Cryptographic computing can accelerate the adoption of cloud computing

Amazon Scholar Joan Feigenbaum talks about two cryptographic techniques that are being used to address cloud-computing privacy concerns and accelerate enterprise cloud adoption.

  1. Joan Feigenbaum is an Amazon Scholar and the Grace Murray Hopper professor of computer science at Yale. In this article, Feigenbaum talks about secure multiparty computation (MPC) and privacy-preserving machine learning (PPML) – two cryptographic techniques that are being used to address cloud-computing privacy concerns and accelerate enterprise cloud adoption.

    Joan Feigenbaum
    Joan Feigenbaum, Amazon Scholar

    According to a 2019 report released by Cybersecurity Insiders, security risks—including the loss or leakage of information—are leading factors that discourage enterprises and government organizations from adopting cloud-computing technologies. As organizations accelerate the flow of sensitive consumer information to the cloud in order to take advantage of its massive compute power, the research area of cryptographic computing is growing in importance.

    At its essence, cryptographic computing focuses on the design and implementation of protocols for using information without revealing it. For example, a county government looking to prioritize the rollout of services based on different areas’ demographics could calculate the average age of residents in different zip codes without running the risk of revealing (indeed without even learning) the ages of individual residents.

    Cryptographic computing is not a new field. In fact, Gentry’s breakthrough scheme for fully homomorphic encryption (FHE) was published as far back as 2008.

    In one of its extensively studied forms, FHE gives each user a public key and a corresponding private key. A user can encrypt any input data set using the public key, give the encrypted input to another party (say a cloud-computing service) that performs computations on it, and then decrypt the results of those computations with her secret key. By ensuring that all data are operated on only in an encrypted state, FHE ensures that data uploaded to the cloud remain confidential. Unfortunately, FHE is not yet fast enough for use on very large-scale data sets.

    That said, there are more narrowly tailored cryptographic-computing techniques that scale better and have started to see commercial use.

  2. Secure multi-party computation (MPC)

    Secure multi-party computation (MPC) enables n parties P1,...,Pn, with private inputs x1,...,xn, to compute y = f(x1,...,xn) in such a way that all parties learn y but no Pi learns anything about xj, for ji, except what is logically implied by y and xi.

    Consider the following toy example. Suppose 20 pupils, whom we will call P1 through P20, are in the same class and have received their graded exams from their teacher. They want to compute the average of their grades without revealing their individual grades, which we will denote by g1 through g20. They can use the following simple MPC protocol. P1 chooses a random number r, computes x1 = g1 + r, and sends x1 to P2. Then P2 computes x2 = x1 + g2 and sends x2 to P3. They continue in this fashion until P20 computes x20 = x19 + g20 and sends x20 to P1. In the last step, P1 computes x20 – r, which is of course the sum g1 + g2 + … + g20 of the individual grades. He divides this sum by 20 to obtain the average and broadcasts the result to all of the pupils.

    If all of the pupils follow this protocol faithfully, then they all learn the average, but none learns anything about the others’ grades except what is logically implied by the average and his own grade. Here, “following the protocol faithfully” requires not colluding with another pupil to discover someone else’s grade. If, say, P3 and P5 executed all of the steps of the protocol correctly but also got together on the side to pool their information, they could compute P4’s grade g4. That is because g4 = x4 – x3, and, during the execution of the protocol, P3 learns x3 and P5 learns x4. Fortunately, there are techniques (the details of which are beyond the scope of this article) for ensuring that this type of collusion does not reveal private inputs; they include secret-sharing schemes, described below.

    One powerful class of MPC protocols proceeds in multiple rounds. In the first round, each Pi breaks xi into shares, using a secret-sharing scheme, and sends one share to each Pj. The information-theoretic properties of secret sharing guarantee that no other party (or even limited-sized coalition of other parties) can compute xi from the share(s). The parties then execute a multi-round protocol to compute shares of y, in which the shares of intermediate results computed in each round also do not reveal xi. In the last round, the parties broadcast their shares of y so that all of them can reconstruct the result.

    In the secure-outsourcing protocol architecture, depicted below, the parties P1,...,Pn play the role of input providers and a disjoint, much smaller set of parties S1,...,Sk play the role of secure-computation servers; typically, 2 ≤ k ≤ 4. The input providers share their inputs with the servers, which then execute a basic, k-party MPC protocol to compute y. For an appropriate choice of secret-sharing scheme, the inputs remain private as long as at least one server does not collude with the others. Note that cloud-computing companies are ideally positioned to supply secure computation servers!

    MPC.JPG
    The Secure-Outsourcing Architecture with n=8 and k=4
    Image credit: Joan Feigenbaum

  3. Privacy-preserving machine learning (PPML)

    An ML training algorithm is given a set of solved instances of a classification problem and produces a model to be used by an ML prediction algorithm to classify future, as-yet-unsolved instances of the same problem.

    Training data, queries (inputs to the prediction algorithm), and predictions (outputs of the prediction algorithm) may contain sensitive information about data subjects. Owners of commercially valuable models regard them as intellectual property and may wish to sell access to them but not permit users to reverse-engineer them. Privacy-preserving machine learning (PPML) is the subarea of cryptographic computing that studies algorithms that protect training data, models, queries, and predictions.

    Practical PPML methods are often tailored for specific training or prediction algorithms and may require specific computational architectures. The cloud provider can employ both traditional computer-security techniques (authentication, sandboxing, etc.) and PPML algorithms to protect both sensitive data and intellectual property. For example, the 2019 PPML annual workshop focused on MPC, FHE, and other techniques outlined in this article. In addition, the workshop featured recent results on differential privacy, a powerful data-protection approach that has gained a lot of attention in recent years. Differential privacy enables users to obtain aggregate information from a database while protecting confidential information about individual records in the database. Indeed, the result of a differentially private statistical query is not significantly affected by the presence or absence of any particular individual record.

    PPMLSchema.JPG
    Image credit: Joan Feigenbaum and Xianrui Meng

    Secure, multi-party computation and privacy-preserving machine learning are only two cryptographic-computing techniques that are candidates for widespread practical deployment. Other techniques include searchable encryption, which enables keyword search on encrypted documents, garbled-circuit protocols, which are a form of secure, two-party computation, and protocols for queries to encrypted databases.

    I’m personally excited to see these innovations in cryptographic computing, which will be critical to easing contractual and regulatory barriers to adoption of cloud computing and could herald an era of even stronger growth for the industry. Cryptographic computing will allow individuals around the globe to reap the benefits of cloud computing, such as personalized medicine, movie streaming, and smarter financial-management solutions, while ensuring that our personal information stays private and secure.

    More information on Amazon's approach to cryptographic computing and the company's research in this areas is available here.

Related content

US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, MA, Westborough
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics is seeking interns and co-ops with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects, including allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, identifying objects and damage, and learning how to grasp all the products Amazon sells. We are seeking internship candidates with backgrounds in computer vision, machine learning, resource allocation, discrete optimization, search, and planning/scheduling. You will be challenged intellectually and have a good time while you are at it! Key job responsibilities • Identifying creative solutions for challenging research problems in robotics and computer vision • Developing software solutions to test hypotheses and demonstrate new functionality • Prototyping concepts to collect data and measure performance • Writing code and unit tests and integrating code with other software and hardware components • Utilizing Amazon Robotics and Amazon engineering tools, processes and technologies • Delivering a final presentation to managers and engineers on the successes and challenges of their internship and the business value they have contributed
US, MA, Westborough
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics is seeking interns and co-ops with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects, including allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, identifying objects and damage, and learning how to grasp all the products Amazon sells. We are seeking internship candidates with backgrounds in computer vision, machine learning, resource allocation, discrete optimization, search, and planning/scheduling. You will be challenged intellectually and have a good time while you are at it! Please note that by applying to this role you would be considered for Applied Scientist summer intern, spring co-op, and fall co-op roles on various Amazon Robotics teams. These teams work on robotics research within areas such as computer vision, machine learning, robotic manipulation, navigation, path planning, perception, artificial intelligence, human-robot interaction, optimization and more.
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. We’re seeking a Principal Scientist with a deep expertise in Search Science. Your responsibilities will include everything from developing and prototyping innovative machine learning, and deep learning algorithms to implementing, testing, and supporting full solutions in a production environment. We are looking for innovators who can contribute to advancing search technology on what’s scientifically possible while remaining committed to creating world-class products. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), Earth's most customer-centric company one of the world's leading internet companies. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California. Key job responsibilities As a hands-on leader of this team, you’ll be responsible for defining key research questions, identifying relevant data, adopting or proposing innovative machine learning solutions conducting rigorous experiments, publishing results and working with the engineering team to deploy these solutions. As a strategic leader, you will identify investment opportunities, develop long term strategies, and propose, prioritize and deliver on goals. You’ll also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). About the team Starting in 2009, the Visual Search & Augmented Reality team has thus far launched many visual search solutions on the Amazon App that use computer vision and machine learning/deep learning to help customers complete their shopping missions more easily; multiple internal teams at Amazon (devices, Kindle, Seller services, etc.) also use our libraries and APIs to deliver solutions to their own customers. We are a full stack shop, and our team capabilities cover the whole solution spectrum, ranging across applied science, large scale engineering services, product management, UX design, and mobile app development for iOS and Android.
US, MN, Minneapolis
AWS Central Economics is an interdisciplinary team on the cutting edge of economics, statistical analysis, and machine learning whose mission is to solve problems that have high risk with abnormally high returns. Our team leverages the strengths of our scientists to build solutions for some of the toughest business problems here at Amazon AWS. We are looking for an exceptionally talented, seasoned, and motivated Economist to manage a team of economists and data scientists to drive the science for AWS. Key job responsibilities Manage a team of economists and data scientists to deliver actionable economic analyses to business leaders, provide leadership on the economics and science used in the analyses, and engage with business leaders to identify challenges AWS faces that call for in-depth economic analyses and to ensure the analyses have their intended impact.
LU, Luxembourg
&ltHire Relocation Requisition - not for posting> Provides insights to leadership on improving Supply Chain cost and Speed by using Data Science and Analytics techniques. Build Dashboards and models to industrialize these findings at scale.
US, VA, Arlington
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to work with business partners to hone complex problems into specific, scientific questions, and test those questions to generate insights. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work closely with business partners to develop science that solves the most important business challenges. They will work in a team setting with individuals from diverse disciplines and backgrounds. They will serve as an ambassador for science and a scientific resource for business teams, so that scientific processes permeate throughout the HR organization to the benefit of Amazonians and Amazon. Ideal candidates will own the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
Amazon is looking for talented Postdoctoral Scientists to join our global Science teams for a one-year, full-time research position. Postdoctoral Scientists will innovate as members of Amazon’s key global Science teams, including: AWS, Alexa AI, Alexa Shopping, Amazon Style, CoreAI, Last Mile, and Supply Chain Optimization Technologies. Postdoctoral Scientists will join one of may central, global science teams focused on solving research-intense business problems by leveraging Machine Learning, Econometrics, Statistics, and Data Science. Postdoctoral Scientists will work at the intersection of ML and systems to solve practical data driven optimization problems at Amazon scale. Postdocs will raise the scientific bar across Amazon by diving deep into exploratory areas of research to enhance the customer experience and improve efficiencies. Please note: This posting is one of several Amazon Postdoctoral Scientist postings. Please only apply to a maximum of 2 Amazon Postdoctoral Scientist postings that are relevant to your technical field and subject matter expertise. Key job responsibilities * Work closely with a senior science advisor, collaborate with other scientists and engineers, and be part of Amazon’s vibrant and diverse global science community. * Publish your innovation in top-tier academic venues and hone your presentation skills. * Be inspired by challenges and opportunities to invent cutting-edge techniques in your area(s) of expertise.