-
2024Comparing two samples of data, we observe a change in the distribution of an outcome variable. In the presence of multiple explanatory variables, how much of the change can be explained by each possible cause? We develop a new estimation strategy that, given a causal model, combines regression and re-weighting methods to quantify the contribution of each causal mechanism. Our proposed methodology is multiply
-
JAMA Network Open2024Question: What is the association between enrollment in a subscription program that offers Amazon Prime members access to 60 common generic prescription drugs for a $5 monthly fee with medication refills, days’ supply and out-of-pocket costs? Findings: In this cohort study comparing 5,003 enrollees to 5,137 controls, before and after enrollment, subscription program enrollment was associated with statistically
-
AISTATS 20242024The synthetic control method (SCM) has become a popular tool for estimating causal effects in policy evaluation, where a single treated unit is observed. However, SCM faces challenges in accurately predicting postintervention potential outcomes had, contrary to fact, the treatment been withheld, when the pre-intervention period is short or the post-intervention period is long. To address these issues, we
-
IAAE 2023, Research Methods and Applications on Macroeconomic Forecasting2024We propose a simple yet robust framework to nowcast recession risk at a monthly frequency in both the United States and the Euro Area. Our nowcast leverages both macroeconomic and financial conditions, and is available the first business day after the reference month closes. In particular, we argue that financial conditions are not only useful to predict future downturns–as emphasized by the existing literature–but
-
2023 Conference on Digital Experimentation @ MIT (CODE@MIT)2023Online A/B tests have become an indispensable tool across all the technology industry: if performed correctly, “online” experiments can inform effective decision making and product development. It should therefore not be surprising that Gupta et al. [2019] estimates that online businesses alone collectively run hundreds of thousands of experiments annually. Modern online experiments are often run in marketplaces
Related content
-
July 29, 2025New cost-to-serve-software metric that accounts for the full software development lifecycle helps determine which software development innovations provide quantifiable value.
-
May 21, 2025By combining surveys with ads targeted to metro and commuter rail lines, Amazon researchers identify the fraction of residents of different neighborhoods exposed to the ads and measure ad effectiveness.
-
December 16, 2024In a keynote address at the latest Amazon Machine Learning Conference, Amazon academic research consultant, Stanford professor, and recent Nobel laureate Guido Imbens offered insights on the estimation of causal effects in “panel data” settings.
-
October 21, 2024Causal machine learning provides a powerful tool for estimating the effectiveness of Fulfillment by Amazon’s recommendations to selling partners.
-
April 30, 2024Using causal random forests and Bayesian structural time series to extrapolate from sparse data ensures that customers get the most useful information as soon as possible.
-
March 21, 2024The principal economist and his team address unique challenges using techniques at the intersection of microeconomics, statistics, and machine learning.