Image shows the abstract page from a paper titled "Optimal Auction Design with Deferred Inspection and Reward" on the left; the authors — Saeed Alaei (top left), Alexandre Belloni (top right), Ali Makhdoumi (bottom left), and Azarakhsh Malekian (bottom right) are shown in a two-by-two grid on the right
In their paper, "Optimal Auction Design with Deferred Inspection and Reward", Saeed Alaei (top left), Alexandre Belloni (top right), Ali Makhdoumi (bottom left), and Azarakhsh Malekian (bottom right) developed a mechanism to incentivize buyers within an auction to bid higher by giving a bonus to bids whose value are closer to the true value of the item.

Monitoring and rewarding honest bids to increase revenue in auctions

Amazon Scholar Alexandre Belloni discusses the implications of auction design on digital goods.

Alexandre Belloni has been intrigued by operations research and optimization problems since his days at as an electrical engineering undergrad at the Pontifical Catholic University of Rio de Janeiro, back in his home country of Brazil. Further schooling just cemented that. His master’s in mathematical economics at the Institute for Pure and Applied Mathematics, also in Rio de Janeiro, “happened to have a strong optimization track,” he said. “Once I got there, the economics influence started to kick in,” he says. “And, given my background, I was always looking for the intersection of operations research and economics.”

For his PhD, Belloni worked on optimization and econometrics at the MIT Operations Research Center. His interest in economics continued to influence his academic path and most of his current research is focused on mechanism design problems, which he describes as “a broad class of ways to allocate resources.” “For example, auctions are a classic way that you can allocate an item and it is especially useful in cases where it’s difficult to price the value of the item.”

Belloni says mechanism design is an incredible field to work on. “Not only there are many interesting perspectives to consider — such as information, computational, approximations, robustness, dynamics — but we also see several industry problems requiring to coordinate decentralized systems.”

Since 2007, Belloni has also taught at the Fuqua Business School at Duke University, where he is currently the John D. Forsyth Professor of Decision Sciences. In 2018, he was recruited to become an Amazon Scholar, joining the company in that capacity in January 2019. “I always thought that the best research is the one that is motivated by empirical, real problems. Amazon gives you a great opportunity to see the real problems,” he says.

Related content
How the Amazon Logistics Research Science team guides important decisions related to last-mile delivery.

Since then, he has been studying problems related to mechanism design and machine learning at Fulfillment by Amazon (FBA), the subdivision of Amazon’s Supply Chain Optimization Technologies (SCOT) organization for third-party sellers who use Amazon’s storage and fulfillment capabilities.

One of the challenges Belloni and his FBA colleagues are currently addressing has to do with capacity management. Third-party sellers own and control their own inventories, and Amazon, with limited information, determines how to both balance the demand for space and ensure fulfillment center capacity is used efficiently and is available for products that customers love. “There has been tons of amazing work and we continue to obsess on finding better ways to manage capacity,” Belloni said.

Coordinating and optimizing allocations is also at the core of a recent work by Belloni and colleagues. In the paper “Optimal Auction Design with Deferred Inspection and Reward”, the authors develop a mechanism to incentivize buyers within an auction to bid higher by rewarding with a bonus the ones whose bids are closer to the true value of the item. This strategy can only be used in certain settings, where it is possible to monitor how the buyer is monetizing that good.

In this interview, Belloni discusses how he and his co-authors — Saeed Alaei, Ali Makhdoumi and Azarakhsh Malekian — came up with this new auction design that is especially suitable for digital goods and how it may impact revenues.

  1. Q. 

    What is the mechanism that you and your colleagues developed to optimize auction design? What are the implications for digital goods?

    A. 

    The key thing about this paper is that, in certain settings, after the winner of an auction is revealed, we can actually learn what is the true value of the good for the agent [buyer]. Indeed, there are many settings where the values are (nearly) observed with some delay. In those cases, if the agent said the truth — that is, the bid is close to the true value — we can give them a bonus back from their initial deposits.

    Related content
    The 2001 paper was awarded for “foundational work initiating a long and fruitful line of work in approximately revenue-optimal auction design in prior free settings”.

    It turns out that we were able to fully characterize the optimal mechanism for a single agent. By using rewards after the inspection to help us screen the agent, we found that the optimal allocation is not a thresholding strategy, and instead is an increasing and continuous function of the reported value. Indeed, it is possible to have different payments (via the rewards) for the same allocation, which contrasts with the case without inspection where no such mechanism would be incentive compatible.

    The results are quite relevant in settings where it is possible to monitor the value (or performance) of the good for the bidder. Digital goods are certainly one application that motivated our setting. For example, consider a platform that would like to sell some preferred advertisement position for a digital good to be displayed. Because consumption of the digital good occurs within the platform, its value is observed, whether it is the winner of the specific auction or not.

    Thus, the paper provides insights on how to monetize on this additional monitoring while still allowing agents to fully control the maximum they would be paying to acquire the preferred advertisement position. This is attractive as agents are always concerned with liability and, in practice, they could be reluctant to accept a contract in which they do not know how much they could end up paying. So, we are taking this concern into consideration. We monitor them, but we cannot charge more than whatever the amount they bid. The agents are in full control of how much they will spend. Ultimately, we are rewarding a digital good that has high value to be able to screen further via monitoring.

  2. Q. 

    How were you able to extrapolate your results from a single buyer to multiple buyers?

    A. 

    A priori, it was unclear how the results would generalize for the multiple-agents case given the generality of the first result. The first step was to consider the so-called reduced-form representation where we model the expected allocation and payments of a bidder condition on his or her own type (by averaging out over the types of the other bidders). But to ensure the reduced form is implementable as an auction, it is well known the additional Border constraints needed to be considered, which can get tricky.

    Using duality theory, we then find a sufficient condition under which the Border constraint in the reduced form of the problem can be dealt with nicely. The sufficient technical condition on the hazard rate of the distribution of the maximum value is not needed in the single-agent case. Indeed, the result for a single agent holds quite generally. Surprisingly, the same structural properties in the single-agent case are still preserved in the multiple-agents case.

    Related content
    Amazon Research Award recipient Éva Tardos studies complex theoretical questions that have far-ranging practical consequences.

    Importantly, we provide an implementation of our optimal auction for multiple agents — Border constraints guarantee an implementation exists but do not tell us how. In particular, we show that the implementation of the optimal auction involves allocating to the agent with the maximum bid and then rewarding this agent if they report truthfully. One aspect of this setup with inspection is that we can further distinguish bidders by having more freedom to manipulate the amount of allocation and payments. In typical auctions, without inspection, there is no value to do that and agents either get the good or not. In our case, we can essentially give you the good with only 50% chance if you bid low, for example.

    Indeed, we increase the chance of allocating the good as the bids increase and when we reach 100% change we can further increase the reward for reporting correctly. So, if you think about a second price auction, for example, the agent pays the second-highest price, and that's it. Here, the monitoring allows us further screen bidders after they bid which allows us to refine the final payments through the bonus. Thus bidders have an additional incentive to pay more (even in a single-agent case) just to make sure that they will have a higher chance of getting the good.

  3. Q. 

    What impact does your optimization have on revenue? And how does that differ from auctions in classic settings?

    A. 

    This auction will, by design, generate higher revenues than the standard option (without monitoring). Intuitively, because of the bonus, if the agent tries to take advantage of you by bidding too low, they are not getting any bonus back. Now, if the agent tells you the truth, then they're going to get a decent bonus. So, this creates this incentive that makes them willing to push towards the true value.

    Related content
    Amazon Scholar David Card and Amazon academic research consultant Guido Imbens talk about the past and future of empirical economics.

    In the paper, we present a nice characterization of why the revenue is going to be bigger. The typical idea in an auction is that you need to pay information rent for the agents. And what happens is that this monitoring reduces the information rent by design. More precisely, the information rent gets reduced by a factor related to the best alternative bid the agent could place. That comes out very clearly in the math.

    We cannot say that we are going to do 20% or 30% more because that's very specific of the company. However, note that this will be particularly impactful with a small number of agents. Thin markets where there is a single bidder, for example, who could typically walk away with a lot of surplus. In specific settings (depending on distributions, number of agents, etc.) we provide examples in the paper where gains are significant. Nonetheless, we can clearly say that we always reduce the information rent.

Related content

US, CA, Santa Clara
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, NY, New York
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, NY, New York
Job summaryAmazon Web Services is looking for world class scientists to join the Security Analytics and AI Research team within AWS Security Services. This group is entrusted with researching and developing core data mining and machine learning algorithms for various AWS security services like GuardDuty (https://aws.amazon.com/guardduty/) and Macie (https://aws.amazon.com/macie/). In this group, you will invent and implement innovative solutions for never-before-solved problems. If you have passion for security and experience with large scale machine learning problems, this will be an exciting opportunity.The AWS Security Services team builds technologies that help customers strengthen their security posture and better meet security requirements in the AWS Cloud. The team interacts with security researchers to codify our own learnings and best practices and make them available for customers. We are building massively scalable and globally distributed security systems to power next generation services.Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop and enable them to take on more complex tasks in the future.A day in the lifeAbout the hiring groupJob responsibilities* Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment.* Collaborate with software engineering teams to integrate successful experiments into large scale, highly complex production services.* Report results in a scientifically rigorous way.* Interact with security engineers, product managers and related domain experts to dive deep into the types of challenges that we need innovative solutions for.
IL, Haifa
Job summaryThe Team: Amazon One is a fast, convenient, contactless way for people to use their palm to make everyday activities like paying at a store, presenting a loyalty card, entering a location like a stadium, or badging into work more effortless. The service is designed to be highly secure and uses custom-built algorithms and hardware to create a person’s unique palm signature. Designed and custom-built by Amazonians, it uses a variety of technologies including computer vision, sensor fusion, and advanced machine learning. Innovation is part of our DNA! Our goal is to be Earths’ most customer centric company and we are just getting started. We need people who want to join an ambitious program that continues to push the state of the art in computer vision, machine learning, distributed systems and hardware design.The Role: Everyone on the team needs to be entrepreneurial, wear many hats and work in a highly collaborative environment that’s more startup than big company. We’ll need to tackle problems that span a variety of domains: computer vision, image recognition, machine learning, real-time and distributed systems.If you have expertise leading Computer Vision research teams and have a Ph.D, or an MS with 2+ years of industry experience and have:the ability to recognize and champion new ideas and novel solutions;the insight to correctly identify paths worth exploring;the discipline to fast-fail when data refutes theory;and the fortitude to continue exploring until your solution is foundcome join us invent the future and change the world.
US, VA, Arlington
Job summaryAre you customer-obsessed, data oriented, and confident in proposing opportunities to improve our consumers’ experience across different Amazon businesses? Amazon is looking for an experienced, talented and highly motivated individual to join our Customer Loyalty Strategy team.We are seeking a Research scientist who will primarily support development of customer experience research studies across a variety of Amazon businesses. You will join an expanding team which measures Amazon’s end-to-end customer experience and will design research studies find and track customer issues, and eventually to achieve our vision: Earth's Most Customer-Centric Company.Leveraging your analytical skill set and research background, you will drive studies across multiple geographies, partnering with senior business leaders in developing studies and conducting customer research. The role will allow you to make a real impact for our customers from Day 1 and provide a dynamic, innovative and fast-paced environment to constantly build your skill set and address new challenges.Key job responsibilitiesResponsibilities include:· Customer Research and Analytics: Design, execute, and manage customer research to measure customer loyalty and Net Promoter Score (NPS) and identify opportunities to improve CX.· Product Management: Lead large and complex studies, including: scope alignment with local and international business leaders, design, data collection, data analysis, recommendations and presenting results to senior management worldwide. Research & Development: Enable best in class research by constantly updating the research methodology through experimentation (A/B Testing) and adding analytical capabilities. Research Consulting: Enable business teams at Amazon to discover ways in which they can implement research methodologies to drive strategic and incremental improvements in customer experience. About the teamCustomer Loyalty Benchmarking (CLB) is a global product, technology, and marketing research team whose charter is to provide quantitative and qualitative customer sentiment and loyalty insight, at scale, for Amazon internal businesses and service teams. Our vision is to empower our global partners to grow customer loyalty through actionable customer insights.
US, CA, Santa Clara
Job summaryAmazon is looking for a passionate Senior Applied Scientist with a strong machine learning background to help build language technology and apply to a new domain. Our team pushes the envelope in Natural Language Processing (NLP), and Machine Learning (ML). Your work will impact millions of our customers in the form of ML-based products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding. The ideal candidate has deep expertise in one or several of the following fields: Natural Language Processing, Conversational AI, Applied/Theoretical Machine Learning, Information Retrieval, Artificial Intelligence. Our team’s mission is focused on making Amazon the most trusted and customer-centric company on earth for consumers, advertisers, developers, creators, and selling partners (and growing). We are a cross-functional team of builders with a vision to disrupt proactive risk identification and empower business customers to use data to make fast, risk-informed decisions, and scale expert knowledge (e.g., economics, web3 technologies, cybersecurity, architecture design).Key job responsibilities• Invent or adapt new scientific approaches, models or algorithms driven by customers’ needs, including taking on challenging problems, elicit requirements, and deliver innovative solutions into production with large customer impact.• Work with cross-functional science, engineering and product teams, and influence our science and business strategy by making insightful contributions to team roadmaps, goals, priorities, and approach.• Research, design and implement scalable computer vision models to solve problems that matter to our customers in an iterative fashion.• Mentor and teach other less experienced scientists, and serve in the internal and/or external science community by reviewing peers’ research.• Stay informed on the latest computer vision, machine learning, deep learning and/or artificial intelligence trends and make presentations to the larger engineering and applied science communities.A day in the lifeThis is a new role for a start-up team with an enormous opportunity to create impact to millions of Amazon customers globally. As a Senior Applied Scientist, you will provide Computer Vision expertise that helps accelerate the business and create impact for our customers. You will research, experiment, build, collaborate, and deliver various models that help us innovate different ways to enhance customer experience. You will need to be entrepreneurial, wear many hats, and work in a highly collaborative environment. We like to move fast, experiment, iterate and then scale quickly, thoughtfully balancing speed and quality.About the teamCustomer Experience and Business Trends is an organization made up of a diverse suite of functions dedicated to deeply understanding and improving customer experience, globally. We are a team of builders that develop products, services, ideas, and various ways of leveraging data to influence product and service offerings – for almost every business at Amazon – for every customer (e.g., consumers, developers, sellers/brands, employees, investors, streamers, gamers). Our team also puts a high value on work-life balance. We offer a flexible schedule so you can have a well-balanced life — both in and outside of work.
US, CA, Santa Clara
Job summaryWe're looking for an Applied Scientist to help us secure Amazon's most critical data. In this role, you'll work closely with internal security teams to design and build AR-powered systems that protect customers data. You will build on top of existing formal verification tools developed by AWS and develop new methods to apply those tools at scale. You will need to be innovative, entrepreneurial, and adaptable. We move fast, experiment, iterate and then scale quickly, thoughtfully balancing speed and quality.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.Key job responsibilitiesDeeply understand AR techniques for analyzing programs and other systems, and keep up with emerging ideas from the research community.Engage with our customers to develop understanding of their needs.Propose and develop solutions that leverage symbolic reasoning services and concepts from programming languages, theorem proving, formal verification and constraint solving.Implement these solutions as services and work with others to deploy them at scale across Payments and Healthcare.Author papers and present your work internally and externally.Train new teammates, mentor others, participate in recruiting and interviewing, and participate in our tactical and strategic planning.About the teamOur small team of applied scientists works within a larger security group, supporting thousands of engineers who are developing Amazon's payments and healthcare services.Security is a rich area for automated reasoning. Most other approaches are quite ad-hoc and take a lot of human effort. AR can help us to reason deliberately and systematically, and the dream of provable security is incredibly compelling. We are working to make this happen at scale.We partner closely with our larger security group and with other automated reasoning teams in AWS that develop core reasoning services.
US, MA, Westborough
Job summaryAre you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even image yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun.The Amazon Robotics (AR) Virtual Systems Profiling team builds models, runs simulation experiments and delivers analyses that are central to understanding performance of the entire AR system, e.g. operational and software scaling characteristics, bottlenecks, robustness to “chaos monkey” stresses -- we inform critical engineering and business decisions about Amazon’s approach to robotic fulfillment.We seek a talented and motivated engineer to tackle broad challenges in system-level analysis. You will work in a small team to quantify system performance at scale and to expand the breadth and depth of our analysis (e.g. increase the range of software components and warehouse processes covered by our models, develop our library of key performance indicators, construct experiments that efficiently root cause emergent behaviors). You will engage with growing teams of software development and warehouse design engineers to drive evolution of the AR system and of the simulation engine that supports our work.