A screenshot from SageMaker Clarify
SageMaker Clarify is integrated with Amazon SageMaker Data Wrangler, making it easier to identify bias during data preparation. You specify attributes of interest, such as gender or age, and SageMaker Clarify runs a set of algorithms to detect any presence of bias in those attributes.
Credit: AWS

How Clarify helps machine learning developers detect unintended bias

Learn why the science team behind Clarify turned to a concept from 1951 to address a modern complexity.

In his machine learning keynote at re:Invent on Tuesday, Swami Sivasubramanian, vice president of machine learning, Amazon Web Services (AWS), announced Amazon SageMaker Clarify, a new service that helps customers detect statistical bias in their data and machine learning models, and helps explain why their models are making specific predictions. Clarify saves developers time and effort by providing them the ability to better understand and explain how their machine learning models arrive at their predictions.

Understanding the predictions made by machine learning (ML) models and their potential biases remains a challenging and labor-intensive task that depends on the application, the dataset, and the specific model. We present Amazon SageMaker Clarify, an explainability feature for Amazon SageMaker that launched in December 2020, providing insights into data and ML models by identifying biases and explaining

Developers today contend with both increasingly large volumes of data, as well as more complex machine learning models. In order to detect bias in those complex models and data sets, developers must rely on open-source libraries replete with custom code recipes that are inconsistent across machine learning frameworks. This tedious approach requires a lot of manual effort and often arrives too late to correct unintended bias.

“If you care about this stuff, it's pretty much a roll-your-own situation right now,” said University of Pennsylvania computer science professor and Amazon Scholar Michael Kearns, who provided guidance to the team of scientists that developed SageMaker Clarify. “If you want to do some practical bias detection, you either need to implement it yourself or go to one of the open-source libraries, which vary in quality. They're frequently not well-maintained or documented. In many cases, it's just, ‘Here is the code we used to run our experiments for this academic paper, good luck.’”

SageMaker Clarify helps address the challenges of relying on multiple open-source libraries by offering robust, reliable code in an integrated, cloud-based framework.

Increasingly complex networks

The efficacy of machine learning models depends in part on understanding how much influence a given input has on the output.

AWS on Air 2020: AWS What’s Next ft. Amazon SageMaker Clarify

“A lending model for consumer loans might include credit history, employment history, and how long someone has lived at their current address,” Kearns explained. “It might also utilize variables that aren't specifically financial, such as demographic variables. One thing you might naturally want to know is which of these variables is more important in the model’s predictions, which may be used in lending decisions, and which are less important.”

With linear models, each variable is assigned some weight, positive or negative, and the overall decision is a sum of those weighted inputs. In those cases, the inputs with the bigger weights clearly have more influence on the output.

However, that approach falls short with neural networks or more complicated, non-linear models. “When you get to models like neural networks, it's no longer a simple matter of determining or measuring the influence of an input on the output,” Kearns said.

To help account for the growing complexity of modern machine learning models, the Amazon science team looked to the past — specifically to an idea from 1951.

Shapley values

The team wanted to design a solution to help machine learning pros be able to better explain their models’ decisions in the face of growing complexity. They found inspiration in a popular scientific method called Shapley values.

Shapley values were named in honor of Lloyd Shapley, who introduced the idea in 1951 and who won the Nobel Prize in Economics for it in 2012. The Shapley value approach, which is rooted in game theory, considers a wide range of possible inputs and outputs and offers “the average marginal contribution of a feature value across all possible coalitions”.  The comprehensive nature of the approach means it can help provide a framework for understanding the relative weight of a set of inputs, even across complex models and multiple inputs.

“SageMaker Clarify utilizes Shapley values to essentially take your model and run a number of experiments on it or on your data set,” Kearns said. “It then uses that to help come up with a visualization and quantification of which of those inputs is more or less important.”

Nor does it matter which kind of model a developer uses. “One of the nice things about this approach is it is model agnostic,” Kearns said. “It performs input-output experiments and gives you some sense of the relative importance of the different inputs to the output decision.”

The science team also worked to be certain SageMaker Clarify had a comprehensive view. They designed it so everyday developers and data scientists can detect bias across the entire machine learning workflow — including data preparation, training, and inference. SageMaker Clarify is able to achieve that comprehensive view, Kearns explained, because (again) it is model agnostic. “Each of these steps has been designed to avoid making strong assumptions about the type of model that the user is building.”

Bias detection and explainability

Model builders who learn that their models are making predictions that are strongly correlated to a specific input may find those predictions fall short of their definition of fairness. Kearns offered the example of a lending company that discovers its model’s predictions are skewed. “That company will want to understand why its model is making predictions that might lead to decisions to give loans at a lower rate to group A than to group B, even if they're equally credit worthy.”

SageMaker Clarify can examine tabular data and help the modelers spot where gaps might exist. “This company would upload a spreadsheet of data showing who they gave loans to, what they knew about them, et cetera,” Kearns said. “What the data bias detection part does is say, ‘For these columns, there may be over or underrepresentation of certain features, which could lead to a discriminatory outcome if not addressed.’”

A screenshot from SageMaker Clarify
SageMaker Clarify is integrated with SageMaker Model Monitor, enabling you to configure alerting systems like Amazon CloudWatch to notify you if your model exceeds certain bias metric thresholds. 
Credit: AWS

That can be influenced by a number of factors, including simply lacking the correct data to build accurate predictions. For example, SageMaker Clarify can indicate whether modelers have enough data on certain groups of applicants to expect an accurate prediction. The metrics provided by SageMaker Clarify can then be used to correct unintended bias in machine learning models, and automatically monitor model predictions in production to help ensure they are not trending toward biased outcomes.

Future applications

The SageMaker Clarify science team is already looking to the future.

Their research areas include algorithmic fairness and machine learning, as well as explainable AI. Team members have published widely in the academic literature on these topics, and worked hard in the development of SageMaker Clarify to balance the science of fairness with engineering solutions and practical product design. Their approaches are both statistical and causal, and focus not only on bias measurement in trained models, but also bias mitigation. It is that last part that has Kearns particularly excited about the future.

“The ability to not just identify problems in your models, but also have the tools to train them in a different way would go a long way toward mitigating that bias,” he said. “It’s good to know that you have a problem, but it's even better to have a solution to your problem.”

Best practices

The notions of bias and fairness are highly application dependent and the choice of the attributes for which bias is to be measured, as well as the choice of the bias metrics, may need to be guided by social, legal, and other non-technical considerations,” said principal applied scientist Krishnaram Kenthapadi, who led the scientific effort behind SageMaker Clarify. “For successful adoption of fairness-aware machine learning and explainable AI approaches in practice, it’s important to build consensus and achieve collaboration across key stakeholders such as product, policy, legal, engineering, and AI/ML teams, as well as end users and communities,” he said. “Further, it’s good to take into account fairness and explainability considerations during each stage of the ML lifecycle, for example, Problem Formation, Dataset Construction, Algorithm Selection, Model Training Process, Testing Process, Deployment, and Monitoring/Feedback.

Find more best practices on the AWS website.

Research areas

Related content

US, CA, Santa Clara
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, NY, New York
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, NY, New York
Job summaryAmazon Web Services is looking for world class scientists to join the Security Analytics and AI Research team within AWS Security Services. This group is entrusted with researching and developing core data mining and machine learning algorithms for various AWS security services like GuardDuty (https://aws.amazon.com/guardduty/) and Macie (https://aws.amazon.com/macie/). In this group, you will invent and implement innovative solutions for never-before-solved problems. If you have passion for security and experience with large scale machine learning problems, this will be an exciting opportunity.The AWS Security Services team builds technologies that help customers strengthen their security posture and better meet security requirements in the AWS Cloud. The team interacts with security researchers to codify our own learnings and best practices and make them available for customers. We are building massively scalable and globally distributed security systems to power next generation services.Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop and enable them to take on more complex tasks in the future.A day in the lifeAbout the hiring groupJob responsibilities* Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment.* Collaborate with software engineering teams to integrate successful experiments into large scale, highly complex production services.* Report results in a scientifically rigorous way.* Interact with security engineers, product managers and related domain experts to dive deep into the types of challenges that we need innovative solutions for.
US, Virtual
Job summaryDo you have consulting leadership experience deploying digital, data, technology strategy and execution within Fortune 500 enterprise organization? Have you built and led successful consulting practices? Do you have broad technical skills and experience across Machine Learning and Artificial Intelligence? Can you build, lead and influence machine learning engineers and data science consultants in a technical specialty team to deliver these new capabilities on the AWS platform to our enterprise customers? At AWS, we are looking for a Senior Practice Manager with a successful record of leading enterprise customers through a variety of transformative projects involving Machine Learning and Artificial Intelligence; delivering business outcomes that contribute to our customers’ transformation journey. An SPM will focus on a geography and a set of technical specialties, and will manage a team of direct reports. The SPM will develop a long-term plan to develop the right skills across the team, influence the go-to-market strategy within the region and collaborate across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based upon customer needs. Key job responsibilities• Engage customers - collaborate with enterprise sales managers to develop strong customer and partner relationships and build a growing business, driving adoption of emerging technologies in key accounts.• Coach and teach - collaborate with field sales, pre-sales, marketing, training and support teams to help partners and customers drive business outcomes through application of AI/ML.• Deliver value - lead high quality delivery of a variety of customized engagements with partners and enterprise customers in the commercial sector.• Lead great people - attract top machine learning engineers and data scientists to build high performing teams of consultants with superior technical depth, and outstanding peer and customer relationship skills• Be a customer advocate - Work with engineering teams to convey partner and enterprise customer feedback as input to technology roadmaps
US, WA, Seattle
Job summaryAWS Insight is looking for a Data Scientist to help develop sophisticated algorithms and models that involve analyzing and learning from over 540 billion customer cost, usage, and utilization events daily. We use this data to generate recommendations and forecasts for customers to help them better understand and optimize their AWS costs and usage and reduce the complexity of managing their cloud costs. Our team's vision is to be the world's authoritative provider of AWS computing insight, where customers can understand, control and optimize usage of AWS products. We sit at the nexus of all AWS services and interact directly with end-customers, and we build relationships with teams across AWS to ensure that we offer a secure and reliable customer experience that builds trust with our customers and provides them with intelligent insights.As a successful data scientist in AWS Insights, you will be responsible for understanding and mining the large amount of data, and developing recommendations that will help improve the accuracy and relevance of our forecasting and recommendations models. You will work closely with talented data scientists, software engineers, and business groups to build enhance existing models and build new models that solve challenging customer problems. You will work with the engineers to drive implementation of the proposed models and establish testing strategies to validate the models before and after they are put into production. On top of that, you are an analytical problem solver who enjoys diving into data, are excited about investigating and developing algorithms, and can influence technical teams and business stakeholders to solve real-world customer problems.Key job responsibilitiesImproving upon existing forecasting statistical or machine learning methodologies by developing new data sources, testing model enhancements, running computational experiments, and fine-tuning model parameters for new forecasting modelsSupporting decision making by providing requirements to develop analytic capabilities, platforms, pipelines and metrics then using them to analyze trends and find root causes of forecast inaccuracyFormalizing assumptions about how demand forecasts are expected to behave, creating definitions of outliers, developing methods to systematically identify these outliers, and explaining why they are reasonable or identifying fixes for themTranslating forecasting business requirements into specific analytical questions that can be answered with available data using statistical and machine learning methods; working with engineers to produce the required data when it is not availableCommunicating verbally and in writing to business customers with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendationsUtilizing code (Python, R, Scala, etc.) for analyzing data and building statistical and machine learning models and algorithms
US, Virtual
Job summaryIn the Amazon Selection Monitoring team, we have the goal of establishing the most comprehensive, accurate and fresh universal selection of products. We enrich and increase the quality and coverage of Amazon product selection using cutting edge machine learning and big data technologies. We are looking for highly motivated scientists who can lead the design, development, deployment and maintenance of data-driven models using machine learning (ML) and/or natural language (NL) and computer vision (CV) applications. Your models would be monitoring billions and billions of products. You will build Amazon scale applications running on Amazon Web Service (AWS) that both leverage and create new technologies to process large volumes of data that derive patterns and conclusions from the data. Amazon Science gives you insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Our scientists continue to publish, teach, and engage with the academic community, in addition to utilizing our working backwards method to enrich the way we live and work. Please visit https://www.amazon.science for more information. Responsibilities - Designing and implementing new features and machine learned models, including the application of state-of-art deep learning to solve search matching and ranking problems, including filtering, new content indexing, and apply document understandingConducting and coordinating process development leading to improved and streamlined processes for model development. Strong customer focus is essentialWorking closely with Product Managers to expand depth of our product insights with data, create a variety of experiments, and determine the highest-impact projects to include in planning roadmapsProviding technical and scientific guidance to your team membersCommunicating effectively with senior management as well as with colleagues from science, engineering, and business backgroundsBeing a cultural leader that ensures teams are collecting, understanding, and using data to inform every decision that impacts our customers The successful candidate will have an established background in developing customer-facing experiences, a strong technical ability, a start-up mentality, excellent project management skills, and great communication skills.Key job responsibilitiesDesigning and implementing new features and machine learned models, including the application of state-of-art deep learning to solve search matching and ranking problems, including filtering, new content indexing, and apply document understandingConducting and coordinating process development leading to improved and streamlined processes for model development. Strong customer focus is essentialWorking closely with Product Managers to expand depth of our product insights with data, create a variety of experiments, and determine the highest-impact projects to include in planning roadmapsProviding technical and scientific guidance to your team membersCommunicating effectively with senior management as well as with colleagues from science, engineering, and business backgroundsBeing a cultural leader that ensures teams are collecting, understanding, and using data to inform every decision that impacts our customersA day in the lifeYou will work with Product Managers to translate the business problem into a science problemYou will define methods for data collection and performance evaluationYou will experiment new models and evaluate their performanceYou will perform deep dive to understand potential issues impacting model performance, and form hypotheses for improvementYou will help deploy the model into productionYou will communicate your experimental and production result to Product Managers and business stakeholders
US, Virtual
Job summaryThe AWS Activate Program provides startups the resources they need to grow successfully on AWS. We do this by understanding the uniqueness of each and every startup that applies for Activate, and then personalizing the resources we make available to them. Our resources include (but are not limited to) AWS service credits, Business Support credits, technical education and training, opportunities for business and technical mentorship from Amazonians and startup peers, and personalized growth benefits. The Activate Personalization Team is the brains behind the Activate system. This team is responsible for ingesting startup data from multiple internal and external services, aggregating it into a holistic startup profile, and creating and productionizing ML models. Our team is looking for an experienced Data Scientist (DS) with outstanding leadership skills and the proven ability to build and manage medium-scale modeling projects. The candidate will be an expert across multiple data science domains including data transformation, machine learning, and statistics. Key job responsibilitiesResearch cutting edge algorithms, develop new models, and design and run experiments to improve customer personalizationPartner with scientists, engineers and product leaders to solve business and technology problems using scientific approaches to build new services that surprise and delight our customersCollaborate with BI/Data Engineer teams and drive the collection of new data and the refinement of existing data sources to continually improve data qualityPropose and validate hypothesis to deliver and direct our product road mapConstructively critique peer research and mentor junior scientists and engineers
US, NY, New York
Job summaryWe are open to candidates located in:Seattle, WashingtonPalo Alto, CaliforniaArlington, VirginiaKey job responsibilitiesAs a Senior Research Scientist, you will:Research and develop new methodologies for demand forecasting, alarms, alerts and automation.Apply your advanced data analytics, machine learning skills to solve complex demand planning and allocation problems.Work closely with stakeholders and translate data-driven findings into actionable insights.Improve upon existing methodologies by adding new data sources and implementing model enhancements.Create and track accuracy and performance metrics.Create, enhance, and maintain technical documentation, and present to other scientists, engineers and business leaders.Drive best practices on the team; mentor and guide junior members to achieve their career growth potential.A day in the lifeAbility to utilize exceptional modeling and problem-solving skills to work through different challenges in ambiguous situations.You’ve successfully delivered end-to-end operations research projects, working through conflicting viewpoints and data limitations.You have an enviable level of attention to details.Ability to communicate analytical results to senior leaders, and peers.Innovative scientist with the ability to identify opportunities and develop novel modeling approaches in a fast-paced and ever-changing environment, and gain support with data and storytelling.About the teamVideo advertising is a complex, multi-sided market with many technologies at play within the industry. The industry is rapidly growing and evolving as viewers are shifting from traditional TV viewing to OTT, and from terrestrial radio to streaming. In addition, publishers are increasingly adding video content to their online experiences. Amazon’s video advertising program is a rising competitor in this industry. Amazon’s service has differentiated assets in our customer & audience insights, exclusive video content and associated inventory on our streaming services (IMDbTV, Twitch, Prime Video, Amazon Music, etc.) and devices (FireTV, Echo, Fire Tablet) which all position us well as an end to end service for advertisers and agencies. As our business grows, we are continually experimenting with a portfolio of emerging ideas and technology as well as global expansion. We are looking for passionate, hard-working, and talented individuals to help foster these nascent ideas into scalable products and launch them into the market.