Neil Gershenfeld, the director of the Center for Bits and Atoms at MIT, gestures while speaking
Neil Gershenfeld, the director of the Center for Bits and Atoms at MIT, and seen here speaking at the World Economic Forum, predicts that what he calls the "third digital revolution" will happen in fabrication.
World Economic Forum/swiss-image.ch

Bits into atoms, atoms into bits

A third digital revolution is coming, and Neil Gershenfeld is at the forefront.

From airplane wings to integrated circuits, the physical world is being shaped by digital innovation, and vice versa. At the Massachusetts Institute of Technology, scientists at the Center for Bits and Atoms (CBA) study "how to turn data into things, and things into data," as the center's website puts it.

Neil Gershenfeld, the CBA's director and recipient of a 2019 Amazon Machine Learning Research Award (MLRA) for his work on design morphogenesis — he calls it "the design of design" — talks about his work and the future of computing.

Conversation has been edited for length and clarity.

Q. In your book Designing Reality, you refer to three digital revolutions. The first was in communication, going from phones to the Internet, and the second was in computation, with personal computers and smartphones. The third, you predict, will be in fabrication. How does that connect to your work at the Center for Bits and Atoms?

I never understood the boundary between physical science and computer science. I take credit for the observation that computer science is one of the worst things to happen to computers or to science. What I mean by that is, the canon of computer science is fundamentally unphysical.

Computer science, as it's taught in practice today, happens in abstract digital worlds. It's a bit like the movie Metropolis, where people frolic in the garden and somebody moves the levers in the basement — the basement here is things like data centers, where you actually figure out how to do the computing. Tremendous amounts of power, communication, bandwidth, and inefficiency go into making physical computers act like virtual spaces.

ESOF 2018 - The Third Digital Revolution: Fabrication — Neil Gershenfeld

There's a completely different lineage. The founders of modern computing architecture, John von Neumann and Alan Turing, both investigated the physical form of computing. Von Neumann studied self-reproducing automata: how a computer can communicate its own construction. Turing studied morphogenesis: how genes give rise to form. Neither of them was studying computing in a cloud, but rather computing as a physical resource.

That's at the heart of the work of CBA — of embodying computing, not abstracting computing. Fundamentally aligning the representations of hardware and software for scalability, for efficiency, for productivity. To move bits into atoms, and atoms into bits.

Q. Can you talk more about the concept of design morphogenesis and what that entails?

​​So this was one of the last things that Turing studied: how genes give rise to form. It's really at the heart of life.

Your genome doesn't anywhere store that you have five fingers. It stores the developmental program, and the developmental program resides in one of the oldest parts of the genome, called Hox genes. It encodes steps like, "grow up a gradient" or "break symmetry." When you follow those steps, at the end, you have five fingers.

Morphogensis: an explainer

Science Direct defines morphogenesis as "a biological process that causes a tissue or organ to develop its shape by controlling the spatial distribution of cells during embryonic development."

There's a very deep parallel with machine learning. Modern machine learning hasn't found better ways to search. It's found better representations of search — where to search in ways that are interesting. Today in engineering design, it's almost tautological that the design represents the thing you're designing. If you're designing an airplane or a chip, you represent the airplane or the chip.

But again, that's not what biology does. So in the morphogenesis project, we've been looking at how to design by searching over developmental programs. One of the warm-up problems we did — one that was much harder than I originally thought — was gear design. Gear design is surprisingly subtle and represents centuries of experience. We showed we could rediscover centuries of experience in gear design by searching over algorithmic representations of gears rather than explicit designs of gears.

Q. And that gear project was supported by the MLRA, correct?

That's right. And the way it connects is, that's where we started with support from the award. In the gear project, we found that what was most limiting was the simulation engine. So, much of our MLRA focused research moved from the morphogenesis to revisiting the simulation. And we've gotten far enough in that, that we're now returning back to the morphogenesis.

Q. What was the issue with the simulation?

If you look at supercomputer centers, maybe three quarters of their time right now goes into modeling physics, and then maybe a quarter right now is machine learning (which frequently also involves simulation). The physics is modeled in 3D, but there's no way to relate that to the geometry of the computer. That's a source of a lot of the inefficiency I mentioned.

Multiphysics modeling is hard today. You can model from the bottom up with molecular dynamics, but that's very hard to do for more than picoseconds of time in the model. And then you can model from the top down with partial differential equations (PDE), and every type of physics needs a different kind of PDE and a different kind of solver.

Issues arise when the geometry is rapidly changing. So consider the gear problem, when you're rapidly changing the gear design. When the gears fail, they can, for example, shear and fracture. Every step of that in a traditional solver requires remeshing and problems with the solver stability. Those are all issues we ran into.

There are about 15 different acronyms that have emerged for what you could summarize as particle systems. We're looking at how you can synthesize these 15 or so separate kinds of particle systems into a universal particle framework for multiphysics modeling.

All physical models have to respect causality and locality as basic constraints, and those correspond to propagation and interaction. So you can reduce almost all of physics to just an abstraction of particles that propagate and interact, and the only thing you need to vary is the force law of the interaction.

So it's an enormously parallel representation. It's very robust, it's very scalable, and it covers a wide range of physics. What we've been doing is developing the phenomenology for that modeling. And then right at the heart of the project is the machine learning to discover the models.

Q. How have you used Amazon Web Services (AWS)?

We run a small in-house computing cluster, MIT has a bigger cluster, and with the Department of Energy, we're using national-class supercomputers. Much of the work we've been discussing fits between those ranges, where we need the ability to quickly add lots of cycles on demand. That's where AWS has been so valuable.

In that gear problem, the machine learning system would discover artifacts that satisfied the letter, but not the spirit, of what we were trying to do. For example, we had given a cost function where the search discovered if it caught the tooth of the gear and then it came flying off, it would be rated more highly. So it made gears that catch.

We consistently find there's an essential role for a human in the loop. This work is very interactive. It's very helpful not just to send a batch job to a big computing system, but instead to dynamically spin up the number of nodes we need and use them interactively with real-time visualization.

Q. What are you looking at for the future? What problems do you want to solve?

I expect the work with AWS will fork in maybe three directions. As the work on the simulation engines matures, that will transition into production mode, where you can think of it as a new kind of AWS service of physics engines.

With that done, we're going to be returning to design morphogenesis. This is two levels of nested search: the lower level of search is over the physical model, and then the higher level is over the design. And we expect to be returning to that in AWS.

But then the most profound one is how this work begins to change the data centers. For both physics simulation and machine learning, we're looking at how software can change the construction of hardware through a project on discretely assembled integrated electronics (DICE). As that kind of machine learning system learns, it can learn its own architecture as it grows. That will raise a really interesting point where the potential collaboration isn't just time on existing hardware.

If you look at the NVIDIA V100 GPU, that was about a three-year development and a billion-dollar scale investment. Very few projects and entities can afford the economics of developing a new chip like that. In this DICE project we're aiming to, by automating the assembly of small computational building blocks with robotic assemblers, significantly reduce the threshold to be able to customize computing architecture.

Research areas

Related content

US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field or relevant science experience (publications/scientific prototypes) in lieu of Masters - Experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment - Papers published in AI/ML venues of repute
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
US, WA, Seattle
The Search Supply & Experiences team, within Sponsored Products, is seeking an Applied Scientist to solve challenging problems in natural language understanding, personalization, and other areas using the latest techniques in machine learning. In our team, you will have the opportunity to create new ads experiences that elevate the shopping experience for our hundreds of millions customers worldwide. As an Applied Scientist, you will partner with other talented scientists and engineers to design, train, test, and deploy machine learning models. You will be responsible for translating business and engineering requirements into deliverables, and performing detailed experiment analysis to determine how shoppers and advertisers are responding to your changes. We are looking for candidates who thrive in an exciting, fast-paced environment and who have a strong personal interest in learning, researching, and creating new technologies with high customer impact. Key job responsibilities As an Applied Scientist on the Search Supply & Experiences team you will: - Perform hands-on analysis and modeling of enormous datasets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end machine learning projects that have a high degree of ambiguity, scale, and complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Design and run experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Stay up to date on the latest advances in machine learning. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to shoppers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. About the team The International Seller Services (ISS) Economics team is a dynamic group at the forefront of shaping Amazon's global seller ecosystem. As part of ISS, we drive innovation and growth through sophisticated economic analysis and data-driven insights. Our mission is critical: we're transforming how Amazon empowers millions of international sellers to succeed in the digital marketplace. Our team stands at the intersection of innovative technology and practical business solutions. We're leading Amazon's transformation in seller services through work with Large Language Models (LLMs) and generative AI, while tackling fundamental questions about seller growth, marketplace dynamics, and operational efficiency. What sets us apart is our unique blend of rigorous economic methodology and practical business impact. We're not just analyzing data – we're building the frameworks and measurement systems that will define the future of Amazon's seller services. Whether we're optimizing the seller journey, evaluating new technologies, or designing innovative service models, our team transforms complex economic challenges into actionable insights that drive real-world results. Join us in shaping how millions of businesses worldwide succeed on Amazon's marketplace, while working on problems that combine economic theory, advanced analytics, and innovative technology.