Diagram that depicts the 'Amazon Lookout for Vision' process

How a ‘Think Big’ idea helped bring Lookout for Vision to life

Learn about the science behind the new machine learning product for manufacturers — and how a unique approach solved a complex problem.

On Dec. 1 at re:Invent 2020, Amazon Web Services (AWS) announced Amazon Lookout for Vision, an anomaly detection solution that uses machine learning to process thousands of images an hour to spot manufacturing defects and anomalies — with no machine learning experience required.

The new offering means manufacturers can send camera images to Lookout for Vision to identify defects, such as a crack in a machine part, a dent in a panel, an irregular shape, or an incorrect product color. Lookout for Vision also utilizes few shot learning, so customers can assess machine parts or manufactured products by providing small batches — sometimes as few as 30 images (10 images of defects or anomalies plus 20 “normal” images). Lookout for Vision then reports the images that differ from baselines so that appropriate action can be taken — quickly.

Because modern manufacturing systems are so finely tuned, defect rates are often 1% or less. However, even small defects can be enormously expensive in terms of replacements, refunds, or waning customer trust, so finding and flagging those missed defects remains critically important. And while the percentage of defects may be small, finding and identifying them is a significant challenge. A team of Amazon scientists and engineers with extensive experience in machine learning, deep learning, and computer vision tackled that challenge when developing Amazon Lookout for Vision.

Barath Balasubramanian, AWS principal product manager, Anant Patel, AWS senior program manager, and Joaquin Zepeda, AWS senior applied scientist, talked about the unique and complex challenges they faced, how they were able to overcome them — and how building a mock factory helped them achieve their vision.

The (many, many) challenges

“There are two predominant ways in which defects are spotted. One is human inspection. They've been doing that since time immemorial,” Balasubramanian said. “The other one uses machine vision systems, purpose-built systems that take a picture, have hard-coded rules around them, and don't learn along the way.”

Barath Balasubramanian, AWS principal product manager
Barath Balasubramanian, AWS principal product manager

Apart from not being iterative, some companies lack the internal expertise to fine tune those systems for their specific environments. “It can take many months for an outside expert to come in, understand your environment, and set up rules,” Balasubramanian said. “Then you change one supplier part and the machine vision systems start saying, ‘This is a difference.’ Then you have to bring back that expert to recalibrate your system.”

In addition, everything from the manufacturing process, to the ways in which defects are identified, and even the defects themselves are influenced by a staggering number of variables.

“Not only do you have to consider the type of anomaly, but also the distribution of anomalies that you would find,” Zepeda said. “That's one big challenge that we've had to address with training models and with data collection. We worked with a customer that had defect rates in the 0.1% range, but those are the critical defects that must be found.  As a result, the data we develop our system on should, as much as possible, reflect that distribution.”

Moreover, the scientists and engineers realized early on that the sample defects that they were training their models on didn’t match the shop-floor reality.

“We had examples of pretty obvious anomaly types, a huge scratch, a terrible box, and while that may happen in some objects or some use cases, the type of anomalies our customers are solving for are much more subtle,” Patel said.

As the teams of scientists and engineers considered the scope of the challenge facing them, they realized they had a data problem. “One of our challenges early on was around data, and whether we had enough data to really formulate a strong opinion about what the service should do,” Patel said.

Working with a third-party vendor who handles computer vision annotation tasks, the teams started exploring actual factories.

“We were trying to capture data in the manufacturing space, to bootstrap some of the data collection process,” Patel said. “And then we had a Think Big idea.”

A mock solution

The teams realized that their quest to find the sheer variety of data they required was going to require a unique approach. “Based on customer conversations, we knew we needed to replicate a production environment as closely as possible,” Patel said.

Anant Patel, AWS senior program manager
Anant Patel, AWS senior program manager

The solution: create a mock factory in India. The teams began procuring conveyor belts and cameras, and objects of various types to simulate various manufacturing environments. The goal: create data sets that included normal images and objects, and then draw or create synthetic anomalies — missing components, scratches, discolorations, and other effects.

“We had multiple cameras of different qualities because we wanted to account for things like RGB, grayscale, and cameras with different price points,” Zepeda said. “The conveyor belt had multiple variations that we could try, for example, by changing the belt texture or the belt color.”

“We were also trying to solve for, or monitor, lighting conditions, distance to the object, camera in a fixed position, things that customers would realistically try to implement themselves,” Patel added.

Fine tuning the mock factory so its outputs were useful also necessitated a lot of collaboration.

“Trying to bridge the gap between science and engineering was an iterative process,” Patel said. “I think we started with five to ten training data sets. We would review them with the science team who inevitably would have feedback on what was useful, or not. We learned a lot in the process.”

This is where the team’s application of few-shot learning (classifying data with as little training as possible) came in handy too, allowing them to occasionally work with no images of defects at all.

Joaquin Zepeda, AWS senior applied scientist
Joaquin Zepeda, AWS senior applied scientist

“Anomalies in manufacturing are intrinsically infrequent and thus difficult to source when assembling a training set,” Zepeda said. “Our models can be trained with only normal images to address this difficulty. The resulting models can be deployed or used to mine for anomalies in unlabeled collections of images using our ‘trial detection’ functionality to expand the training set.”

That real-life, trial-and-error iterative process eventually led to the development of Lookout for Vision — and that process of learning has only just begun.

“We realize that this launch really represents a beginning, not an end. Once deployed, we know we’ll confront unique situations that will challenge the service and we’ll learn from,” Patel said. “Lookout has to be versatile enough to generalize to all sorts of applications; it will get even better over time. The more feedback we get from our customers across the launch cycle, the more knowledge we’ll gain, and the better the system will perform.”

Related content

US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person.Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel.CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, WA, Seattle
Note that this posting is for a handful of teams within Amazon Robotics. Teams include: Robotics, Computer Vision, Machine Learning, Optimization, and more.Are you excited about building high-performance robotic systems that can perceive and learn to help deliver for customers? The Amazon Robotics team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.Amazon Robotics is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. We will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Come join us!A day in the lifeAs an intern you will develop a new algorithm to solve one of the challenging computer vision and manipulation problems in Amazon's robotic warehouses. Your project will fit your academic research experience and interests. You will code and test out your solutions in increasingly realistic scenarios and iterate on the idea with your mentor to find the best solution to the problem.
US, WA, Bellevue
The Global Supply Chain-ACES organization aims to raise the bar on Amazon’s customer experience by delivering holistic solutions for Global Customer Fulfillment that facilitate the effective and efficient movement of product through our supply chain. We develop strategies, processes, material handling and technology solutions, reporting and other mechanisms, which are simple, technology enabled, globally scalable, and locally relevant. We achieve this through cross-functional partnerships, listening to the needs of our customers and prioritizing initiatives to deliver maximum impact across the value chain. Within the organization, our Quality team balances tactical operation with operations partners with global engagement on programs to deliver improved inventory accuracy in our network. The organization is looking for an experienced Principal Data Scientist to partner with senior leadership to develop long term strategic solutions. As a Principal Scientist, they will lead critical initiatives for Global Supply Chain, leveraging complex data analysis and visualization to:a. Collaborate with business teams to define data requirements and processes;b. Automate data pipelines;c. Design, develop, and maintain scalable (automated) reports and dashboards that track progress towards plans;d. Define, track and report program success metrics.e. Serve as a technical science lead on our most demanding, cross-functional projects.
US, WA, Seattle
Are you excited about building high-performance robotic systems that can perceive, learn, and act intelligently alongside humans? The Robotics AI team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.The Amazon Robotics team is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. Come join us!
US, WA, Bellevue
Employer: Amazon.com Services LLCPosition: Research Scientist IILocation: Bellevue, WA Multiple Positions Available1. Research, build and implement highly effective and innovative methods in Statistical Modeling, Machine Learning, and other quantitative techniques such as operational research and optimization to deliver algorithms that solve real business problems.2. Take initiative to scope and plan research projects based on roadmap of business owners and enable data-driven solutions. Participate in shaping roadmap for the research team.3. Ensure data quality throughout all stages of acquisition and processing of the data, including such areas as data sourcing/collection, ground truth generation, data analysis, experiment, evaluation and visualization etc.4. Navigate a variety of data sources, understand the business reality behind large-scale data and develop meaningful science solutions.5. Partner closely with product or/and program owners, as well as scientists and engineers in cross-functional teams with a clear path to business impact and deliver on demanding projects.6. Present proposals and results in a clear manner backed by data and coupled with conclusions to business customers and leadership team with various levels of technical knowledge, educating them about underlying systems, as well as sharing insights.7. Perform experiments to validate the feature additions as requested by domain expert teams.8. Some telecommuting benefits available.The pay range for this position in Bellevue, WA is $136,000-$184,000 (yr); however, base pay offered may vary depending on job-related knowledge, skills, and experience. A sign-on bonus and restricted stock units may be provided as part of the compensation package, in addition to a full range of medical, financial, and/or other benefits, dependent on the position offered. This information is provided by the Washington Equal Pay Act. Base pay information is based on market location. Applicants should apply via Amazon's internal or external careers site.#0000
US, VA, Arlington
The Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. As Director for PXT Central Science Technology, you will be responsible for leading multiple teams through rapidly evolving complex demands and define, develop, deliver and execute on our science roadmap and vision. You will provide thought leadership to scientists and engineers to invent and implement scalable machine learning recommendations and data driven algorithms supporting flexible UI frameworks. You will manage and be responsible for delivering some of our most strategic technical initiatives. You will design, develop and operate new, highly scalable software systems that support Amazon’s efforts to be Earth’s Best Employer and have a significant impact on Amazon’s commitment to our employees and communities where we both serve and employ 1.3 million Amazonians. As Director of Applied Science, you will be part of the larger technical leadership community at Amazon. This community forms the backbone of the company, plays a critical role in the broad business planning, works closely with senior executives to develop business targets and resource requirements, influences our long-term technical and business strategy, helps hire and develop engineering leaders and developers, and ultimately enables us to deliver engineering innovations.This role is posted for Arlington, VA, but we are flexible on location at many of our offices in the US and Canada.
US, VA, Arlington
Employer: Amazon.com Services LLCPosition: Data Scientist IILocation: Arlington, VAMultiple Positions Available1. Manage and execute entire projects or components of large projects from start to finish including data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights and recommendations.2. Oversee the development and implementation of data integration and analytic strategies to support population health initiatives.3. Leverage big data to explore and introduce areas of analytics and technologies.4. Analyze data to identify opportunities to impact populations.5. Perform advanced integrated comprehensive reporting, consultative, and analytical expertise to provide healthcare cost and utilization data and translate findings into actionable information for internal and external stakeholders.6. Oversee the collection of data, ensuring timelines are met, data is accurate and within established format.7. Act as a data and technical resource and escalation point for data issues, ensuring they are brought to resolution.8. Serve as the subject matter expert on health care benefits data modeling, system architecture, data governance, and business intelligence tools. #0000
US, TX, Dallas
Employer: Amazon.com Services LLCPosition: Data Scientist II (multiple positions available)Location: Dallas, TX Multiple Positions Available:1. Assist customers to deliver Machine Learning (ML) and Deep Learning (DL) projects from beginning to end, by aggregating data, exploring data, building and validating predictive models, and deploying completed models to deliver business impact to the organization;2. Apply understanding of the customer’s business need and guide them to a solution using AWS AI Services, AWS AI Platforms, AWS AI Frameworks, and AWS AI EC2 Instances;3. Use Deep Learning frameworks like MXNet, PyTorch, Caffe 2, Tensorflow, Theano, CNTK, and Keras to help our customers build DL models;4. Research, design, implement and evaluate novel computer vision algorithms and ML/DL algorithms;5. Work with data architects and engineers to analyze, extract, normalize, and label relevant data;6. Work with DevOps engineers to help customers operationalize models after they are built;7. Assist customers with identifying model drift and retraining models;8. Research and implement novel ML and DL approaches, including using FPGA;9. Develop computer vision and machine learning methods and algorithms to address real-world customer use-cases; and10. Design and run experiments, research new algorithms, and work closely with engineers to put algorithms and models into practice to help solve customers' most challenging problems.11. Approximately 15% domestic and international travel required.12. Telecommuting benefits are available.#0000
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Manager III, Data ScienceLocation: Bellevue, WashingtonPosition Responsibilities:Manage a team of data scientists working to build large-scale, technical solutions to increase effectiveness of Amazon Fulfillment systems. Define key business goals and map them to the success of technical solutions. Aggregate, analyze and model data from multiple sources to inform business decisions. Manage and quantify improvement in the customer experience resulting from research outcomes. Develop and manage a long-term research vision and portfolio of research initiatives, with algorithms and models that to be integrated in production systems. Hire and mentor junior scientists.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Arlington, VirginiaPosition Responsibilities:Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing Oracle, RedShift, and Spark storage systems. Build relationships with stakeholders and counterparts. Analyze data for trends and input validity by inspecting univariate distributions, exploring bivariate relationships, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build models using statistical modeling, mathematical modeling, econometric modeling, network modeling, social network modeling, natural language processing, machine learning algorithms, genetic algorithms, and neural networks. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000