Privacy challenges in extreme gradient boosting

Scientists describe the use of privacy-preserving machine learning to address privacy challenges in XGBoost training and prediction.

(Editor’s note: This is the fourth in a series of articles Amazon Science is publishing related to the science behind products and services from companies in which the Amazon Alexa Fund has invested. The Alexa Fund completed a strategic investment in Inpher, Inc., earlier this year; the New York and Swiss-based company develops privacy-preserving machine learning and analytics solutions that help organizations unlock the value of sensitive, siloed data to enable secure collaboration across organizations. This article is co-authored by Dimitar Jetchev, the cofounder and chief technology officer of Inpher, and Joan Feigenbaum, an Amazon Scholar and the Grace Murray Hopper professor of computer science at Yale University.)

Joan Feigenbaum and Dimitar Jetchev
Dimitar Jetchev (left), the cofounder and chief technology officer of Inpher, and Joan Feigenbaum, the Grace Murray Hopper professor of computer science at Yale University, and an Amazon Scholar, describe the use of privacy-preserving machine learning to address privacy challenges in XGBoost training and prediction.
Credit: Glynis Condon

Machine learning (ML) is increasingly important in a wide range of applications, including market forecasting, service personalization, voice and facial recognition, autonomous driving, health diagnostics, education, and security analytics. Because ML touches so many aspects of our lives, it’s of vital concern that ML systems protect the privacy of the data used to train them, the confidential queries submitted to them, and the confidential predictions they return.

Privacy protection — and the protection of organizations’ intellectual property — motivates the study of privacy-preserving machine learning (PPML). In essence, the goal of PPML is to perform machine learning in a manner that does not reveal any unnecessary information about training-data sets, queries, and predictions.

Suppose, for example, that schools supplied encrypted student records to educational researchers who used them to train ML models. Suppose further that students, parents, teachers, and other researchers could feed encrypted queries to the models and receive encrypted predictions in return. By taking advantage of PPML techniques in this manner, all of the participants could mine the knowledge contained in educational-record databases without compromising the privacy of the data subjects or the data users.

PPML is a very active area, with an eponymous annual workshop and many strong papers in general-ML and security venues. Techniques have been developed for privacy-preserving training and prediction on a wide range of ML model types, e.g., neural nets, decision trees, and logistic-regression formulae.

In the sections below, we describe PPML methods for training and prediction in extreme gradient boosting.

Training

Gradient boosting is an ML method for regression and classification problems that yields a set of prediction trees, typically classification and regression trees (CARTs), which together constitute a model. A CART is a generalization of a binary decision tree; while a binary tree produces a binary output, classifying each input query as a “yes” or “no,” a CART assigns each input query a (real) numerical score.

Interpretation of scores is application dependent. If v is a query, then each CART in the model assigns a score to v, and the final prediction of the model on input v is the sum of these scores. In some applications, the softmax function may be used instead of sum to produce a probability distribution over the predicted output classes.

Extreme gradient boosting (XGBoost) is an optimized, distributed, gradient-boosting framework that is efficient, portable, and flexible. In this section, we consider confidentiality of training data in the creation of XGBoost models for disease prediction — specifically, for prediction of multiple sclerosis (MS).

Early diagnosis and treatment of MS is crucial to prevent degenerative progression of the disease and patient disabilities. A recent paper proposes an early-diagnosis method that applies XGBoost to electronic health records and uses three types of features: diagnostic, epidemiologic, and laboratory.

How cryptographic computing can accelerate the adoption of cloud computing

In a previous Amazon Science article, Joan Feigenbaum reviewed secure multiparty computation and privacy-preserving machine learning – two cryptographic techniques employed to address cloud-computing privacy concerns and accelerate enterprise cloud adoption.

The presence of another neurological disease (e.g., acute disseminated encephalomyelitis (ADEM)) is an example of a diagnostic feature. Epidemiologic features include age, gender, and total number of visits to a hospital. Two more features that are discovered by lab tests are used in the model and referred to as laboratory features: hyperlipidemia (abnormally elevated levels of any or all lipids) and hyperglycemia (elevated blood sugar). The proposed XGBoost model significantly outperforms other ML techniques (including naïve Bayes methods, k-nearest neighbor, and support vector machines) that have been proposed for early diagnosis of MS.

Collecting a sufficient number of high-quality data samples and features to train such a diagnostic model is quite challenging, because the data reside in different private locations. The training data can be split in different ways among these locations: horizontally split, vertically split, or both.

If the private data sources contain samples with the same feature set (as would be the case if, say, the same features are extracted from health records residing in different hospitals), the dataset is said to be horizontally split. The other extreme — vertically split data — occurs when a private data source contributes a new feature for all of the training samples. For example, a health-insurance company could supply reimbursement receipts for past medication (the new feature) to complement the features in clinical health records. In these scenarios, aggregating the training data on a central server violates GDPR regulations.

The figure below illustrates one possible CART in the trained model. The weights at the leaves might indicate probabilities of MS resulting from the various paths from root to leaf.

Classification and regression trees (CART)

Research on privacy-preserving training of XGBoost models for prediction of MS uses two distinct techniques: secure multiparty computation (SMPC) and privacy-preserving federated learning (PPFL). We briefly describe both of them here.

An SMPC protocol enables several parties, each of whom holds a private input, to jointly evaluate a publicly known function on these inputs without revealing anything about the inputs except what is implied by the output of the function. Private inputs are secret shared among the parties, e.g., via additive secret sharing, in which each owner of a private input v generates random “shares” that add up to v.

For instance, suppose that Alice’s private input is v = 5. She can secret share it among herself, Bob, and Charlie by generating two random integers SBob =125621 and SCharlie = 56872, sending Bob’s share to him and Charlie’s to him, and keeping SAlice = v - SBob - SCharlie = -182488. Unless an adversary controls all three parties, he cannot learn anything about Alice’s private input v.  
  
In an execution of an SMPC protocol, the inputs to each elementary operation (addition or multiplication) are secret shared, and the output of the operation is a set of secret shares of the result. We say that a secret-shared value y (which may be the final output of the computation) is revealed to party P if all the parties send their shares to P, thus enabling P to reconstruct y. Further discussion of SMPC and its relevance to cloud computing can be found here and in Inpher’s Secret Computing Explainer Series.

A recent paper by researchers at Inpher proposes an SMPC protocol, called XORBoost, for privacy-preserving training of XGBoost models. It improves the state of the art by several orders of magnitude and ensures that

  • The CARTs computed by the protocol are secret shared among the training-data owners and revealed only to a designated party, namely the data analyst.
  • The training algorithm not only protects the input data but also reveals no information about the paths in the CARTs taken by any of the training samples. 
  • XORBoost supports both numerical and categorical features, thus providing enough flexibility and generality to support the above model.    

XORBoost works well for training datasets of reasonable size — hundreds of thousands of samples and hundreds of features. However, many real-world applications require training on more than a million samples. To achieve that type of scale, one can use federated learning (FL), which is an ML technique used to train a model on data samples held locally by multiple, decentralized edge devices without requiring the devices to exchange the samples.

FL differs from XORBoost mainly in that FL does not perform the entire training exercise on secret-shared values. Rather, each device trains a local model on its local data samples and sends its local model to one or more servers for aggregation. The aggregation protocol typically uses simple operations such as sum, average, and oblivious comparisons but no complex optimization.

If the server receives the plaintext local-model updates from all of the devices, it could, in principle, recover the local training-data samples using model-inversion attacks. SMPC and other privacy-preserving computational techniques can be applied to aggregate local models without revealing them to the server. See the diagram below for the overall architecture. 

XORBoost architecture

Prediction

PPXGBoost is a privacy-preserving version of XGBoost prediction. More precisely, it is a system that supports encrypted queries to encrypted XGBoost models. PPXGBoost is designed for applications that start by training a plaintext model Ω on a suitable training-data set and then create, for each user U, a personalized, encrypted version ΩU of the model to which U will submit encrypted queries and from which she will receive encrypted results. 

PPXGBoost system architecture

The PPXGBoost system architecture is shown in the figure above. On the client side, there is an app with which a user encrypts queries and decrypts results. On the server side, there is a module called Proxy that runs in a trusted environment and is responsible for setup (i.e., creating, for each authorized user, a personalized, encrypted model and a set of cryptographic keys) and an ML module that executes the encrypted queries. PPXGBoost uses two specialized types of encryption schemes (symmetric-key, order-preserving encryption and public-key, additive, homomorphic encryption) to encrypt models and evaluate encrypted queries. Each user is issued keys for both schemes during the setup phase.

Note that PPXGBoost is a natural choice for researchers, clinicians, and patients who wish to make disease predictions repeatedly as the patients’ circumstances change. Potentially relevant changes include exposure to new environmental factors, experimental treatment for another condition, or simply aging. An individual patient can create a personalized, encrypted version of a disease-prediction model and store it on a server owned by the medical center at which he is receiving treatment. Patient and physician can then use it to monitor, in a privacy-preserving manner, changes in the patient’s likelihood of contracting the disease.

Conclusion

We have described the use of PPML to address privacy challenges in XGBoost training and prediction. In a future post, we will elaborate on how privacy-preserving federated learning enables researchers to train more-complex ML models on millions of samples stored on hundreds of thousands of devices.

Related content

US, WA, Seattle
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through novel generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace ecosystem. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities As an applied scientist on our team, you will * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build recommendation systems that leverage generative models to develop and improve campaigns. * You invent and design new solutions for scientifically-complex problem areas and/or opportunities in new business initiatives. * You drive or heavily influence the design of scientifically-complex software solutions or systems, for which you personally write significant parts of the critical scientific novelty. You take ownership of these components, providing a system-wide view and design guidance. These systems or solutions can be brand new or evolve from existing ones. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses; * Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems * Effectively communicate technical and non-technical ideas with teammates and stakeholders; * Translate complex scientific challenges into clear and impactful solutions for business stakeholders. * Mentor and guide junior scientists, fostering a collaborative and high-performing team culture. * Stay up-to-date with advancements and the latest modeling techniques in the field About the team The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. #GenAI
US, CA, San Diego
The Private Brands team is looking for a Sr. Research Scientist to join the team in building science solutions at scale. Our team applies Optimization, Machine Learning, Statistics, Causal Inference, and Econometrics/Economics to derive actionable insights about the complex economy of Amazon’s retail business and develop Statistical Models and Algorithms to drive strategic business decisions and improve operations. We are an interdisciplinary team of Scientists, Engineers, PMTs and Economists. Key job responsibilities You will work with business leaders, scientists, and economists to translate business and functional requirements into concrete deliverables, including the design, development, testing, and deployment of highly scalable optimization solutions and ML models. This is a unique, high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and economists. As a Sr Scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. We are particularly interested in candidates with experience in Operations Research, ML and predictive models and working with distributed systems. Academic and/or practical background in Operations Research and Machine Learning specifically Reinforcement Learning are particularly relevant for this position. To know more about Amazon science, Please visit https://www.amazon.science About the team We are a one pizza, agile team of scientists focused on solving supply chain challenges for Amazon Private Brands products. We collaborate with Amazon central teams like SCOT and develop both central as well as APB-specific solutions to address various challenges, including sourcing, demand forecasting, ordering optimization, inventory distribution, and inventory health management. Working closely with business stakeholders, Product Management Teams (PMTs), and engineering partners, we drive projects from initial concept through production deployment and ongoing monitoring.
US, CA, Sunnyvale
As a Reinforcement Learning Controls Scientist, you will be responsible for developing Reinforcement Learning models to control complex electromechanical systems. You will take responsibility for defining frameworks, performing analysis, and training models that guide and inform mechanical and electrical designs, software implementation, and other software modules that affect overall device safety and performance. You understand trade-offs between model-based and model-free approaches. You will demonstrate cross-functional collaboration and influence to accomplish your goals. You will play a role in defining processes and methods to improve the productivity of the entire team. You will interface with Amazon teams outside your immediate organization to collaborate and share knowledge. You will investigate applicable academic and industry research, prototype and test solutions to support product features, and design and validate production designs that deliver an exceptional user experience. Key job responsibilities - Produce models and simulations of complex, high degree-of-freedom dynamic electromechanical systems - Train Reinforcement Learning control policies that achieve performance targets within hardware and software constraints - Hands-on prototyping and testing of physical systems in the lab - Influence hardware and software design decisions owned by other teams to optimize system-level performance - Work with cross-functional teams (controls, firmware, perception, planning, sensors, mechanical, electrical, etc.) to solve complex system integration issues - Define key performance indicators and allocate error budgets across hardware and software modules - Perform root cause analysis of system-level failures and distinguish between hardware/software failures and hardware/software mitigations - Translate business requirements to engineering requirements and identify trade-offs and sensitivities - Mentor junior engineers in good design practice; actively participate in hiring of new team members About the team The Dynamic Systems and Control team develops models, algorithms, and code to bridge hardware and software development teams and bring robotic products to life. We contributed to Amazon Astro (https://www.amazon.com/Introducing-Amazon-Astro/dp/B078NSDFSB) and Echo Show 10 (https://www.amazon.com/echo-show-10/dp/B07VHZ41L8/), along with several new technology introductions and unannounced products currently in development.
US, WA, Seattle
About Sponsored Products and Brands: The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About Our Team: The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. About This Role: As a Principal Scientist for the team, you will have the opportunity to apply your deep subject matter expertise in the area of ML, LLM and GenAI models. You will invent new product experiences that enable novel advertiser and shopper experiences. This role will liaise with internal Amazon partners and work on bringing state-of-the-art GenAI models to production, and stay abreast of the latest developments in the space of GenAI and identify opportunities to improve the efficiency and productivity of the team. Additionally, you will define a long-term science vision for our advertising business, driven by our customer’s needs, and translate it into actionable plans for our team of applied scientists and engineers. This role will play a critical role in elevating the team’s scientific and technical rigor, identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. You will communicate learnings to leadership and mentor and grow Applied AI talent across org. * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build monetization and optimization systems that leverage generative models to value and improve campaign performance. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses. * Effectively communicate technical and non-technical ideas with teammates and stakeholders. * Stay up-to-date with advancements and the latest modeling techniques in the field. * Think big about the arc of development of Gen AI over a multi-year horizon and identify new opportunities to apply these technologies to solve real-world problems. #GenAI
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Data Scientist on our team, you'll analyze complex data, develop statistical methodologies, and provide critical insights that shape how we optimize our solutions. Working closely with our Applied Science team, you'll help build robust analytical frameworks to improve healthcare outcomes. This role offers a unique opportunity to impact healthcare through data-driven innovation. Key job responsibilities In this role, you will: - Analyze complex healthcare data to identify patterns, trends, and insights - Develop and validate statistical methodologies - Create and maintain analytical frameworks - Provide recommendations on data collection strategies - Collaborate with Applied Scientists to support model development efforts - Design and implement statistical analyses to validate analytical approaches - Present findings to stakeholders and contribute to scientific publications - Work with cross-functional teams to ensure solutions are built on sound statistical foundations - Design and implement causal inference analyses to understand underlying mechanisms - Develop frameworks for identifying and validating causal relationships in complex systems - Work with stakeholders to translate causal insights into actionable recommendations A day in the life You'll work with large-scale healthcare datasets, conducting sophisticated statistical analyses to generate actionable insights. You'll collaborate with Applied Scientists to validate model predictions and ensure statistical rigor in our approach. Regular interaction with product teams will help translate analytical findings into practical improvements for our services. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Senior Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Principal Applied Scientist with a strong deep learning background, to lead the development of industry-leading technology with multimodal systems. As a Principal Scientist within the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions, set the standard for scientific excellence, and make decisions that affect the way we build and integrate algorithms. A Principal Applied Scientist will solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader; develop solutions that are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility; and tackle intrinsically hard problems, acquiring expertise as needed. Principal Applied Scientists are expected to decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location; and scrutinize and review experimental design, modeling, verification and other research procedures. You also probe assumptions, illuminate pitfalls, and foster shared understanding; align teams toward coherent strategies; and educate keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. AGI Principal Applied Scientists help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, inventing new machine learning techniques, conducting rigorous experiments, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. A Principal Applied Scientist will participate in organizational planning, hiring, mentorship and leadership development. You will also be build scalable science and engineering solutions, and serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).