-
2024 Conference on Digital Experimentation @ MIT (CODE@MIT)2024There are different reasons why experimenters may want to randomize their experiment at a region level. In some cases, treatments cannot be turned on or off at the individual level, therefore requiring randomization at a group level, for which regions can be a good candidate. In other cases, experimenters may worry about network effects or other types of spillovers within a geographic area, and opt to randomize
-
2024 Conference on Digital Experimentation @ MIT (CODE@MIT)2024Online sites typically evaluate the impact of new product features on customer behavior using online controlled experiments (or A/B tests). For many business applications, it is important to detect heterogeneity in these experiments [1], as new features often have a differential impact by customer segment, product group, and other variables. Understanding heterogeneity can provide key insights into causal
-
2024 Conference on Digital Experimentation @ MIT (CODE@MIT)2024Many data-driven companies measure the impact of product groups and allocate resources across them based on the estimated impacts of features they launch via A/B tests. In this doc, we show that, when based on a standard frequentist estimator of the impact of features, this practice can significantly overstate the impact of product groups and distort the allocation of resources. When this practice is instead
-
ACM Digital Government Research and Practice (DGOV)2024Labor market information is an important input to labor, workforce, education, and macroeconomic policy. However, granular and real-time data on labor market trends are lacking; publicly available data from survey samples are released with significant lags and miss critical information such as skills and benefits. We use generative Artificial Intelligence to automatically extract structured labor market
-
2024With recent rapid growth in online shopping, AI-powered Engagement Surfaces (ES) have become ubiquitous across retail services. These engagement surfaces perform an increasing range of functions, including recommending new products for purchase, remind-ing customers of their orders and providing delivery notifications. Understanding the causal effect of engagement surfaces on value driven for customers
Related content
-
July 29, 2025New cost-to-serve-software metric that accounts for the full software development lifecycle helps determine which software development innovations provide quantifiable value.
-
May 21, 2025By combining surveys with ads targeted to metro and commuter rail lines, Amazon researchers identify the fraction of residents of different neighborhoods exposed to the ads and measure ad effectiveness.
-
December 16, 2024In a keynote address at the latest Amazon Machine Learning Conference, Amazon academic research consultant, Stanford professor, and recent Nobel laureate Guido Imbens offered insights on the estimation of causal effects in “panel data” settings.
-
October 21, 2024Causal machine learning provides a powerful tool for estimating the effectiveness of Fulfillment by Amazon’s recommendations to selling partners.
-
April 30, 2024Using causal random forests and Bayesian structural time series to extrapolate from sparse data ensures that customers get the most useful information as soon as possible.
-
March 21, 2024The principal economist and his team address unique challenges using techniques at the intersection of microeconomics, statistics, and machine learning.