-
AISTATS 20222022In many contexts it is useful to predict the number of individuals in some population who will initiate a particular activity during a given period. For example, the number of users who will install a software update, the number of customers who will use a new feature on a website or who will participate in an A/B test. In practical settings, there is heterogeneity amongst individuals with regard to the
-
The Web Conference 20222022A/B tests serve the purpose of reliably identifying the effect of changes introduced in online services. It is common for online platforms to run a large number of simultaneous experiments by splitting incoming user traffic randomly in treatment and control groups. Despite a perfect randomization between different groups, simultaneous experiments can interact with each other and create a negative impact
-
ICML 2022, UAI 2022 Workshop on Advances in Causal Inference2022We study the problem of observational causal inference with continuous treatment. We focus on the challenge of estimating the causal response curve for infrequently-observed treatment values. We design a new algorithm based on the framework of entropy balancing which learns weights that directly maximize causal inference accuracy using end-to-end optimization. Our weights can be customized for different
-
The Journal of Finance and Data Science (JFDS)2021We present a simple and effective methodology for the generation of lexicons (word lists) that may be used in natural language scoring applications. In particular, in the finance industry, word lists have become ubiquitous for sentiment scoring. These have been derived from dictionaries such as the Harvard Inquirer and require manual curation. Here, we present an automated approach to the curation of lexicons
-
The Journal of Financial Data Science Summer2021The authors enhance pretrained language models with Securities and Exchange Commission filings data to create better language representations for features used in a predictive model. Specifically, they train RoBERTa class models with additional financial regulatory text, which they denote as a class of RoBERTa-Fin models. Using different datasets, the authors assess whether there is material improvement
Related content
-
October 13, 2021Amazon Scholar David Card wins half the award, while academic research consultant Guido Imbens shares in the other half.
-
September 1, 2021Amazon’s scientists have developed a variety of scientific models to help customers get the most out of their membership.
-
July 26, 2021In a paper published at INFORMS in 2020, the Amazon senior principal scientist and his co-authors factored in both revenue and "the expected utility to the customer from the purchase."
-
July 20, 2021The senior economist knows what it means to pursue a career path like hers, and she’s determined to help others along the way.
-
May 3, 2021The Amazon economist says lessons from her mother taught her a lot about how the world works, and why economics plays such a vital role.
-
April 28, 2021Yale economics professor Dirk Bergemann elected to American Academy of Arts & Sciences; University of Pennsylvania computer science professor Michael Kearns elected to National Academy of Sciences.