Vanessa_Murdock.jpg

Vanessa Murdock is a classical pianist turned Amazon applied scientist

Vanessa Murdock, manager of Applied Science, talks about how her training as a classical pianist helps her be a better scientist, why she joined Amazon, and how her work at Amazon affects the lives of millions of customers.

Vanessa Murdock is a manager of Applied Science on the Amazon Alexa Shopping team. Vanessa is a trained classical pianist turned information retrieval researcher -- by no means your typical career journey. In this interview, Murdock talks about how her training as a classical pianist helps her be a better scientist, why she joined Amazon, and how her work at Amazon affects the lives of millions of customers.

Tell us a little about your background.

When I was younger, we lived with my grandparents for a few years. My grandfather was a labor lawyer. People often paid him in forms other than cash, and one of his clients paid him with a Steinway piano. I started by sounding out melodies on the piano, playing by ear. When I was four, my grandmother heard me piecing together a Mozart Symphony with both hands and a harmony, so she started to teach me. I didn’t take the lessons very seriously.

When I was 12, I broke my leg. I was bored because I had to stay inside a lot. As a result, I started practicing three or four hours a day. The difference between how well you play when you practice 20 minutes a day and when you practice four hours a day is vast. I started winning piano competitions, including one that sent me to Europe to give a concert at a music festival. Eventually, I received a scholarship at Texas Christian University (TCU), which hosts the Van Cliburn International Piano Competition. I went there to study with a Van Cliburn winner, Steven DeGroote – the Van Cliburn piano competition is held every four years; winners and runners-up receive cash prizes, in addition to the opportunity to perform at world-famous venues

What does it take to be a really good pianist?

You have to be very analytical and self-critical if you want to be a good pianist. You have to learn to hear how you sound as if you were sitting in the audience, and to be thoughtful about all the little choices you make. No detail is too small. Being analytical and self-critical have helped me a lot in computer science, at Amazon and in life in general.

How did you get into information retrieval?

When I started my career as a pianist, I took other work (I was a bookstore employee, I did housekeeping and food service, I worked in a dry cleaner) to supplement my income. As I became more established in the city I was living in, I was able to make a living solely from music jobs. I played in musical theaters, at weddings and parties, in churches, I taught privately and at a private school where I was also the staff accompanist, I performed as a soloist with orchestras and I had a trio that played concerts.

Although I was successful as a pianist, I was working 50 hours a week or more, and I was still struggling financially. When my son was born, it became clear that he would have fewer opportunities than I had, because I would not be able to give him a middle-class upbringing with extras like sports and music lessons. I was also a little burned out on teaching and accompanying. The part of music I loved was performing classical music, but I did not derive enough income from performing to do only that. I decided that I had to change paths.

I looked at a number of fields like journalism, political science and labor law. However, although they were interesting and would have been engaging, they also had long hours and low salaries. Then one day I was chatting with a friend on AOL messenger, and I started thinking about the magic of instant messaging: you can type a message and in an instant another person can read and respond, regardless of where they are in the world. I decided that I wanted to learn how computers work. My plan was to take a day job as a programmer, figuring it would provide a steady income with health insurance. It would only be 40 hours a week, which would leave me more time to focus on my performance career.

I enrolled at Colorado State University. To my great surprise, computer science was extremely fun, and much easier than piano. In the summer before my senior year, I took an internship at AT&T Research in New Jersey, working on machine translation with Srinivas Bangalore. The project was to mine the Web for parallel texts to train a machine translation system. A week into the internship I had an epiphany that computation was a tremendously powerful tool to understand fundamental questions about humanity, and I was hooked.

It was that internship, and Dr. Bangalore’s mentoring that showed me that instead of taking a “day job” testing printer drivers, I could do something really enriching. I was very fortunate that Dr. Bangalore encouraged open-ended exploration of the research questions. I had lofty goals at the time because I was inspired and idealistic, but I still find the big open questions about how people understand information to be the most compelling.

I decided that I wanted to do research, so I pursued a PhD. AT&T gave me a grant which included ongoing mentoring from Charles Thompson, who was on the board of the AT&T Fellowship program. Dr. Thompson helped me to understand that AT&T was supporting me because they saw in me a world class researcher. The combination of Dr. Bangalore’s big thinking and Dr. Thompson’s steady insistence that I could do significant science really changed the game for me. The lessons from the two of them infuse all of my work and all of my mentorship of new researchers.

Why did you join Amazon?

I am really excited about cloud-based voice services because voice will ultimately be a natural way for people to interact with their devices. Voice interfaces give us another picture of how people communicate. I like Amazon’s obsession for looking at problems from the customer perspective, and the potential to use science to directly improve the lives of millions of people.

The projects that I find most inspiring are the ones that allow me to understand customers better. My team is working on understanding what products are potentially embarrassing, and finding ways to be sensitive to these issues when providing experiences for our customers. For example, I don’t mind if people know I dye my hair because my hair is blue but another customer might be embarrassed if Alexa recommends dye with “full coverage for grey hair” in response to their shopping request.

I also love projects where we can help customers find what they are looking for or save them time. For example, people often reformulate their discovery query when they are not satisfied with their results. They might start by querying for “latte,” before reformulating their query to “espresso machines” to get more relevant results. My team’s research allows us to build experiences that help our customers find what they are looking for faster.

What’s different about working at Amazon?

One thing that’s really different at Amazon is how we discuss ideas and plans as a document that everyone reads through together. This seemed like overkill the first time I saw it, but a couple weeks in, I realized that a six-page narrative is a great equalizer. When ideas are presented verbally, they can be less convincing if the presenters are not skilled, or unduly credible if the presenters are charismatic and able to charm the audience into supporting a weak idea. Further, the audience may think they agree with a proposal, but actually misunderstand it, leading to serious friction down the line. Having the information presented as a document resolves much of this because the document is concrete and it can be edited to be clearer, and referred back to when there are questions later. If all the stakeholders agree on the substance of the document, it becomes their contract. It is the most effective way I have seen to come to an understanding as a group and make a rigorous group decision.

Amazon is optimized for shipping innovations quickly - the amount of time to go from first idea to customer-facing product is much shorter than at other places I have worked. People show genuine excitement and energy for what they are doing, and what they could do in the future. Everyone is completely focused on making a meaningful difference for customers. As a result, many good decisions are baked into our mechanisms, rather than being the result of an afterthought.

As scientists, our best ideas come from a deep understanding of a problem. You can have a certain depth of understanding by reading papers and running simulations, but it does not compare to the depth of understanding you gain from making scientific advances on real systems that are useful and relevant to people. The change from music to computer science was a huge change, but being at the front of a technological revolution is exciting and I am honored to play a part.

Related content

CN, 11, Beijing
Amazon Search JP builds features powering product search on the Amazon JP shopping site and expands the innovations to world wide. As an Applied Scientist on this growing team, you will take on a key role in improving the NLP and ranking capabilities of the Amazon product search service. Our ultimate goal is to help customers find the products they are searching for, and discover new products they would be interested in. We do so by developing NLP components that cover a wide range of languages and systems. As an Applied Scientist for Search JP, you will design, implement and deliver search features on Amazon site, helping millions of customers every day to find quickly what they are looking for. You will propose innovation in NLP and IR to build ML models trained on terabytes of product and traffic data, which are evaluated using both offline metrics as well as online metrics from A/B testing. You will then integrate these models into the production search engine that serves customers, closing the loop through data, modeling, application, and customer feedback. The chosen approaches for model architecture will balance business-defined performance metrics with the needs of millisecond response times. Key job responsibilities - Designing and implementing new features and machine learned models, including the application of state-of-art deep learning to solve search matching, ranking and Search suggestion problems. - Analyzing data and metrics relevant to the search experiences. - Working with teams worldwide on global projects. Your benefits include: - Working on a high-impact, high-visibility product, with your work improving the experience of millions of customers - The opportunity to use (and innovate) state-of-the-art ML methods to solve real-world problems with tangible customer impact - Being part of a growing team where you can influence the team's mission, direction, and how we achieve our goals We are open to hiring candidates to work out of one of the following locations: Beijing, 11, CHN | Shanghai, 31, CHN
US, WA, Seattle
The Automated Reasoning Group in AWS Platform is looking for an Applied Scientist with experience in building scalable solver solutions that delight customers. You will be part of a world-class team building the next generation of automated reasoning tools and services. AWS has the most services and more features within those services, than any other cloud provider–from infrastructure technologies like compute, storage, and databases–to emerging technologies, such as machine learning and artificial intelligence, data lakes and analytics, and Internet of Things. You will apply your knowledge to propose solutions, create software prototypes, and move prototypes into production systems using modern software development tools and methodologies. In addition, you will support and scale your solutions to meet the ever-growing demand of customer use. You will use your strong verbal and written communication skills, are self-driven and own the delivery of high quality results in a fast-paced environment. Each day, hundreds of thousands of developers make billions of transactions worldwide on AWS. They harness the power of the cloud to enable innovative applications, websites, and businesses. Using automated reasoning technology and mathematical proofs, AWS allows customers to answer questions about security, availability, durability, and functional correctness. We call this provable security, absolute assurance in security of the cloud and in the cloud. See https://aws.amazon.com/security/provable-security/ As an Applied Scientist in AWS Platform, you will play a pivotal role in shaping the definition, vision, design, roadmap and development of product features from beginning to end. You will: - Define and implement new solver applications that are scalable and efficient approaches to difficult problems - Apply software engineering best practices to ensure a high standard of quality for all team deliverables - Work in an agile, startup-like development environment, where you are always working on the most important stuff - Deliver high-quality scientific artifacts - Work with the team to define new interfaces that lower the barrier of adoption for automated reasoning solvers - Work with the team to help drive business decisions The AWS Platform is the glue that holds the AWS ecosystem together. From identity features such as access management and sign on, cryptography, console, builder & developer tools, to projects like automating all of our contractual billing systems, AWS Platform is always innovating with the customer in mind. The AWS Platform team sustains over 750 million transactions per second. Learn and Be Curious. We have a formal mentor search application that lets you find a mentor that works best for you based on location, job family, job level etc. Your manager can also help you find a mentor or two, because two is better than one. In addition to formal mentors, we work and train together so that we are always learning from one another, and we celebrate and support the career progression of our team members. Inclusion and Diversity. Our team is diverse! We drive towards an inclusive culture and work environment. We are intentional about attracting, developing, and retaining amazing talent from diverse backgrounds. Team members are active in Amazon’s 10+ affinity groups, sometimes known as employee resource groups, which bring employees together across businesses and locations around the world. These range from groups such as the Black Employee Network, Latinos at Amazon, Indigenous at Amazon, Families at Amazon, Amazon Women and Engineering, LGBTQ+, Warriors at Amazon (Military), Amazon People With Disabilities, and more. Key job responsibilities Work closely with internal and external users on defining and extending application domains. Tune solver performance for application-specific demands. Identify new opportunities for solver deployment. About the team Solver science is a talented team of scientists from around the world. Expertise areas include solver theory, performance, implementation, and applications. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices. We are open to hiring candidates to work out of one of the following locations: Portland, OR, USA | Seattle, WA, USA
US, CA, San Diego
Do you want to join an innovative team of scientists who use deep learning, natural language processing, large language models to help Amazon provide the best seller experience across the entire Seller life cycle, including recruitment, growth, support and provide the best customer and seller experience by automatically mitigating risk? Do you want to build advanced algorithmic systems that help manage the trust and safety of millions of customer interactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Are you excited by the opportunity to leverage GenAI and innovate on top of the state-of-the-art large language models to improve customer and seller experience? Do you like to build end-to-end business solutions and directly impact the profitability of the company? Do you like to innovate and simplify processes? If yes, then you may be a great fit to join the Machine Learning Accelerator team in the Amazon Selling Partner Services (SPS) group. Key job responsibilities The scope of an Applied Scientist III in the Selling Partner Services (SPS) Machine Learning Accelerator (MLA) team is to research and prototype Machine Learning applications that solve strategic business problems across SPS domains. Additionally, the scientist collaborates with engineers and business partners to design and implement solutions at scale when they are determined to be of broad benefit to SPS organizations. They develop large-scale solutions for high impact projects, introduce tools and other techniques that can be used to solve problems from various perspectives, and show depth and competence in more than one area. They influence the team’s technical strategy by making insightful contributions to the team’s priorities, approach and planning. They develop and introduce tools and practices that streamline the work of the team, and they mentor junior team members and participate in hiring. We are open to hiring candidates to work out of one of the following locations: San Diego, CA, USA
IN, KA, Bengaluru
How to use the world’s richest collection of e-commerce data to improve payments experience for our customers? Amazon Payments Global Data Science team seeks a Senior Data Scientist for building analytical and scientific solutions that will address increasingly complex business questions in the Gift-Cards space. Amazon.com has a culture of data-driven decision-making and demands intelligence that is timely, accurate, and actionable. This team operates at WW level and provides a fast-paced environment where every day brings new challenges and opportunities. As a Senior Data Scientist in this team, you will be driving the Data Science/ML roadmap for business continuity & growth. You will develop statistical and machine learning models to solve for complex business problems in Gift-Cards space, design and run global experiments, and find new ways to optimize the customer experience. You will need to collaborate effectively with internal stakeholders, cross-functional teams to solve problems, create operational efficiencies, and deliver successfully against high organizational standards. You will explore GenAI use-cases within Gift-Cards space and also work on cross-disciplinary efforts with other scientists within Amazon. Key job responsibilities - You should be detail-oriented and must have an aptitude for solving unstructured and ambiguous problems. You should work in a self-directed environment, own tasks and drive them to completion - You should be passionate about working with huge data sets and be someone who loves to bring datasets together to answer business questions - You should demonstrate thorough technical expertise on feature engineering of massive datasets, exploratory data analysis, and model building using state-of-art ML algorithms - Random Forest, Gradient Boosting, SVM, Neural Nets, DL, Reinforcement Learning etc. You should be aware of automating feedback loops for algorithms in production - You should work closely with internal stakeholders like the business teams, engineering teams and partner teams and align them with respect to your focus areas - You should have excellent business and communication skills to be able to work with business owners to develop and define key business questions and build mechanisms that answer those questions We are open to hiring candidates to work out of one of the following locations: Bengaluru, KA, IND
IN, KA, Bangalore
Are you interested in changing the Digital Reading Experience? We are from Kindle Books Team looking for a set of Scientists to take the reading experience in Kindle to next level with a set of innovations! We envision Kindle as the place where readers find the best manifestation of all written content optimized with features that enable them to get the most out of reading, and creators are able to realize their vision to customers quickly and at scale. Every time customers open their content, regardless of surface, they start or restart their reading in a familiar, useful and engaging place. We achieve this by building a strong foundation of core experiences and act as a force multiplier and partner for content creators (directly or indirectly) to easily innovate on top of Kindle's purpose built content experience stack in a simple and extensible way. We will achieve this by providing a best-in-class reading experience, unique content experiences, and remaining agile in meeting the evolving needs and preferences of our users. Our goal is to foster long-lasting reading habits and make us the preferred destination for enriching literary experiences. We are building a In The Book Science team and looking for Scientists, who are passionate about Reading and are willing to take Reading to the next level. Every Book is a complex structure with different entities, layout, format and semantics, with more than 17MM eBooks in our catalog. We are looking for experts in all domains like core NLP, Generative AI, CV and Deep Learning Techniques for unlocking capabilities like analysis, enhancement, curation, moderation, translation, transformation and generation in Books based on Content structure, features, Intent & Synthesis. Scientists will focus on Inside the book content and semantically learn the different entities to enhance the Reading experience overall (Kindle & beyond). They have an opportunity to influence in 2 major phases of life-cycle - Publishing (Creation of Books process) and Reading experience (building engaging features & representation in the book thereby driving reading engagement). Key job responsibilities - 5+ years of building machine learning models for business application experience - PhD, or Master's degree and 6+ years of applied research experience - Knowledge of programming languages such as C/C++, Python, Java or Perl - Experience programming in Java, C++, Python or related language - You have expertise in one of the applied science disciplines, such as machine learning, natural language processing, computer vision, Deep learning - You are able to use reasonable assumptions, data, and customer requirements to solve problems. - You initiate the design, development, execution, and implementation of smaller components with input and guidance from team members. - You work with SDEs to deliver solutions into production to benefit customers or an area of the business. - You assume responsibility for the code in your components. You write secure, stable, testable, maintainable code with minimal defects. - You understand basic data structures, algorithms, model evaluation techniques, performance, and optimality tradeoffs. - You follow engineering and scientific method best practices. You get your designs, models, and code reviewed. You test your code and models thoroughly - You participate in team design, scoping and prioritization discussions. You are able to map a business goal to a scientific problem and map business metrics to technical metrics. - You invent, refine and develop your solutions to ensure they are meeting customer needs and team goals. You keep current with research trends in your area of expertise and scrutinize your results. - Experience in mentoring junior scientists A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test solutions to improve our experience. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, model development and productionizing the same. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. We are open to hiring candidates to work out of one of the following locations: Banagalore, KA, IND | Bangalore, IND | Bangalore, KA, IND
IN, KA, Bangalore
Are you interested in changing the Digital Reading Experience? We are from Kindle Books Team looking for a set of Scientists to take the reading experience in Kindle to next level with a set of innovations! We envision Kindle as the place where readers find the best manifestation of all written content optimized with features that enable them to get the most out of reading, and creators are able to realize their vision to customers quickly and at scale. Every time customers open their content, regardless of surface, they start or restart their reading in a familiar, useful and engaging place. We achieve this by building a strong foundation of core experiences and act as a force multiplier and partner for content creators (directly or indirectly) to easily innovate on top of Kindle's purpose built content experience stack in a simple and extensible way. We will achieve this by providing a best-in-class reading experience, unique content experiences, and remaining agile in meeting the evolving needs and preferences of our users. Our goal is to foster long-lasting reading habits and make us the preferred destination for enriching literary experiences. We are building a In The Book Science team and looking for Scientists, who are passionate about Reading and are willing to take Reading to the next level. Every Book is a complex structure with different entities, layout, format and semantics, with more than 17MM eBooks in our catalog. We are looking for experts in all domains like core NLP, Generative AI, CV and Deep Learning Techniques for unlocking capabilities like analysis, enhancement, curation, moderation, translation, transformation and generation in Books based on Content structure, features, Intent & Synthesis. Scientists will focus on Inside the book content and semantically learn the different entities to enhance the Reading experience overall (Kindle & beyond). They have an opportunity to influence in 2 major phases of life-cycle - Publishing (Creation of Books process) and Reading experience (building engaging features & representation in the book thereby driving reading engagement). Key job responsibilities - 3+ years of building machine learning models for business application experience - PhD, or Master's degree and 2+ years of applied research experience - Knowledge of programming languages such as C/C++, Python, Java or Perl - Experience programming in Java, C++, Python or related language - You have expertise in one of the applied science disciplines, such as machine learning, natural language processing, computer vision, Deep learning - You are able to use reasonable assumptions, data, and customer requirements to solve problems. - You initiate the design, development, execution, and implementation of smaller components with input and guidance from team members. - You work with SDEs to deliver solutions into production to benefit customers or an area of the business. - You assume responsibility for the code in your components. You write secure, stable, testable, maintainable code with minimal defects. - You understand basic data structures, algorithms, model evaluation techniques, performance, and optimality tradeoffs. - You follow engineering and scientific method best practices. You get your designs, models, and code reviewed. You test your code and models thoroughly - You participate in team design, scoping and prioritization discussions. You are able to map a business goal to a scientific problem and map business metrics to technical metrics. - You invent, refine and develop your solutions to ensure they are meeting customer needs and team goals. You keep current with research trends in your area of expertise and scrutinize your results. A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test solutions to improve our experience. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, model development and productionizing the same. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. We are open to hiring candidates to work out of one of the following locations: Bangalore, IND | Bangalore, KA, IND
US, WA, Seattle
Amazon is looking for a strategic, innovative science leader within the Global Talent and Compensation (GTMC) organization to lead an interdisciplinary team charged with developing data-driven solutions to model, automate, and inform high judgement decision making by bringing together science and technology in consumer grade internal talent products. GTMC delivers employee-focused experiences by providing scalable and responsive mechanisms for employees, as well as listening and signaling mechanisms for managers and leaders. They do this through intelligent, flexible, and extensible products and scalable data and science services. They set out to deliver a singular experience supporting multiple employee talent journeys (e.g., onboarding, evaluation, compensation, movement, promotion, exit), to generate and capture signals from product data, surface outliers, increase personalization, and improve the efficacy of “next best action” recommendations, for 1.6 million Amazonians around the world. In this role you will lead multiple research teams across the disciplines of Talent Management, Diversity Equity and Inclusion, and Compensation. You will interface with the most senior leaders at Amazon to develop and deliver on a strategic research roadmap that crosses all lines of Amazon businesses (e.g., Consumer, AWS, Devices, Advertising). This role will then partner with engineering and product management leader to deliver the outcomes of this research in production environments. Successful candidates will have an established background expertise in machine learning with some experience in applying this expertise to the fields of talent management, product management and/or software development. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
Are you interested in building, developing, and driving the machine learning technical vision, strategy, and implementation for AWS Hardware? AWS Hardware is hiring a Senior Applied Scientist (AS) to lead the definition and prioritization of our customer focused technologies and services. AWS Hardware is responsible for designing, qualifying, and maintaining server solutions for AWS and its customers as well as developing new cloud focused hardware solutions. You will be a senior technical leader in the existing Data Sciences and Analytics Team, build, and drive the data science and machine learning needed for our product development and operations. As a Senior AS at Amazon, you will provide technical leadership to the teams, organization and products for machine learning. Senior AS’s are specialists with deep expertise in areas such as machine learning, speech recognition, large language models (LLMs), natural language processing, computer vision, and knowledge acquisition, and help drive the ML vision for our products. They are externally aware of the state-of-the-art in their respective field of expertise and are constantly focused on advancing the state-of-the-art for improving Amazon’s products and services. The ideal candidate will be an expert in the areas of data science, machine learning, and statistics; specifically in recommendation systems development, classification, and LLMs. You will have hands-on experience leading multiple simultaneous product development and operations initiatives as well as be able to balance technical leadership with strong business judgment to make the right decisions about technology, infrastructure, methodologies, and productionizing models and code. You will strive for simplicity, and demonstrate significant creativity and high judgment backed by statistical proof. Key job responsibilities MS in Data Science, Machine Learning, Statistics, Computer Science, Applied Math or equivalent highly technical field. 10+ years of hands-on experience working in data science and/or machine learning using models and methods such as neural networks, random forests, SVMs or Bayesian classification. 3+ years developing recommendation systems and/or LLMs. 3+ years of experience working in software development, machine learning engineering or ops. Have a history of building highly scalable systems that capture and utilize large data sets in order to quantify your products performance via metrics, monitoring, and alarming. Experience using R, Python, Java, or other equivalent statistics and machine learning tools. Experienced in computer science fundamentals such as object-oriented design, data structures and algorithm design. 3+ years of experience developing in a cloud environment. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
Are you a scientist interested in pushing the state of the art in LLMs, ML or Computer Vision forward? Are you interested in working on ground-breaking research projects that will lead to great products and scientific publications? Do you wish you had access to large datasets? Answer yes to any of these questions and you’ll fit right in here at Amazon. We are looking for a hands-on researcher, who wants to derive, implement, and test the next generation of Generative AI algorithms (either LLMs, Diffusion Models, auto-regressors, VAEs, or other generative models). The research we do is innovative, multidisciplinary, and far-reaching. We aim to define, deploy, and publish cutting edge research. In order to achieve our vision, we think big and tackle technology problems that are cutting edge. Where technology does not exist, we will build it. Where it exists we will need to modify it to make it work at Amazon scale. We need members who are passionate and willing to learn. “Amazon Science gives you insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Our scientists continue to publish, teach, and engage with the academic community, in addition to utilizing our working backwards method to enrich the way we live and work.” Please visit https://www.amazon.science for more information #hltech #hitech Key job responsibilities - Derive novel ML or Computer Vision or LLMs and NLP algorithms - Design and develop scalable ML solutions - Work with very large datasets - Work closely with software engineering teams and Product Managers to deploy your innovations - Publish your work at major conferences/journals. - Mentor team members in the use of your Generative AI and LLMs. About the team We are a tight-knit group that shares our experiences and help each other succeed. We believe in team work. We love hard problems and like to move fast in a growing and changing environment. We use data to guide our decisions and we always push the technology and process boundaries of what is feasible on behalf of our customers. If that sounds like an environment you like, join us. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
GB, Cambridge
The Artificial General Intelligence team (AGI) has an exciting position for an Applied Scientist with a strong background NLP and Large Language Models to help us develop state-of-the-art conversational systems. As part of this team, you will collaborate with talented scientists and software engineers to enable conversational assistants capabilities to support the use of external tools and sources of information, and develop novel reasoning capabilities to revolutionise the user experience for millions of Alexa customers. Key job responsibilities As an Applied Scientist, you will develop innovative solutions to complex problems to extend the functionalities of conversational assistants . You will use your technical expertise to research and implement novel algorithms and modelling solutions in collaboration with other scientists and engineers. You will analyse customer behaviours and define metrics to enable the identification of actionable insights and measure improvements in customer experience. You will communicate results and insights to both technical and non-technical audiences through written reports, presentations and external publications. We are open to hiring candidates to work out of one of the following locations: Cambridge, GBR | London, GBR