Privacy challenges in extreme gradient boosting

Scientists describe the use of privacy-preserving machine learning to address privacy challenges in XGBoost training and prediction.

(Editor’s note: This is the fourth in a series of articles Amazon Science is publishing related to the science behind products and services from companies in which the Amazon Alexa Fund has invested. The Alexa Fund completed a strategic investment in Inpher, Inc., earlier this year; the New York and Swiss-based company develops privacy-preserving machine learning and analytics solutions that help organizations unlock the value of sensitive, siloed data to enable secure collaboration across organizations. This article is co-authored by Dimitar Jetchev, the cofounder and chief technology officer of Inpher, and Joan Feigenbaum, an Amazon Scholar and the Grace Murray Hopper professor of computer science at Yale University.)

Joan Feigenbaum and Dimitar Jetchev
Dimitar Jetchev (left), the cofounder and chief technology officer of Inpher, and Joan Feigenbaum, the Grace Murray Hopper professor of computer science at Yale University, and an Amazon Scholar, describe the use of privacy-preserving machine learning to address privacy challenges in XGBoost training and prediction.
Credit: Glynis Condon

Machine learning (ML) is increasingly important in a wide range of applications, including market forecasting, service personalization, voice and facial recognition, autonomous driving, health diagnostics, education, and security analytics. Because ML touches so many aspects of our lives, it’s of vital concern that ML systems protect the privacy of the data used to train them, the confidential queries submitted to them, and the confidential predictions they return.

Privacy protection — and the protection of organizations’ intellectual property — motivates the study of privacy-preserving machine learning (PPML). In essence, the goal of PPML is to perform machine learning in a manner that does not reveal any unnecessary information about training-data sets, queries, and predictions.

Suppose, for example, that schools supplied encrypted student records to educational researchers who used them to train ML models. Suppose further that students, parents, teachers, and other researchers could feed encrypted queries to the models and receive encrypted predictions in return. By taking advantage of PPML techniques in this manner, all of the participants could mine the knowledge contained in educational-record databases without compromising the privacy of the data subjects or the data users.

PPML is a very active area, with an eponymous annual workshop and many strong papers in general-ML and security venues. Techniques have been developed for privacy-preserving training and prediction on a wide range of ML model types, e.g., neural nets, decision trees, and logistic-regression formulae.

In the sections below, we describe PPML methods for training and prediction in extreme gradient boosting.

Training

Gradient boosting is an ML method for regression and classification problems that yields a set of prediction trees, typically classification and regression trees (CARTs), which together constitute a model. A CART is a generalization of a binary decision tree; while a binary tree produces a binary output, classifying each input query as a “yes” or “no,” a CART assigns each input query a (real) numerical score.

Interpretation of scores is application dependent. If v is a query, then each CART in the model assigns a score to v, and the final prediction of the model on input v is the sum of these scores. In some applications, the softmax function may be used instead of sum to produce a probability distribution over the predicted output classes.

Extreme gradient boosting (XGBoost) is an optimized, distributed, gradient-boosting framework that is efficient, portable, and flexible. In this section, we consider confidentiality of training data in the creation of XGBoost models for disease prediction — specifically, for prediction of multiple sclerosis (MS).

Early diagnosis and treatment of MS is crucial to prevent degenerative progression of the disease and patient disabilities. A recent paper proposes an early-diagnosis method that applies XGBoost to electronic health records and uses three types of features: diagnostic, epidemiologic, and laboratory.

How cryptographic computing can accelerate the adoption of cloud computing

In a previous Amazon Science article, Joan Feigenbaum reviewed secure multiparty computation and privacy-preserving machine learning – two cryptographic techniques employed to address cloud-computing privacy concerns and accelerate enterprise cloud adoption.

The presence of another neurological disease (e.g., acute disseminated encephalomyelitis (ADEM)) is an example of a diagnostic feature. Epidemiologic features include age, gender, and total number of visits to a hospital. Two more features that are discovered by lab tests are used in the model and referred to as laboratory features: hyperlipidemia (abnormally elevated levels of any or all lipids) and hyperglycemia (elevated blood sugar). The proposed XGBoost model significantly outperforms other ML techniques (including naïve Bayes methods, k-nearest neighbor, and support vector machines) that have been proposed for early diagnosis of MS.

Collecting a sufficient number of high-quality data samples and features to train such a diagnostic model is quite challenging, because the data reside in different private locations. The training data can be split in different ways among these locations: horizontally split, vertically split, or both.

If the private data sources contain samples with the same feature set (as would be the case if, say, the same features are extracted from health records residing in different hospitals), the dataset is said to be horizontally split. The other extreme — vertically split data — occurs when a private data source contributes a new feature for all of the training samples. For example, a health-insurance company could supply reimbursement receipts for past medication (the new feature) to complement the features in clinical health records. In these scenarios, aggregating the training data on a central server violates GDPR regulations.

The figure below illustrates one possible CART in the trained model. The weights at the leaves might indicate probabilities of MS resulting from the various paths from root to leaf.

Classification and regression trees (CART)

Research on privacy-preserving training of XGBoost models for prediction of MS uses two distinct techniques: secure multiparty computation (SMPC) and privacy-preserving federated learning (PPFL). We briefly describe both of them here.

An SMPC protocol enables several parties, each of whom holds a private input, to jointly evaluate a publicly known function on these inputs without revealing anything about the inputs except what is implied by the output of the function. Private inputs are secret shared among the parties, e.g., via additive secret sharing, in which each owner of a private input v generates random “shares” that add up to v.

For instance, suppose that Alice’s private input is v = 5. She can secret share it among herself, Bob, and Charlie by generating two random integers SBob =125621 and SCharlie = 56872, sending Bob’s share to him and Charlie’s to him, and keeping SAlice = v - SBob - SCharlie = -182488. Unless an adversary controls all three parties, he cannot learn anything about Alice’s private input v.  
  
In an execution of an SMPC protocol, the inputs to each elementary operation (addition or multiplication) are secret shared, and the output of the operation is a set of secret shares of the result. We say that a secret-shared value y (which may be the final output of the computation) is revealed to party P if all the parties send their shares to P, thus enabling P to reconstruct y. Further discussion of SMPC and its relevance to cloud computing can be found here and in Inpher’s Secret Computing Explainer Series.

A recent paper by researchers at Inpher proposes an SMPC protocol, called XORBoost, for privacy-preserving training of XGBoost models. It improves the state of the art by several orders of magnitude and ensures that

  • The CARTs computed by the protocol are secret shared among the training-data owners and revealed only to a designated party, namely the data analyst.
  • The training algorithm not only protects the input data but also reveals no information about the paths in the CARTs taken by any of the training samples. 
  • XORBoost supports both numerical and categorical features, thus providing enough flexibility and generality to support the above model.    

XORBoost works well for training datasets of reasonable size — hundreds of thousands of samples and hundreds of features. However, many real-world applications require training on more than a million samples. To achieve that type of scale, one can use federated learning (FL), which is an ML technique used to train a model on data samples held locally by multiple, decentralized edge devices without requiring the devices to exchange the samples.

FL differs from XORBoost mainly in that FL does not perform the entire training exercise on secret-shared values. Rather, each device trains a local model on its local data samples and sends its local model to one or more servers for aggregation. The aggregation protocol typically uses simple operations such as sum, average, and oblivious comparisons but no complex optimization.

If the server receives the plaintext local-model updates from all of the devices, it could, in principle, recover the local training-data samples using model-inversion attacks. SMPC and other privacy-preserving computational techniques can be applied to aggregate local models without revealing them to the server. See the diagram below for the overall architecture. 

XORBoost architecture

Prediction

PPXGBoost is a privacy-preserving version of XGBoost prediction. More precisely, it is a system that supports encrypted queries to encrypted XGBoost models. PPXGBoost is designed for applications that start by training a plaintext model Ω on a suitable training-data set and then create, for each user U, a personalized, encrypted version ΩU of the model to which U will submit encrypted queries and from which she will receive encrypted results. 

PPXGBoost system architecture

The PPXGBoost system architecture is shown in the figure above. On the client side, there is an app with which a user encrypts queries and decrypts results. On the server side, there is a module called Proxy that runs in a trusted environment and is responsible for setup (i.e., creating, for each authorized user, a personalized, encrypted model and a set of cryptographic keys) and an ML module that executes the encrypted queries. PPXGBoost uses two specialized types of encryption schemes (symmetric-key, order-preserving encryption and public-key, additive, homomorphic encryption) to encrypt models and evaluate encrypted queries. Each user is issued keys for both schemes during the setup phase.

Note that PPXGBoost is a natural choice for researchers, clinicians, and patients who wish to make disease predictions repeatedly as the patients’ circumstances change. Potentially relevant changes include exposure to new environmental factors, experimental treatment for another condition, or simply aging. An individual patient can create a personalized, encrypted version of a disease-prediction model and store it on a server owned by the medical center at which he is receiving treatment. Patient and physician can then use it to monitor, in a privacy-preserving manner, changes in the patient’s likelihood of contracting the disease.

Conclusion

We have described the use of PPML to address privacy challenges in XGBoost training and prediction. In a future post, we will elaborate on how privacy-preserving federated learning enables researchers to train more-complex ML models on millions of samples stored on hundreds of thousands of devices.

Related content

US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Are you a passionate Applied Scientist (AS) ready to shape the future of digital content creation? At Amazon, we're building Earth's most desired destination for creators to monetize their unique skills, inspire the next generation of customers, and help brands expand their reach. We build innovative products and experiences that drive growth for creators across Amazon's ecosystem. Our team owns the entire Creator product suite, ensuring a cohesive experience, optimizing compensation structures, and launching features that help creators achieve both monetary and non-monetary goals. Key job responsibilities As an AS on our team, you will: Handle challenging problems that directly impact millions of creators and customers Independently collect and analyze data Develop and deliver scalable predictive models, using any necessary programming, machine learning, and statistical analysis software Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software Participate in design and implementation across teams to contribute to initiatives and develop optimal solutions that benefit the creators organization Key job responsibilities he successful candidate is a self-starter, comfortable with a dynamic, fast-paced environment, and able to think big while paying careful attention to detail. You have deep knowledge of an area/multiple areas of science, with a track record of applying this knowledge to deliver science solutions in a business setting and a demonstrated ability to operate at scale. You excel in a culture of invention and collaboration.
US, MA, North Reading
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics is seeking Applied Science Interns and Co-ops with a passion for robotic research to work on algorithms for robotics. Our team works on challenging and high-impact projects within robotics. Examples of projects include allocating resources to complete million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, identifying objects and damage, and learning how to grasp all the products Amazon sells. As an Applied Science Intern/Co-op at Amazon Robotics, you will be working on one or more of our robotic technologies such as autonomous mobile robots, robot manipulators, and AI, computer vision technologies. The intern/co-op project(s) and the internship/co-op location are based on the team the student will be working on. Please note that by applying to this role you would be considered for Applied Scientist summer intern, spring co-op, and fall co-op roles on various Amazon Robotics teams. These teams work on robotics research within areas such as computer vision, machine learning, robotic manipulation, mobile robotics, navigation, path planning, perception, optimization and more. Learn more about Amazon Robotics: https://amazon.jobs/en/teams/amazon-robotics https://www.aboutamazon.com/news/operations/amazon-robotics-robots-fulfillment-center https://www.aboutamazon.com/news/operations/amazon-million-robots-ai-foundation-model
US, NY, New York
Are you passionate about conducting research to develop and grow leaders? Would you like to impact more than 1M Amazonians globally and improve the employee experience? If so, you should consider joining the People eXperience & Technology Central Science (PXTCS) team. Our goal is to be best and most diverse workforce in the world. PXTCS uses science, research, and technology to optimize employee experience and performance across the full employee lifecycle, from first contact through exit. We use economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. This individual should be skilled in core data science tools and methods, icnluding SQL, a statistical software package (e.g., R, Python, or Stata), inferential statistics, and proficient in machine learning. This person should also have strong business acumen to navigate complex, ambiguous business challenges — they should be adept at asking the right questions, knowing what methodologies to use (and why), efficiently analyzing massive datasets, and communicating results to multiple audiences (e.g., technical peers, functional teams, business leaders). In order to move quickly, deliver high-quality results, and adapt to ever-evolving business priorities, effective communication skills in research fundamentals (e.g., research design, measurement, statistics) will also be a must. Major responsibilities will include: - Managing the full life cycle of large-scale research initiatives across multiple business segments that impact leaders in our organization (i.e., develop strategy, gather requirements, manage, and execute) - Serving as a subject matter expert on a wide variety of topics related to research design, measurement, analysis - Working with internal partners and external stakeholders to evaluate research initiatives that provide bottom-line ROI and incremental improvements over time - Collaborating with a cross-functional team that has expertise in social science, machine learning, econometrics, psychometrics, natural language processing, forecasting, optimization, business intelligence, analytics, and policy evaluation - Ability to query and clean complex datasets from multiple sources, to funnel into advanced statistical analysis - Writing high-quality, evidence-based documents that help provide insights to business leaders and gain buy-in - Sharing knowledge, advocating for innovative solutions, and mentoring others Inclusive Team Culture Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have 12 affinity groups (employee resource groups) with more than 1M employees across hundreds of chapters around the world. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which reminds team members to seek diverse perspectives, learn and be curious, and earn trust. Flexibility It isn’t about which hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We offer flexibility and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth We care about your career growth, too. Whether your goals are to explore new technologies, take on bigger opportunities, or get to the next level, we'll help you get there. Our business is growing fast and our people will grow with it. About the team We are a collegial and multidisciplinary team of researchers in People eXperience and Technology (PXT) that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We leverage data and rigorous analysis to help Amazon attract, retain, and develop one of the world’s largest and most talented workforces.
IN, KA, Bengaluru
Alexa is the voice activated digital assistant powering devices like Amazon Echo, Echo Dot, Echo Show, and Fire TV, which are at the forefront of this latest technology wave. To preserve our customers’ experience and trust, the Alexa Sensitive Content Intelligence (ASCI) team creates policies and builds services and tools through Machine Learning techniques to detect and mitigate sensitive content across Alexa. We are looking for an experienced Applied Science Manager to build industry-leading technologies in attribute extraction and sensitive content detection across all languages and countries. Key job responsibilities An Applied Scientist II will be working with a team of exceptional scientists to develop novel algorithms and modeling techniques to advance the state of the art in NLP related tasks. You will work in a hybrid, fast-paced organization where scientists, engineers, and product managers work together to build customer facing experiences. You will collaborate with and mentor other junior scientists to raise the bar of scientific research in Amazon. Your work will directly impact our customers in the form of products and services that make use of speech, language, and computer vision technologies. We are looking for a candidate with strong technical experiences a passion for building scientific driven solutions in a fast-paced environment. You should have good understanding of NLP models (e.g. LSTM, transformer based models) and where to apply them in different business cases. You leverage your exceptional technical expertise, a sound understanding of the fundamentals of Computer Science, and practical experience of building large-scale distributed systems to creating reliable, scalable, and high-performance products. In addition to technical depth, you must possess exceptional communication skills and understand how to influence key stakeholders. You will be joining a select group of people making history producing one of the most highly rated products in Amazon's history, so if you are looking for a challenging and innovative role where you can solve important problems while growing as a leader, this may be the place for you. A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test scientific proposal/solutions to improve our sensitive contents detection and mitigation. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. You work closely with partner teams across Alexa to deliver platform features that require cross-team leadership. About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video. Job responsibilities
US, MA, Boston
As a Principal Scientist within the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. You solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location. You scrutinize and review experimental design, modeling, verification and other research procedures. You probe assumptions, illuminate pitfalls, and foster shared understanding. You align teams toward coherent strategies. You educate, keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. You help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). About the team The AGI team has a mission to push the envelope with multimodal LLMs and Gen AI in Computer Vision, in order to provide the best-possible experience for our customers.
US, NY, New York
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Design and build agents to guide advertisers in conversational and non-conversational experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.
CA, ON, Toronto
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Lead business, science and engineering strategy and roadmap for Sponsored Products Agentic Advertiser Guidance. - Design and build agents to guide advertisers in conversational and non-conversational experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.
US, CA, Palo Alto
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Lead business, science and engineering strategy and roadmap for Sponsored Products Agentic Advertiser Guidance. - Design and build agents to guide advertisers in conversational and non-conversational experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.
US, CA, Palo Alto
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities As an Applied Science Manager, you will: * Directly manage and lead a cross-functional team of Applied Scientists, Machine Learning Engineers, and Software Development Engineers. * Develop science and engineering roadmaps for SPB ads response prediction with ML and Gen AI solutions, run annual planning, and foster cross-team collaboration on model development and integration to advertising applications. * Hire and develop top talent, provide technical and career development guidance to scientists and engineers within and across the organization. * Stay informed about recent scientific publications, industrial research trends, and system designs that are pertinent to the SPB advertising business and bring those insights with the team. About the team The Ad Response Prediction team within Sponsored Products and Brands (SPB) drives personalized shopping experiences for SPB Ads across placements, pages, and devices worldwide. We achieve this through ML and GenAI solutions that include customized shopper response prediction and session-level understanding to optimize every stage of the ad-serving process, from sourcing and bidding to widget discovery and auctions. Our responsibilities include advancing response prediction through model and feature innovations and extending prediction beyond the auction stage to areas such as targeting, sourcing, and bidding. We are seeking an Applied Science Manager with a strong background in ML and Gen AI solutions. The ideal candidate shall have experience managing both scientists and engineers and will be passionate about applying these technologies to the advertising domain.