Search results

18,486 results found
  • Alessandro Barp, Carl-Johann Simon-Gabriel, Mark Girolami, Lester Mackey
    NeurIPS 2022 Workshop on Score-Based Methods
    2022
    Kernel Stein discrepancies (KSDs) are maximum mean discrepancies (MMDs) that leverage the score information of distributions, and have grown central to a wide range of applications. In most settings, these MMDs are required to (i) separate a target P from other probability measures or even (ii) control weak convergence to P. In this article we derive new sufficient and necessary conditions that substantially
  • Baber Khalid, Sungjin Lee
    NAACL 2022
    2022
    There is an increasing trend in using neural methods for dialogue model evaluation. Lack of a framework to investigate these metrics can cause dialogue models to reflect their biases and cause unforeseen problems during interactions. In this work, we propose an adversarial test-suite which generates problematic variations of various dialogue aspects, e.g. logical entailment, using automatic heuristics.
  • Samuele Cornell, Thomas Balestri, Thibaud Sénéchal
    SLT 2022
    2022
    In many speech-enabled human-machine interactions, user speech can overlap with the device playback audio. In these instances, the performance of tasks such as keyword-spotting (KWS) and device-directed speech detection (DDD) can de- grade significantly. To address this problem, we propose an implicit acoustic echo cancellation (iAEC) framework where a neural network is trained to exploit the additional
  • Xueyue Zhang, Eunjong Kim, Daniel K. Mark , Soonwon Choi, Oskar Painter
    arXiv
    2022
    Synthesis of many-body quantum systems in the laboratory can provide further insight into the emergent behavior of quantum materials. While the majority of engineerable many-body systems, or quantum simulators, consist of particles on a lattice with local interactions, quantum systems featuring long-range interactions are particularly difficult to model and interesting to study due to the rapid spatio-temporal
  • Mario Berta, Fernando Brandão, Gilad Gour, Ludovico Lami, Martin B. Plenio, Bartosz Regula, Marco Tomamiche
    arXiv
    2022
    We show that the proof of the generalised quantum Stein's lemma [Brandão & Plenio, Commun. Math. Phys. 295, 791 (2010)] is not correct due to a gap in the argument leading to Lemma III.9. Hence, the main achievability result of Brandão & Plenio is not known to hold. This puts into question a number of established results in the literature, in particular the reversibility of quantum entanglement [Brandão
  • Alkim Bozkurt, Han Zhao, Chaitali Joshi, Henry G. LeDuc, Peter K. Day, Mohammad Mirhosseini
    arXiv
    2022
    Controlling long-lived mechanical oscillators in the quantum regime holds promises for quantum information processing. Here, we present an electromechanical system capable of operating in the GHz-frequency band in a silicon-on-insulator platform. Relying on a novel driving scheme based on an electrostatic field and high-impedance microwave cavities based on TiN superinductors, we are able to demonstrate
  • Chaitali Joshi, Frank Yang, Mohammad Mirhosseini
    arXiv
    2022
    We demonstrate a superconducting artificial atom with strong unidirectional coupling to a microwave photonic waveguide. Our artificial atom is realized by coupling a transmon qubit to the waveguide at two spatially separated points with time-modulated interactions. Direction-sensitive interference arising from the parametric couplings in our scheme results in a non-reciprocal response, where we measure
  • Zhihan Gao, Hao Wang, Yuyang (Bernie) Wang, Xingjian Shi, Dit-Yan Yeung
    KDD 2022 Workshop on Mining and Learning from Time Series – Deep Forecasting: Models, Interpretability, and Applications
    2022
    Dynamic graph forecasting has found a wide range of applications including social media, recommendation systems, and computational finance. However, existing dynamic graph models typically focus on discrete-time dynamic graphs, treating dynamic graphs as temporally discrete graph snapshots. We argue that such discrete treatment is inadequate for capturing the underlying dynamics which are intrinsically
  • Seunghoon Lee, Joonho Lee, Huanchen Zhai, Yu Tong, Alex Dalzell, Ashutosh Kumar, Phillip Helms, Johnnie Gray, Zhi-Hao Cui, Wenyuan Liu, Michael Kastoryano, Ryan Babbush, John Preskill, David R. Reichman, Earl T. Campbell, Edward F. Valeev, Lin Lin, Garnet Kin-Lic Chan
    Nature Communications
    2022
    Due to intense interest in the potential applications of quantum computing, it is critical to understand the basis for potential exponential quantum advantage in quantum chemistry. Here we gather the evidence for this case in the most common task in quantum chemistry, namely, ground-state energy estimation, for generic chemical problems where heuristic quantum state preparation might be assumed to be efficient
  • Yanda Chen, Sheng Zha, George Karypis, He He, Ruiqi Zhong
    ACL 2022
    2022
    The goal of meta-learning is to learn to adapt to a new task with only a few labeled examples. Inspired by the recent progress in large language models, we propose in-context tuning (ICT), which recasts task adaptation and prediction as a simple sequence prediction problem: to form the input sequence, we concatenate the task instruction, labeled in-context examples, and the target input to predict; to metatrain
  • Henry Wang, Saman Sarraf, Arbi Tamrazian
    MIT Sloan Sports Analytics Conference 2022
    2022
    Sports broadcasters are increasingly sharing statistical insights throughout the game to tell a richer story for the audience. Thanks to abundant data and advanced statistics, broadcasters can quickly tell stories and make comparisons between teams and players to keep viewers engaged. To keep up with the fast-paced nature of many games, broadcasters rely on template-generated narratives to speak about in-game
  • Margaret K. Doll, Alpana Waghmare, Antje Heit, Brianna Levenson Shakoor, Louise E. Kimball, Nina Ozbek, Rachel L. Blazevic, Larry Mose, Jim Boonyaratanakornkit , Terry L. Stevens-Ayers, Kevin Cornell, Benjamin D. Sheppard, Emma Hampson, Faria Sharmin, Benjamin Goodwin, Jennifer M. Dan, Tom Archie, Terry O’Connor, David E. Heckerman, Frank Schmitz, Michael Boeck, Shane Crotty
    JAMA Network Open
    2022
    The US arrival of the Omicron variant led to a rapid increase in SARS-CoV-2 infections. While numerous studies report characteristics of Omicron infections among vaccinated individuals or persons with previous infection, comprehensive data describing infections among adults who are immunologically naive are lacking. To examine COVID-19 acute and postacute clinical outcomes among a well-characterized cohort
  • Gil Sadeh, Zichen Wang, Jasleen Grewal, Huzefa Rangwala, Layne Price
    NeurIPS 2022
    2022
    Representation learning for proteins has primarily focused on the global understanding of protein sequences regardless of their length. However, shorter proteins (known as peptides) take on distinct structures and functions compared to their longer counterparts. Unfortunately, there are not as many naturally occurring peptides available to be sequenced and therefore less peptide-specific data to train with
  • NeurIPS 2022 Workshop on Trustworthy and Socially Responsible Machine Learning (TSRML) , ICML 2022 Workshop on the Theory and Practice of Differential Privacy
    2022
    Per-example gradient clipping is a key algorithmic step that enables practical differential private (DP) training for deep learning models. The choice of clipping threshold R, however, is vital for achieving high accuracy under DP. We propose an easy-to-use replacement, called automatic clipping, that eliminates the need to tune R for any DP optimizers, including DP-SGD, DP-Adam, DP-LAMB and many others
  • Christopher Chamberland, Kyungjoo Noh, Patricio Arrangoiz Arriola, Earl T. Campbell, Connor T. Hann, Joseph Iverson, Harald Putterman, Thomas C. Bohdanowicz, Steven T. Flammia, Andrew Keller, Gil Refael, John Preskill, Liang Jiang, Amir H. Safavi-Naeini, Andrew Keller, Gil Refael, John Preskill, Liang Jiang, Amir H. Safavi-Naeini, Oskar Painter, Fernando Brandão
    PRX Quantum
    2022
    We present a comprehensive architectural analysis for a proposed fault-tolerant quantum computer based on cat codes concatenated with outer quantum error-correcting codes. For the physical hardware, we propose a system of acoustic resonators coupled to superconducting circuits with a two-dimensional layout. Using estimated physical parameters for the hardware, we perform a detailed error analysis of measurements
  • Ashley Milsted, Junyu Liu, John Preskill, Guifre Vidal
    PRX Quantum
    2022
    We simulate, using nonperturbative methods, the real-time dynamics of small bubbles of “false vacuum” in a quantum spin chain near criticality, where the low-energy physics is described by a relativistic (1+1)-dimensional quantum field theory. We consider bubbles whose walls are kink and antikink quasiparticle excitations, so that wall collisions are kink-antikink scattering events. To construct these bubbles
  • Riccardo J. Valencia-Tortora, Nicola Pancotti, Jamir Marino
    PRX Quantum
    2022
    We study the dynamical properties of the bosonic quantum East model at low temperature. We show that a naive generalization of the corresponding spin-1/2 quantum East model does not possess analogous slow dynamical properties. In particular, conversely to the spin case, the bosonic ground state turns out to be not localized. We restore localization by introducing a repulsive interaction term. The bosonic
  • Michael Vasmer, Aleksander Kubica
    PRX Quantum
    2022
    We introduce a morphing procedure that can be used to generate new quantum codes from existing quantum codes. In particular, we morph the 15-qubit Reed-Muller code to obtain a [[10,1,2]] code that is the smallest-known stabilizer code with a fault-tolerant logical T gate. In addition, we construct a family of hybrid color-toric codes by morphing the color code. Our code family inherits the fault-tolerant
  • Alex Dalzell, Nicholas Hunter-Jones, Fernando Brandão
    PRX Quantum
    2022
    We consider quantum circuits consisting of randomly chosen two-local gates and study the number of gates needed for the distribution over measurement outcomes for typical circuit instances to be anticoncentrated, roughly meaning that the probability mass is not too concentrated on a small number of measurement outcomes. An understanding of the conditions for anticoncentration is important for determining
  • Adrian Chapman, Steven T. Flammia, Alicia J. Kollár
    PRX Quantum
    2022
    We consider quantum error-correcting subsystem codes whose gauge generators realize a translation-invariant, free-fermion-solvable spin model. In this setting, errors are suppressed by a Hamiltonian whose terms are the gauge generators of the code and whose exact spectrum and eigenstates can be found via a generalized Jordan-Wigner transformation. Such solutions are characterized by the frustration graph
US, CA, San Diego
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by protecting Amazon customers from hackers and bad actors? Do you want to build advanced algorithmic systems that help manage the trust and safety of millions of customer every day? Are you excited by the prospect of analyzing and modeling terabytes of data and create state-of-art algorithms to solve real world problems? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Amazon Account Integrity team. The Amazon Account Integrity team works to ensure that customers are protected from bad actors trying to access their accounts. Our greatest challenge is protecting customer trust without unjustly harming good customers. To strike the right balance, we invest in mechanisms which allow us to accurately identify and mitigate risk, and to quickly correct and learn from our mistakes. This strategy includes continuously evolving enforcement policies, iterating our Machine Learning risk models, and exercising high‐judgement decision‐making where we cannot apply automation. Key job responsibilities Use statistical and machine learning techniques to create scalable risk management systems Analyzing and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches.
US, NY, New York
Are you passionate about conducting research to develop and grow leaders? Would you like to impact more than 1M Amazonians globally and improve the employee experience? If so, you should consider joining the People eXperience & Technology Central Science (PXTCS) team. Our goal is to be best and most diverse workforce in the world. PXTCS uses science, research, and technology to optimize employee experience and performance across the full employee lifecycle, from first contact through exit. We use economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. This individual should be skilled in core data science tools and methods, icnluding SQL, a statistical software package (e.g., R, Python, or Stata), inferential statistics, and proficient in machine learning. This person should also have strong business acumen to navigate complex, ambiguous business challenges — they should be adept at asking the right questions, knowing what methodologies to use (and why), efficiently analyzing massive datasets, and communicating results to multiple audiences (e.g., technical peers, functional teams, business leaders). In order to move quickly, deliver high-quality results, and adapt to ever-evolving business priorities, effective communication skills in research fundamentals (e.g., research design, measurement, statistics) will also be a must. Major responsibilities will include: - Managing the full life cycle of large-scale research initiatives across multiple business segments that impact leaders in our organization (i.e., develop strategy, gather requirements, manage, and execute) - Serving as a subject matter expert on a wide variety of topics related to research design, measurement, analysis - Working with internal partners and external stakeholders to evaluate research initiatives that provide bottom-line ROI and incremental improvements over time - Collaborating with a cross-functional team that has expertise in social science, machine learning, econometrics, psychometrics, natural language processing, forecasting, optimization, business intelligence, analytics, and policy evaluation - Ability to query and clean complex datasets from multiple sources, to funnel into advanced statistical analysis - Writing high-quality, evidence-based documents that help provide insights to business leaders and gain buy-in - Sharing knowledge, advocating for innovative solutions, and mentoring others Inclusive Team Culture Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have 12 affinity groups (employee resource groups) with more than 1M employees across hundreds of chapters around the world. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which reminds team members to seek diverse perspectives, learn and be curious, and earn trust. Flexibility It isn’t about which hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We offer flexibility and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth We care about your career growth, too. Whether your goals are to explore new technologies, take on bigger opportunities, or get to the next level, we'll help you get there. Our business is growing fast and our people will grow with it. About the team We are a collegial and multidisciplinary team of researchers in People eXperience and Technology (PXT) that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We leverage data and rigorous analysis to help Amazon attract, retain, and develop one of the world’s largest and most talented workforces.
US, WA, Bellevue
The Mission of Amazon's Artificial General Intelligence (AGI) team is to "Build world-class general-purpose intelligence services that benefits every Amazon business and humanity." Are you a data enthusiast? Are you a creative big thinker who is passionate about using data to direct decision making and solve complex and large-scale challenges? If so, then this position is for you! We are looking for a motivated individual with strong analytical and communication skills to join us. In this role, you will apply advanced analytics techniques, AI/ML, and statistical concepts to derive insights from massive datasets. The ideal candidate should have expertise in AI/ML, statistical analysis, and the ability to write code for building models and pipelines to automate data and analytics processing. They will help us design experiments, build models, and develop appropriate metrics to deeply understand the strengths and weaknesses of our systems. They will build dashboards to automate data collection and reporting of relevant data streams, providing leadership and stakeholders with transparency into our system's performance. They will turn their findings into actions by writing detailed reports and providing recommendations on where we should focus our efforts to have the largest customer impact. A successful candidate should be a self-starter, comfortable with ambiguity with strong attention to detail, and have the ability to work in a fast-paced and ever-changing environment. They will also help coach/mentor junior scientists in the team. The ideal candidate should possess excellent verbal and written communication skills, capable of effectively communicating results and insights to both technical and non-technical audiences
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist to work on methodologies for Generative Artificial Intelligence (GenAI) models. As an Applied Scientist, you will be responsible for supporting the development of novel algorithms and modeling techniques to advance the state of the art. Your work will directly impact our customers and will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate development with multi-modal Large Language Models (LLMs) and GenAI. You will have significant influence on our overall strategy by working at the intersection of engineering and applied science to scale pre-training and post-training workflows and build efficient models. You will support the system architecture and the best practices that enable a quality infrastructure. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Pre-training and post-training multimodal LLMs - Scale training, optimization methods, and learning objectives - Utilize, build, and extend upon industry-leading frameworks - Work with other team members to investigate design approaches, prototype new technology, scientific techniques and evaluate technical feasibility - Deliver results independently in a self-organizing Agile environment while constantly embracing and adapting new scientific advances About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Principal Applied Scientist with a strong deep learning background, to lead the development of industry-leading technology with multimodal systems. As a Principal Applied Scientist, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. You solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location. You scrutinize and review experimental design, modeling, verification and other research procedures. You probe assumptions, illuminate pitfalls, and foster shared understanding. You align teams toward coherent strategies. You educate, keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. You help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically strong and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
US, NY, New York
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best. Key job responsibilities - Lead and execute complex, ambiguous research projects from ideation to production deployment - Drive technical strategy and roadmap decisions for ML/AI initiatives - Collaborate cross-functionally with product, engineering, and business teams to translate research into scalable products - Publish research findings at top-tier conferences and contribute to the broader scientific community - Establish best practices for ML experimentation, evaluation, and deployment
US, NY, New York
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best. Key job responsibilities - Lead and execute complex, ambiguous research projects from ideation to production deployment - Drive technical strategy and roadmap decisions for ML/AI initiatives - Collaborate cross-functionally with product, engineering, and business teams to translate research into scalable products - Publish research findings at top-tier conferences and contribute to the broader scientific community - Establish best practices for ML experimentation, evaluation, and deployment
US, CA, Palo Alto
About Sponsored Products and Brands The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team SPB Ad Response Prediction team is your choice, if you want to join a highly motivated, collaborative, and fun-loving team with a strong entrepreneurial spirit and bias for action. We are seeking an experienced and motivated Applied Scientist with machine learning engineering background who loves to innovate at the intersection of customer experience, deep learning, and high-scale machine learning systems. We are looking for a talented Applied Scientist with a strong background in machine learning engineering to join our team and help us grow the business. In this role, you will partner with a team of engineers and scientists to build advanced machine learning models and infrastructure, from training to inference, including emerging LLM-based systems, that deliver highly relevant ads to shoppers across all Amazon platforms and surfaces worldwide. Key job responsibilities As a Sr Applied Scientist, you will: * Develop scalable and effective machine learning models and optimization strategies to solve business problems. * Conduct research on new machine learning modeling to optimize all aspects of Sponsored Products business. * Enhance the scalability, automation, and efficiency of large-scale training and real-time inference systems. * Pioneer the development of LLM inference infrastructure to support next-generation GenAI workloads at Amazon Ads scale.
US, CA, Sunnyvale
As a Principal Applied Scientist within the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions, set the standard for scientific excellence, and make decisions that affect the way we build and integrate algorithms. A Principal Applied Scientist will solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader; develop solutions that are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility; and tackle intrinsically hard problems acquiring expertise as needed. Principal Applied Scientists are expected to decompose complex problems into straightforward solutions. You will amplify your impact by leading scientific reviews within your organization or at your location; and scrutinize and review experimental design, modeling, verification and other research procedures. You will also probe assumptions, illuminate pitfalls, and foster shared understanding; align teams toward coherent strategies; and educate keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. AGI Principal Applied Scientists help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, inventing new machine learning techniques, conducting rigorous experiments, and ensuring that research is translated into practice. You will also develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. A Principal Applied Scientist will participate in organizational planning, hiring, mentorship and leadership development. You will build scalable science and engineering solutions, and serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
US, CA, Sunnyvale
Our mission is to create a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As a Senior Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Supervised Fine-Tuning (SFT), In-Context Learning (ICL), Learning from Human Feedback (LHF), etc. Your work will directly impact our customers in the form of novel products and services .