Image shows the abstract page from a paper titled "Optimal Auction Design with Deferred Inspection and Reward" on the left; the authors — Saeed Alaei (top left), Alexandre Belloni (top right), Ali Makhdoumi (bottom left), and Azarakhsh Malekian (bottom right) are shown in a two-by-two grid on the right
In their paper, "Optimal Auction Design with Deferred Inspection and Reward", Saeed Alaei (top left), Alexandre Belloni (top right), Ali Makhdoumi (bottom left), and Azarakhsh Malekian (bottom right) developed a mechanism to incentivize buyers within an auction to bid higher by giving a bonus to bids whose value are closer to the true value of the item.

Monitoring and rewarding honest bids to increase revenue in auctions

Amazon Scholar Alexandre Belloni discusses the implications of auction design on digital goods.

Alexandre Belloni has been intrigued by operations research and optimization problems since his days at as an electrical engineering undergrad at the Pontifical Catholic University of Rio de Janeiro, back in his home country of Brazil. Further schooling just cemented that. His master’s in mathematical economics at the Institute for Pure and Applied Mathematics, also in Rio de Janeiro, “happened to have a strong optimization track,” he said. “Once I got there, the economics influence started to kick in,” he says. “And, given my background, I was always looking for the intersection of operations research and economics.”

For his PhD, Belloni worked on optimization and econometrics at the MIT Operations Research Center. His interest in economics continued to influence his academic path and most of his current research is focused on mechanism design problems, which he describes as “a broad class of ways to allocate resources.” “For example, auctions are a classic way that you can allocate an item and it is especially useful in cases where it’s difficult to price the value of the item.”

Belloni says mechanism design is an incredible field to work on. “Not only there are many interesting perspectives to consider — such as information, computational, approximations, robustness, dynamics — but we also see several industry problems requiring to coordinate decentralized systems.”

Since 2007, Belloni has also taught at the Fuqua Business School at Duke University, where he is currently the John D. Forsyth Professor of Decision Sciences. In 2018, he was recruited to become an Amazon Scholar, joining the company in that capacity in January 2019. “I always thought that the best research is the one that is motivated by empirical, real problems. Amazon gives you a great opportunity to see the real problems,” he says.

Related content
How the Amazon Logistics Research Science team guides important decisions related to last-mile delivery.

Since then, he has been studying problems related to mechanism design and machine learning at Fulfillment by Amazon (FBA), the subdivision of Amazon’s Supply Chain Optimization Technologies (SCOT) organization for third-party sellers who use Amazon’s storage and fulfillment capabilities.

One of the challenges Belloni and his FBA colleagues are currently addressing has to do with capacity management. Third-party sellers own and control their own inventories, and Amazon, with limited information, determines how to both balance the demand for space and ensure fulfillment center capacity is used efficiently and is available for products that customers love. “There has been tons of amazing work and we continue to obsess on finding better ways to manage capacity,” Belloni said.

Coordinating and optimizing allocations is also at the core of a recent work by Belloni and colleagues. In the paper “Optimal Auction Design with Deferred Inspection and Reward”, the authors develop a mechanism to incentivize buyers within an auction to bid higher by rewarding with a bonus the ones whose bids are closer to the true value of the item. This strategy can only be used in certain settings, where it is possible to monitor how the buyer is monetizing that good.

In this interview, Belloni discusses how he and his co-authors — Saeed Alaei, Ali Makhdoumi and Azarakhsh Malekian — came up with this new auction design that is especially suitable for digital goods and how it may impact revenues.

  1. Q. 

    What is the mechanism that you and your colleagues developed to optimize auction design? What are the implications for digital goods?

    A. 

    The key thing about this paper is that, in certain settings, after the winner of an auction is revealed, we can actually learn what is the true value of the good for the agent [buyer]. Indeed, there are many settings where the values are (nearly) observed with some delay. In those cases, if the agent said the truth — that is, the bid is close to the true value — we can give them a bonus back from their initial deposits.

    Related content
    The 2001 paper was awarded for “foundational work initiating a long and fruitful line of work in approximately revenue-optimal auction design in prior free settings”.

    It turns out that we were able to fully characterize the optimal mechanism for a single agent. By using rewards after the inspection to help us screen the agent, we found that the optimal allocation is not a thresholding strategy, and instead is an increasing and continuous function of the reported value. Indeed, it is possible to have different payments (via the rewards) for the same allocation, which contrasts with the case without inspection where no such mechanism would be incentive compatible.

    The results are quite relevant in settings where it is possible to monitor the value (or performance) of the good for the bidder. Digital goods are certainly one application that motivated our setting. For example, consider a platform that would like to sell some preferred advertisement position for a digital good to be displayed. Because consumption of the digital good occurs within the platform, its value is observed, whether it is the winner of the specific auction or not.

    Thus, the paper provides insights on how to monetize on this additional monitoring while still allowing agents to fully control the maximum they would be paying to acquire the preferred advertisement position. This is attractive as agents are always concerned with liability and, in practice, they could be reluctant to accept a contract in which they do not know how much they could end up paying. So, we are taking this concern into consideration. We monitor them, but we cannot charge more than whatever the amount they bid. The agents are in full control of how much they will spend. Ultimately, we are rewarding a digital good that has high value to be able to screen further via monitoring.

  2. Q. 

    How were you able to extrapolate your results from a single buyer to multiple buyers?

    A. 

    A priori, it was unclear how the results would generalize for the multiple-agents case given the generality of the first result. The first step was to consider the so-called reduced-form representation where we model the expected allocation and payments of a bidder condition on his or her own type (by averaging out over the types of the other bidders). But to ensure the reduced form is implementable as an auction, it is well known the additional Border constraints needed to be considered, which can get tricky.

    Using duality theory, we then find a sufficient condition under which the Border constraint in the reduced form of the problem can be dealt with nicely. The sufficient technical condition on the hazard rate of the distribution of the maximum value is not needed in the single-agent case. Indeed, the result for a single agent holds quite generally. Surprisingly, the same structural properties in the single-agent case are still preserved in the multiple-agents case.

    Related content
    Amazon Research Award recipient Éva Tardos studies complex theoretical questions that have far-ranging practical consequences.

    Importantly, we provide an implementation of our optimal auction for multiple agents — Border constraints guarantee an implementation exists but do not tell us how. In particular, we show that the implementation of the optimal auction involves allocating to the agent with the maximum bid and then rewarding this agent if they report truthfully. One aspect of this setup with inspection is that we can further distinguish bidders by having more freedom to manipulate the amount of allocation and payments. In typical auctions, without inspection, there is no value to do that and agents either get the good or not. In our case, we can essentially give you the good with only 50% chance if you bid low, for example.

    Indeed, we increase the chance of allocating the good as the bids increase and when we reach 100% change we can further increase the reward for reporting correctly. So, if you think about a second price auction, for example, the agent pays the second-highest price, and that's it. Here, the monitoring allows us further screen bidders after they bid which allows us to refine the final payments through the bonus. Thus bidders have an additional incentive to pay more (even in a single-agent case) just to make sure that they will have a higher chance of getting the good.

  3. Q. 

    What impact does your optimization have on revenue? And how does that differ from auctions in classic settings?

    A. 

    This auction will, by design, generate higher revenues than the standard option (without monitoring). Intuitively, because of the bonus, if the agent tries to take advantage of you by bidding too low, they are not getting any bonus back. Now, if the agent tells you the truth, then they're going to get a decent bonus. So, this creates this incentive that makes them willing to push towards the true value.

    Related content
    Amazon Scholar David Card and Amazon academic research consultant Guido Imbens talk about the past and future of empirical economics.

    In the paper, we present a nice characterization of why the revenue is going to be bigger. The typical idea in an auction is that you need to pay information rent for the agents. And what happens is that this monitoring reduces the information rent by design. More precisely, the information rent gets reduced by a factor related to the best alternative bid the agent could place. That comes out very clearly in the math.

    We cannot say that we are going to do 20% or 30% more because that's very specific of the company. However, note that this will be particularly impactful with a small number of agents. Thin markets where there is a single bidder, for example, who could typically walk away with a lot of surplus. In specific settings (depending on distributions, number of agents, etc.) we provide examples in the paper where gains are significant. Nonetheless, we can clearly say that we always reduce the information rent.

Related content

ES, M, Madrid
Amazon's International Technology org in EU (EU INTech) is creating new ways for Amazon customers discovering Amazon catalog through new and innovative Customer experiences. Our vision is to provide the most relevant content and CX for their shopping mission. We are responsible for building the software and machine learning models to surface high quality and relevant content to the Amazon customers worldwide across the site. The team, mainly located in Madrid Technical Hub, London and Luxembourg, comprises Software Developer and ML Engineers, Applied Scientists, Product Managers, Technical Product Managers and UX Designers who are experts on several areas of ranking, computer vision, recommendations systems, Search as well as CX. Are you interested on how the experiences that fuel Catalog and Search are built to scale to customers WW? Are interesting on how we use state of the art AI to generate and provide the most relevant content? Key job responsibilities We are looking for Applied Scientists who are passionate to solve highly ambiguous and challenging problems at global scale. You will be responsible for major science challenges for our team, including working with text to image and image to text state of the art models to scale to enable new Customer Experiences WW. You will design, develop, deliver and support a variety of models in collaboration with a variety of roles and partner teams around the world. You will influence scientific direction and best practices and maintain quality on team deliverables. We are open to hiring candidates to work out of one of the following locations: Madrid, M, ESP
US, WA, Bellevue
Imagine being part of an agile team where your ideas have the potential to reach millions of customers. Picture working on cutting-edge, customer-facing solutions, where every team member is a critical voice in the decision making process. Envision being able to leverage the resources of a Fortune 500 company within the atmosphere of a start-up. Welcome to Amazon’s NCRC team. We solve complex problems in an ambiguous space, focusing on reducing return costs and improving the customer experience. We build solutions that are distributed on a large scale, positively impacting experiences for our customers and sellers. Come innovate with the NCRC team! The Net Cost of Refunds and Concessions (NCRC) team is looking for a Senior Manager Data Science to lead a team of economists, business intelligence engineers and business analysts who investigate business problems, develop insights and build models & algorithms that predict and quantify new opportunity. The team instigates and productionalizes nascent solutions around four pillars: outbound defects, inbound defects, yield optimization and returns reduction. These four pillars interact, resulting in impacts to our overall return rate, associated costs, and customer satisfaction. You may have seen some downstream impacts of our work including Amazon.com customer satisfaction badges on the website and app, new returns drop off optionality, and faster refunds for low cost items. In this role, you will set the science vision and direction for the team, collaborating with internal stakeholders across our returns and re-commerce teams to scale and advance science solutions. This role is based in Bellevue, WA Key job responsibilities * Single threaded leader responsible for setting and driving science strategy for the organization. * Lead and provide coaching to a team of Scientists, Economists, Business Intelligence Engineers and Business Analysts. * Partner with Engineering, Product and Machine Learning leaders to deliver insights and recommendations across NCRC initiatives. * Lead research and development of models and science products powering return cost reduction. * Educate and evangelize across internal teams on analytics, insights and measurement by writing whitepapers, knowledge documentation and delivering learning sessions. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Bellevue
We are designing the future. If you are in quest of an iterative fast-paced environment, where you can drive innovation through scientific inquiry, and provide tangible benefit to hundreds of thousands of our associates worldwide, this is your opportunity. Come work on the Amazon Worldwide Fulfillment Design & Engineering Team! We are looking for an experienced and Research Scientist with background in Ergonomics and Industrial Human Factors, someone that is excited to work on complex real-world challenges for which a comprehensive scientific approach is necessary to drive solutions. Your investigations will define human factor / ergonomic thresholds resulting in design and implementation of safe and efficient workspaces and processes for our associates. Your role will entail assessment and design of manual material handling tasks throughout the entire Amazon network. You will identify fundamental questions pertaining to the human capabilities and tolerances in a myriad of work environments, and will initiate and lead studies that will drive decision making on an extreme scale. .You will provide definitive human factors/ ergonomics input and participate in design with every single design group in our network, including Amazon Robotics, Engineering R&D, and Operations Engineering. You will work closely with our Worldwide Health and Safety organization to gain feedback on designs and work tenaciously to continuously improve our associate’s experience. Key job responsibilities - Collaborating and designing work processes and workspaces that adhere to human factors / ergonomics standards worldwide. - Producing comprehensive and assessments of workstations and processes covering biomechanical, physiological, and psychophysical demands. - Effectively communicate your design rationale to multiple engineering and operations entities. - Identifying gaps in current human factors standards and guidelines, and lead comprehensive studies to redefine “industry best practices” based on solid scientific foundations. - Continuously strive to gain in-depth knowledge of your profession, as well as branch out to learn about intersecting fields, such as robotics and mechatronics. - Travelling to our various sites to perform thorough assessments and gain in-depth operational feedback, approximately 25%-50% of the time. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, NY, New York
Amazon Advertising exists at the intersection of marketing and e-commerce and offers advertisers a rich array of innovative advertising solutions across Amazon-owned and third party properties. We believe that advertising, when done well, can greatly enhance the value of the customer experience and generate a positive return on investment for our advertising partners. We are currently looking for a highly skilled and motivated Data Scientist to help scale our growing advertising business. The Data Scientist is a key member of the Global Marketing Insights team at Amazon Ads, working with marketing, product, retail and other Amazon business partners to analyze and improve advertisers’ performance on Amazon, in support of their marketing objectives. You will work with Amazon's unique data and translate it into high-quality and actionable insights and recommendations to improve the effectiveness of advertiser campaigns and unlock business opportunities. Day to day activities include analyzing advertiser behaviors to develop data-driven insights on what tactics and strategies lead to success. You will also build automated solutions to generate science driven insights at scale, that are distributed to our advertisers across channels. Basic qualifications - Bachelor's or Master's degree in Engineering, Statistics, Economics, or a related technical field - Proven experience in data analytics or data science roles - Proficiency with SQL and Python - Strong understanding of basic statistical techniques and methodologies such as distributions, hypothesis testing, regressions, experimentation, A/B Testing etc. - Excellent organizational, interpersonal, and communication skills (both written and verbal) - Ability to work cross-functionally and with technical and non-technical stakeholders Preferred qualifications - Understanding of advanced statistical techniques and methodologies such as causal inference, propensity score matching, machine learning etc. - Experience with developing and deploying production machine learning models, especially on cloud platforms - Experience building and managing data pipelines - Experience with digital advertising products, performance analytics , marketing and advertising campaigns - MBA, Master’s, or Doctoral degree in Economics, Engineering, Marketing, Statistics, Advertising, or related fields - Publication track record/writing experience (ex. published a paper in a technical journal or trade publication) About the team The Marketing Insights team is responsible for delivering science backed insights to millions of advertisers via our marketing messages. Our team is distributed across the globe and is building cutting edge data science to identify and communicate the impact of various advertising strategies for our products. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA
US, WA, Seattle
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and Scala would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Chicago, IL, USA | Seattle, WA, USA | Washington, DC, USA
US, WA, Seattle
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and Scala would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Chicago, IL, USA | Seattle, WA, USA | Washington, DC, USA
US, WA, Seattle
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and Scala would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Chicago, IL, USA | Seattle, WA, USA | Washington, DC, USA
US, CA, Santa Clara
Machine learning (ML) has been strategic to Amazon from the early years. We are pioneers in areas such as recommendation engines, product search, eCommerce fraud detection, and large-scale optimization of fulfillment center operations. The Generative AI team helps AWS customers accelerate the use of Generative AI to solve business and operational challenges and promote innovation in their organization. As an applied scientist, you are proficient in designing and developing advanced ML models to solve diverse challenges and opportunities. You will be working with terabytes of text, images, and other types of data to solve real-world problems. You'll design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for talented scientists capable of applying ML algorithms and cutting-edge deep learning (DL) and reinforcement learning approaches to areas such as drug discovery, customer segmentation, fraud prevention, capacity planning, predictive maintenance, pricing optimization, call center analytics, player pose estimation, event detection, and virtual assistant among others. AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services. Key job responsibilities The primary responsibilities of this role are to: Design, develop, and evaluate innovative ML models to solve diverse challenges and opportunities across industries Interact with customer directly to understand their business problems, and help them with defining and implementing scalable Generative AI solutions to solve them Work closely with account teams, research scientist teams, and product engineering teams to drive model implementations and new solutions About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. We are open to hiring candidates to work out of one of the following locations: San Francisco, CA, USA | Santa Clara, CA, USA
US, WA, Bellevue
Amazon.com Services, Inc. is looking for a motivated individual with strong analytical skills and practical experience to join our Modeling and Optimization team. We are hiring specialists into our scientific team with expertise in network and combinatorial optimization, simulation-based design, and/or control theory. Amazon is growing rapidly and because we are driven by faster delivery to customers, a more efficient supply chain network, and lower cost of operations, our main focus is in the development of analytical strategic models and automation tools fed by massive amounts of data. You will be responsible for building these models/tools that improve the economics of Amazon’s worldwide fulfillment networks in North America, Europe, and Japan, China, and India as Amazon increases the speed and decreases the cost to deliver products to customers. You will identify and evaluate opportunities to reduce variable costs by improving fulfillment center processes, transportation operations and scheduling, and the execution to operational plans. You will also improve the efficiency of capital investment by helping the fulfillment centers to improve storage utilization and the effective use of automation. Finally, you will help create the metrics to quantify improvements to the fulfillment costs (e.g., transportation and labor costs) resulting from the application of these optimization models and tools. The ideal candidate will have good communication skills with both technical and business people with ability to speak at a level appropriate for the audience. Key job responsibilities * Understand ambiguous business problems, model it in the simplest and most effective manner with limited guidance. * Use new or existing tools to support internal partner-teams and provide the best, science-based guidance. * Contribute to existing tools with highly disciplined coding practices. * Contribute to the growth of knowledge of our team and the scientific community with internal and external publications or presentations. About the team * At the Modeling and Optimization (MOP) team, we use optimization, algorithm design, statistics, and machine learning to improve decision-making capabilities across WW Operations and Amazon Logistics. * We focus on transportation topology, labor and resource planning, routing science, visualization research, data science and development, and process optimization. * We create models to simulate, optimize, and control the fulfillment network with the objective of reducing cost while improving speed and reliability. * We support multiple business line, therefore maintain a comprehensive and objective view, coordinating solutions across organizational lines where possible. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, CA, Santa Clara
Amazon AI is looking for world class scientists and engineers to join its AWS AI. This group is entrusted with developing core natural language processing, generative AI, deep learning and machine learning algorithms for AWS. You will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually new solutions. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. A day in the life Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. About the team The Amazon Web Services (AWS) Next Gen DevX (NGDE) team uses generative AI and foundation models to reimagine the experience of all builders on AWS. From the IDE to web-based tools and services, AI will help engineers work on large and small applications. We explore new technologies and find creative solutions. Curiosity and an explorative mindset can find a place here to impact the life of engineers around the world. If you are excited about this space and want to enlighten your peers with new capabilities, this is the team for you. We are open to hiring candidates to work out of one of the following locations: Santa Clara, CA, USA