Meta-Surrogate Benchmarking for Hyperparameter Optimization
2019
Despite the recent progress in hyperparameter optimization (HPO), available benchmarks that resemble real-world scenarios usually consist of a few and very large problem instances that are expensive to solve. This blocks researchers and practitioners from systematically running large-scale comparisons that are needed to draw statistically significant results. This work proposes a method to alleviate these issues by means of a meta-surrogate model for HPO tasks trained on off-line generated data. The model combines a probabilistic encoder with a multi-task Bayesian optimization model such that it can generate inexpensive and realistic tasks of the class of problems of interest. We demonstrate that benchmarking HPO methods on samples of the generative model allows us to draw more coherent and statistically significant conclusions that can be reached orders of magnitude faster than using the original instances. We provide evidence of our findings for a large variety of HPO methods on a wide class of problems.
Research areas