owners in concise, non-technical language. Key job responsibilities • Work with a team of analytics & insights leads, data scientists and engineers to define business problems. • Research, develop, and deliver machine learning & statistical solutions in close partnership with end users, other science and engineering teams, and business stakeholders. • Use AWS services like SageMaker to deploy scalable ML models in the cloud. • Examples of projects include modeling usage of AWS services to optimize sales planning, recommending sales plays based on historical patterns, and building a sales-facing alert system using anomaly detection.
US, WA, Seattle
We are a team of doers working passionately to apply cutting-edge advances in deep learning in the life sciences to solve real-world problems. As a Senior Applied Science Manager you will participate in developing exciting products for customers. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the leading edge of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with others teams. Location is in Seattle, US Embrace Diversity Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust Balance Work and Life Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives Mentor & Grow Careers Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. Key job responsibilities • Manage high performing engineering and science teams • Hire and develop top-performing engineers, scientists, and other managers • Develop and execute on project plans and delivery commitments • Work with business, data science, software engineer, biological, and product leaders to help define product requirements and with managers, scientists, and engineers to execute on them • Build and maintain world-class customer experience and operational excellence for your deliverables
US, Virtual
The Amazon Economics Team is hiring Interns in Economics. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL, UNIX, Sawtooth, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, data scientists and MBAʼs. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. We’re seeking a Principal Scientist with a deep expertise in Search Science. Your responsibilities will include everything from developing and prototyping innovative machine learning, and deep learning algorithms to implementing, testing, and supporting full solutions in a production environment. We are looking for innovators who can contribute to advancing search technology on what’s scientifically possible while remaining committed to creating world-class products. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), Earth's most customer-centric company one of the world's leading internet companies. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California. Key job responsibilities As a hands-on leader of this team, you’ll be responsible for defining key research questions, identifying relevant data, adopting or proposing innovative machine learning solutions conducting rigorous experiments, publishing results and working with the engineering team to deploy these solutions. As a strategic leader, you will identify investment opportunities, develop long term strategies, and propose, prioritize and deliver on goals. You’ll also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). About the team Starting in 2009, the Visual Search & Augmented Reality team has thus far launched many visual search solutions on the Amazon App that use computer vision and machine learning/deep learning to help customers complete their shopping missions more easily; multiple internal teams at Amazon (devices, Kindle, Seller services, etc.) also use our libraries and APIs to deliver solutions to their own customers. We are a full stack shop, and our team capabilities cover the whole solution spectrum, ranging across applied science, large scale engineering services, product management, UX design, and mobile app development for iOS and Android.
LU, Luxembourg
&ltHire Relocation Requisition - not for posting> Provides insights to leadership on improving Supply Chain cost and Speed by using Data Science and Analytics techniques. Build Dashboards and models to industrialize these findings at scale.
US, VA, Arlington
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to work with business partners to hone complex problems into specific, scientific questions, and test those questions to generate insights. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work closely with business partners to develop science that solves the most important business challenges. They will work in a team setting with individuals from diverse disciplines and backgrounds. They will serve as an ambassador for science and a scientific resource for business teams, so that scientific processes permeate throughout the HR organization to the benefit of Amazonians and Amazon. Ideal candidates will own the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
Amazon is looking for talented Postdoctoral Scientists to join our global Science teams for a one-year, full-time research position. Postdoctoral Scientists will innovate as members of Amazon’s key global Science teams, including: AWS, Alexa AI, Alexa Shopping, Amazon Style, CoreAI, Last Mile, and Supply Chain Optimization Technologies. Postdoctoral Scientists will join one of may central, global science teams focused on solving research-intense business problems by leveraging Machine Learning, Econometrics, Statistics, and Data Science. Postdoctoral Scientists will work at the intersection of ML and systems to solve practical data driven optimization problems at Amazon scale. Postdocs will raise the scientific bar across Amazon by diving deep into exploratory areas of research to enhance the customer experience and improve efficiencies. Please note: This posting is one of several Amazon Postdoctoral Scientist postings. Please only apply to a maximum of 2 Amazon Postdoctoral Scientist postings that are relevant to your technical field and subject matter expertise. Key job responsibilities * Work closely with a senior science advisor, collaborate with other scientists and engineers, and be part of Amazon’s vibrant and diverse global science community. * Publish your innovation in top-tier academic venues and hone your presentation skills. * Be inspired by challenges and opportunities to invent cutting-edge techniques in your area(s) of expertise.