Neil Gershenfeld, the director of the Center for Bits and Atoms at MIT, gestures while speaking
Neil Gershenfeld, the director of the Center for Bits and Atoms at MIT, and seen here speaking at the World Economic Forum, predicts that what he calls the "third digital revolution" will happen in fabrication.
World Economic Forum/swiss-image.ch

Bits into atoms, atoms into bits

A third digital revolution is coming, and Neil Gershenfeld is at the forefront.

From airplane wings to integrated circuits, the physical world is being shaped by digital innovation, and vice versa. At the Massachusetts Institute of Technology, scientists at the Center for Bits and Atoms (CBA) study "how to turn data into things, and things into data," as the center's website puts it.

Neil Gershenfeld, the CBA's director and recipient of a 2019 Amazon Machine Learning Research Award (MLRA) for his work on design morphogenesis — he calls it "the design of design" — talks about his work and the future of computing.

Conversation has been edited for length and clarity.

Q. In your book Designing Reality, you refer to three digital revolutions. The first was in communication, going from phones to the Internet, and the second was in computation, with personal computers and smartphones. The third, you predict, will be in fabrication. How does that connect to your work at the Center for Bits and Atoms?

I never understood the boundary between physical science and computer science. I take credit for the observation that computer science is one of the worst things to happen to computers or to science. What I mean by that is, the canon of computer science is fundamentally unphysical.

Computer science, as it's taught in practice today, happens in abstract digital worlds. It's a bit like the movie Metropolis, where people frolic in the garden and somebody moves the levers in the basement — the basement here is things like data centers, where you actually figure out how to do the computing. Tremendous amounts of power, communication, bandwidth, and inefficiency go into making physical computers act like virtual spaces.

ESOF 2018 - The Third Digital Revolution: Fabrication — Neil Gershenfeld

There's a completely different lineage. The founders of modern computing architecture, John von Neumann and Alan Turing, both investigated the physical form of computing. Von Neumann studied self-reproducing automata: how a computer can communicate its own construction. Turing studied morphogenesis: how genes give rise to form. Neither of them was studying computing in a cloud, but rather computing as a physical resource.

That's at the heart of the work of CBA — of embodying computing, not abstracting computing. Fundamentally aligning the representations of hardware and software for scalability, for efficiency, for productivity. To move bits into atoms, and atoms into bits.

Q. Can you talk more about the concept of design morphogenesis and what that entails?

​​So this was one of the last things that Turing studied: how genes give rise to form. It's really at the heart of life.

Your genome doesn't anywhere store that you have five fingers. It stores the developmental program, and the developmental program resides in one of the oldest parts of the genome, called Hox genes. It encodes steps like, "grow up a gradient" or "break symmetry." When you follow those steps, at the end, you have five fingers.

Morphogensis: an explainer

Science Direct defines morphogenesis as "a biological process that causes a tissue or organ to develop its shape by controlling the spatial distribution of cells during embryonic development."

There's a very deep parallel with machine learning. Modern machine learning hasn't found better ways to search. It's found better representations of search — where to search in ways that are interesting. Today in engineering design, it's almost tautological that the design represents the thing you're designing. If you're designing an airplane or a chip, you represent the airplane or the chip.

But again, that's not what biology does. So in the morphogenesis project, we've been looking at how to design by searching over developmental programs. One of the warm-up problems we did — one that was much harder than I originally thought — was gear design. Gear design is surprisingly subtle and represents centuries of experience. We showed we could rediscover centuries of experience in gear design by searching over algorithmic representations of gears rather than explicit designs of gears.

Q. And that gear project was supported by the MLRA, correct?

That's right. And the way it connects is, that's where we started with support from the award. In the gear project, we found that what was most limiting was the simulation engine. So, much of our MLRA focused research moved from the morphogenesis to revisiting the simulation. And we've gotten far enough in that, that we're now returning back to the morphogenesis.

Q. What was the issue with the simulation?

If you look at supercomputer centers, maybe three quarters of their time right now goes into modeling physics, and then maybe a quarter right now is machine learning (which frequently also involves simulation). The physics is modeled in 3D, but there's no way to relate that to the geometry of the computer. That's a source of a lot of the inefficiency I mentioned.

Multiphysics modeling is hard today. You can model from the bottom up with molecular dynamics, but that's very hard to do for more than picoseconds of time in the model. And then you can model from the top down with partial differential equations (PDE), and every type of physics needs a different kind of PDE and a different kind of solver.

Issues arise when the geometry is rapidly changing. So consider the gear problem, when you're rapidly changing the gear design. When the gears fail, they can, for example, shear and fracture. Every step of that in a traditional solver requires remeshing and problems with the solver stability. Those are all issues we ran into.

There are about 15 different acronyms that have emerged for what you could summarize as particle systems. We're looking at how you can synthesize these 15 or so separate kinds of particle systems into a universal particle framework for multiphysics modeling.

All physical models have to respect causality and locality as basic constraints, and those correspond to propagation and interaction. So you can reduce almost all of physics to just an abstraction of particles that propagate and interact, and the only thing you need to vary is the force law of the interaction.

So it's an enormously parallel representation. It's very robust, it's very scalable, and it covers a wide range of physics. What we've been doing is developing the phenomenology for that modeling. And then right at the heart of the project is the machine learning to discover the models.

Q. How have you used Amazon Web Services (AWS)?

We run a small in-house computing cluster, MIT has a bigger cluster, and with the Department of Energy, we're using national-class supercomputers. Much of the work we've been discussing fits between those ranges, where we need the ability to quickly add lots of cycles on demand. That's where AWS has been so valuable.

In that gear problem, the machine learning system would discover artifacts that satisfied the letter, but not the spirit, of what we were trying to do. For example, we had given a cost function where the search discovered if it caught the tooth of the gear and then it came flying off, it would be rated more highly. So it made gears that catch.

We consistently find there's an essential role for a human in the loop. This work is very interactive. It's very helpful not just to send a batch job to a big computing system, but instead to dynamically spin up the number of nodes we need and use them interactively with real-time visualization.

Q. What are you looking at for the future? What problems do you want to solve?

I expect the work with AWS will fork in maybe three directions. As the work on the simulation engines matures, that will transition into production mode, where you can think of it as a new kind of AWS service of physics engines.

With that done, we're going to be returning to design morphogenesis. This is two levels of nested search: the lower level of search is over the physical model, and then the higher level is over the design. And we expect to be returning to that in AWS.

But then the most profound one is how this work begins to change the data centers. For both physics simulation and machine learning, we're looking at how software can change the construction of hardware through a project on discretely assembled integrated electronics (DICE). As that kind of machine learning system learns, it can learn its own architecture as it grows. That will raise a really interesting point where the potential collaboration isn't just time on existing hardware.

If you look at the NVIDIA V100 GPU, that was about a three-year development and a billion-dollar scale investment. Very few projects and entities can afford the economics of developing a new chip like that. In this DICE project we're aiming to, by automating the assembly of small computational building blocks with robotic assemblers, significantly reduce the threshold to be able to customize computing architecture.

Research areas

Related content

US, WA, Bellevue
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Senior Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As a Senior Applied Scientist, you will leverage your technical expertise and experience to demonstrate leadership in tackling large complex problems, setting the direction and collaborating with other talented applied scientists and engineers to research and develop LLM modeling and engineering techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering, Model Fine-Tuning, Reinforcement Learning from Human Feedback (RLHF), Evaluation, etc. Your work will directly impact our customers in the form of novel products and services .
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians, on a mission to develop a fault-tolerant quantum computer. We are looking to hire a Research Scientist with fabrication and data analysis experience working on all elements of a superconducting circuit. The position is on-site at our lab, located on the in Pasadena, CA. The ideal candidate will have had prior experience building software tools for data analysis and visualization to enable deep diving into fabrication details, electrical test data. We are looking for candidates with strong engineering principles, resourcefulness and data science experience. Organization and communication skills are essential. Key job responsibilities * Develop and automate data pipeline pertinent to superconducting device fabrication. * Develop analytical tools to uncover new information about established and new processes. * Develop new or contribute to modifying existing data visualization tools. * Utilize machine learning to enable better deeper dives into fabrication and related data. * Interface with various software, design, fabrication and electrical test teams to enable new functionalities. A day in the life The role will be vital to the fabrication team and quantum computing device integration mechanism. The candidate will develop software based analytical tools to enable data driven decisions across projects related to fabrication and supporting infrastructure. Each fabrication run delivers additional data. The candidate will stay close to the details of fabrication providing data analysis and quick feedback to key stakeholders. At the end of fabrication runs custom and standardized reports will be generated by the candidate to provide insights into data generated from the run. This position may require occasional weekend work. About the team AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
CA, ON, Toronto
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As an Applied Scientist on this team, you will: - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches. - Recruit Applied Scientists to the team and provide mentorship. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video https://youtu.be/zD_6Lzw8raE
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As the Data Science Manager on this team, you will: - Lead of team of scientists, business intelligence engineers, etc., on solving science problems with a high degree of complexity and ambiguity. - Develop science roadmaps, run annual planning, and foster cross-team collaboration to execute complex projects. - Perform hands-on data analysis, build machine-learning models, run regular A/B tests, and communicate the impact to senior management. - Hire and develop top talent, provide technical and career development guidance to scientists and engineers in the organization. - Analyze historical data to identify trends and support optimal decision making. - Apply statistical and machine learning knowledge to specific business problems and data. - Formalize assumptions about how our systems should work, create statistical definitions of outliers, and develop methods to systematically identify outliers. Work out why such examples are outliers and define if any actions needed. - Given anecdotes about anomalies or generate automatic scripts to define anomalies, deep dive to explain why they happen, and identify fixes. - Build decision-making models and propose effective solutions for the business problems you define. - Conduct written and verbal presentations to share insights to audiences of varying levels of technical sophistication. Why you will love this opportunity: Amazon has invested heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video ~ https://youtu.be/zD_6Lzw8raE
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As an Applied Science Manager in Machine Learning, you will: - Directly manage and lead a cross-functional team of Applied Scientists, Data Scientists, Economists, and Business Intelligence Engineers. - Develop and manage a research agenda that balances short term deliverables with measurable business impact as well as long term investments. - Lead marketplace design and development based on economic theory and data analysis. - Provide technical and scientific guidance to team members. - Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment - Advance the team's engineering craftsmanship and drive continued scientific innovation as a thought leader and practitioner. - Develop science and engineering roadmaps, run annual planning, and foster cross-team collaboration to execute complex projects. - Perform hands-on data analysis, build machine-learning models, run regular A/B tests, and communicate the impact to senior management. - Collaborate with business and software teams across Amazon Ads. - Stay up to date with recent scientific publications relevant to the team. - Hire and develop top talent, provide technical and career development guidance to scientists and engineers within and across the organization. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video ~ https://youtu.be/zD_6Lzw8raE
US, NJ, Newark
At Audible, we believe stories have the power to transform lives. It’s why we work with some of the world’s leading creators to produce and share audio storytelling with our millions of global listeners. We are dreamers and inventors who come from a wide range of backgrounds and experiences to empower and inspire each other. Imagine your future with us. ABOUT THIS ROLE As Senior Data Scientist, you will build scalable solutions and models to support our business functions (Marketing, Product, Content). Leveraging a range of methods including machine learning and simulation, you will explain, quantify, predict and prescribe in support of informing critical business decisions. You will translate business goals into agile, insightful analytics. You will seek to create value for both stakeholders and customers and inform findings in a clear, actionable way to managers and senior leaders. ABOUT THE TEAM Audible data science team partners with marketing, content, product, and technology teams to solve business and technology problems using scientific approaches to build product and services that surprise and delight our customers. We employ scalable cutting-edge machine learning (ML), causal inference (CI) and GenAI / Natural Language Processing (NLP) knowledge to better target customers and prospects, understand and personalize the content, and context needed to optimize their book-listening experience. We operate in an agile environment in which we own and collaborate on the life cycle of research, design, and model development of relevant projects. ABOUT YOU We are looking for a motivated, results-oriented Data Scientist with strong rigor and demonstrable skills in ML, CI, NLP, data mining and/or large-scale distributed computation. As a Senior Data Scientist, you will... - Develop and validate models to optimize the Who, When, Where and How of all our interactions with customers - Develop Amazon-scale data engineering pipelines - Imagine and invent before the business asks, and create groundbreaking applications using cutting-edge approaches - Develop compelling data visualizations - Work closely with other data scientists, ML experts, engineers as well as business across globe, and on cross-disciplinary efforts with other scientists within Amazon - Contribute to the growth of the Audible Data Science team by sharing your ideas, intellectual property and learning from others ABOUT AUDIBLE Audible is the leading producer and provider of audio storytelling. We spark listeners’ imaginations, offering immersive, cinematic experiences full of inspiration and insight to enrich our customers daily lives. Our Hub+Home hybrid workplace model gives employees the flexibility between gathering in a common office space (work from hub) and remote work (work from home). For more information, please visit adbl.co/hybrid
US, CA, Sunnyvale
The Amazon Artificial General Intelligence (AGI) Personalization team is looking for a passionate, highly skilled and inventive Applied Scientist with strong machine learning background to build state-of-the-art ML systems for personalizing large-scale, high-quality conversational assistant systems. As a Applied Scientist, you will play a critical role in driving the development of personalization techniques enabling conversational systems, in particular those based on large language models, information retrieval, recommender systems and knowledge graph, to be tailored to customer needs. You will handle Amazon-scale use cases with significant impact on our customers' experiences. Key job responsibilities - Use deep learning, ML and NLP techniques to create scalable solutions for creation and development of language model centric solutions for building personalized assistant systems based on a rich set of structured and unstructured contextual signals - Innovate new methods for contextual knowledge extraction and information retrieval, using language models in combination with other learning techniques, that allows effective grounding in context providers when considering memory, compute, latency and quality - Research in advanced customer understanding and behavior modeling techniques - Collaborate with cross-functional teams of scientists, engineers, and product managers to identify and solve complex problems in personal knowledge aggregation, processing, modeling, and verification - Design and execute experiments to evaluate the performance of state-of-the-art algorithms and models, and iterate quickly to improve results - Think Big on conversational assistant system personalization over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports About the team The AGI Personalization org uses various contextual signals to personalize Large Language Model output for our customers while maintaining privacy and security of customer data. We work across multiple Amazon products, including Alexa, to enhance the user experience by bringing more personal context and relevance to customer interactions.
US, NY, New York
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! Why you love this opportunity Amazon is investing heavily in building a world-class advertising business. This team is responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven fundamentally from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Key job responsibilities Key job responsibilities As an Applied Scientist III on this team you will: * Lead complex and ambiguous projects to deliver bidding recommendation products to advertisers. * Build machine learning models and utilize data analysis to deliver scalable solutions to business problems. * Perform hands-on analysis and modeling with very large data sets to develop insights that increase traffic monetization and merchandise sales without compromising shopper experience. * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production. * Design and run A/B experiments that affect hundreds of millions of customers, evaluate the impact of your optimizations and communicate your results to various business stakeholders. * Work with scientists and economists to model the interaction between organic sales and sponsored content and to further evolve Amazon's marketplace. * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. * Research new predictive learning approaches for the sponsored products business. * Write production code to bring models into production. * Mentor junior scientists and engineer in the team.
CA, ON, Toronto
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! Why you love this opportunity Amazon is investing heavily in building a world-class advertising business. This team is responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven fundamentally from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Key job responsibilities As an Applied Scientist on this team you will: * Build machine learning models and utilize data analysis to deliver scalable solutions to business problems. * Perform hands-on analysis and modeling with very large data sets to develop insights that increase traffic monetization and merchandise sales without compromising shopper experience. * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production. * Design and run A/B experiments that affect hundreds of millions of customers, evaluate the impact of your optimizations and communicate your results to various business stakeholders. * Work with scientists and economists to model the interaction between organic sales and sponsored content and to further evolve Amazon's marketplace. * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. * Research new predictive learning approaches for the sponsored products business. * Write production code to bring models into production.
US, WA, Seattle
Are you excited by the idea of developing algorithms to improve the shopping experience for Amazon customers? Are you looking for new challenges and to solve hard science problems while applying state-of-the-art modeling techniques? Join us and you'll help make the shopping experience better for millions of customers while also advancing the state of Amazon's science through publishing research! Key job responsibilities - Develop and apply new machine learning algorithms - Use expertise in supervised learning and causal inference to improve ML performance - Scale optimization techniques to drive business value - Design A/B tests and conduct statistical analysis on their results - Work with distributed machine learning and statistical algorithms to harness enormous volumes of data at scale to serve our customers - Present and publish science research, contributing to Amazon's science community - Mentor junior engineers and scientists. - Work closely with internal stakeholders like the business teams, engineering teams and partner teams and align them with respect to your focus area About the team Our team's mission is to surface the right payments-related recommendations to customers at the right time, helping create a rewarding and successful shopping experience for Amazon's customers. Our team's culture is highly collaborative, with an emphasis on supporting each other and learning from one another. We dedicate time each week to focus on personal development and expanding our knowledge as a team. We also highly value having a big impact, both for Amazon's business and for our customers.