“You’re trying to predict the unpredictable”

Amazon scientist Dean Foster and coauthor receive “test of time” award for paper authored 23 years ago.

Dean Foster is in the forecasting business. More specifically, he is in the business of ensuring the forecasts Amazon makes for its supply chain are as accurate as possible.

Foster, a research scientist, works in the company’s Supply Chain Optimization Technologies (SCOT) organization. “Our main focus is trying to predict what customers will buy before they buy it,” he said. “We need to make sure that we know what people want so we can find it, get it moved across the country, and have it sitting there waiting when a customer places an order.”

Dean Foster, an economist who works on optimizing Amazon's supply chain technologies, is seen holding an Amazon package he ordered from the middle of a forest in Japan.
Dean Foster, an economist who works on optimizing Amazon's supply chain technologies, is seen holding an Amazon package he ordered from the middle of a forest in Japan.
Courtesy Dean Foster

Forecasting what customers might want at any given time, at scale, is inherently complex. One of the ways those forecasts are strengthened is by a concept known as calibration — a topic that Dean has researched extensively. In fact, a paper he co-authored with Rakesh Vohra 23 years ago, “Calibrated Learning and Correlated Equilibrium”, was honored this week with the Test of Time Award at the 21st ACM Conference on Economics and Computation.

The award, presented by the conference’s award committee, “recognizes the author or authors of an influential paper or series of papers published between ten and twenty-five years ago that has significantly impacted research or applications exemplifying the interplay of economics and computation.”

Foster and Vohra’s paper “spurred a sizeable theoretical literature,” notes Steve Tadelis, an Amazon Scholar and economist. It has also won praise for its influence on games played by learning agents, addressing a question emanating from an idea proposed by the famed mathematician John Forbes Nash Jr.

“If we have two different agents learning to play each other, they learn to play an equilibrium,” Foster said. “Nash came up with a fixed point and argued equilibriums exist. But the question, ‘Why would people play them?’ was open.” In other words, the actions of human beings are neither neat nor uniformly predictable. “You are not a simple creature, so modeling your behavior as if you're going to do the exact same thing today as you've done every other day of your life is just wrong,” he says.

Foster and his coauthor, Rakesh Vohra, now a professor at the University of Pennsylvania, set out to account for some of that complexity by including arbitrary sequences when utilizing calibration.

Calibration, in this context, involves comparing a prediction against its actual outcome, measuring the difference between the two and then adjusting as needed. By learning from previous comparisons, prediction models can be calibrated to more accurately match outcomes.

“Not being calibrated is an embarrassment,” Foster said, “You should fix it! If I were trying to predict what nature was going to do, say rain or shine tomorrow, and suppose nature only has one goal in life—make me look stupid—in spite of that, I can still use calibration to figure out an accurate forecast.”

Foster notes that while that explanation may seem hyperbolic, it is particularly relevant to machine learning.

“That idea of calibration and doing predictions when the world's out to get you, is now relatively standard in machine learning. It grew out of connecting a lot of computer science,” he explains. “In computer science, for most things that you can prove, you can show the worst case and the average case are about the same. So the worst possible data for a sorting algorithm is about as hard to sort as a typical problem for sorting. We took that model and said, ‘Well, is it true in statistics?’ And that's where this idea came from. That you can make these predictions that are every bit as good, even when nature is out there trying to fool you.”

That idea has roots in game theory, an area in which calibration is particularly useful. Game theory assumes your opponent is attempting to fool you, for example, a chess player who wants you to think your queen is in danger when it really isn’t. Making errant predictions (or forecasts) means you will lose more frequently. Alternately, calibrated predictions can help you win more often.

“With a calibrated forecast, if I believe someone will take some action two-thirds of the time and two-thirds of the time they actually do that, I can now know two-thirds is the right answer,” he says. “And I can trust that I won't have to go back and say, ‘Well, most of time, it landed the other way...’ It's landing the way I thought it was going to land.”

Foster noted that calibration also helps ensure that forecasts aren’t tripped up by things like sample sizes. “A way to describe calibration for our forecast is that, after we announce the forecast, someone else shouldn't be able to come along and say, ‘Hey, if you made that forecast 20% larger it would be more accurate.’ Calibration is a check to make sure that you haven't left an easy, low-hanging fruit modification around.”

As to the future of forecasting, when it comes to supply chain optimization, Foster sees lots of potential. He is particularly excited about Amazon’s expanded usage of reinforcement learning, a machine learning approach focused on maximizing cumulative reward.

“I've been working on how to take a more economic viewpoint,” Foster said. “How do we connect the forecast to the economic decisions that we make so there’s a more integrated approach? We're trying to do this by applying more reinforcement learning techniques.”

For all of the citations and accolades his paper has earned, it didn’t start smoothly. “When we first tried to publish the paper, it was a shock enough in statistics journals that it was rejected several times,” Foster recalled. “One referee said, ‘You're trying to predict the unpredictable.’” In a way, he still is.

Research areas

Related content

US, WA, Seattle
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics, as well as basic familiarity with Python (or R, Matlab, or equivalent) is necessary, and experience with SQL would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Bellevue
As an applied scientist, you will use your experience to initiate the design, development, execution and implementation of scientific research projects. Working closely with fellow research scientists and product managers, you will use your experience in modeling, statistics, and simulation to design models of new policies, simulate their performance, and evaluate their benefits and impacts to cost, reliability, and speed of our fulfillment network. Our teams are looking for experience in network and combinatorial optimization, algorithms, data structures, statistics, and/or machine learning. This position requires superior analytical thinking, and ability to apply their technical and statistical knowledge to identify opportunities for real world applications. You should be able to mine and analyze large data, and be able to use necessary programming and statistical analysis software/tools to do so. Amazon has positions available for Research Scientists in multiple locations across the US and Canada.
US, WA, Virtual Contact Center-WA
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. About the team The Selling Partner Fees team owns the end-to-end fees experience for two million active third party sellers. We own the fee strategy, fee seller experience, fee accuracy and integrity, fee science and analytics, and we provide scalable technology to monetize all services available to third-party sellers. Within the Science team, our goal is to understand the impact of changing fees on Seller (supply) and Customers (demand) behavior (e.g. price changes, advertising strategy changes, introducing new selection etc.) as well as using this information to optimize our fee structure and maximizing our long term profitability.
US, WA, Seattle
This is a unique opportunity to build technology and science that millions of people will use every day. Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Deep Learning (DL)? We are embarking on a multi-year journey to improve the shopping experience for customers globally. Amazon Search team creates customer-focused search solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. As Amazon expands to new geographies, we are faced with the unique challenge of maintaining the bar on Search Quality due to the diversity in user preferences, multilingual search and data scarcity in new locales. We are looking for an applied researcher to work on improving search on Amazon using NLP, ML, and DL technology. As an Applied Scientist, you will lead our efforts in query understanding, semantic matching (e.g. is a drone the same as quadcopter?), relevance ranking (what is a "funny halloween costume"?), language identification (did the customer just switch to their mother tongue?), machine translation (猫の餌を注文する). This is a highly visible role with a huge impact on Amazon customers and business. As part of this role, you will develop high precision, high recall, and low latency solutions for search. Your solutions should work for all languages that Amazon supports and will be used in all Amazon locales world-wide. You will develop scalable science and engineering solutions that work successfully in production. You will work with leaders to develop a strategic vision and long term plans to improve search globally. We are growing our collaborative group of engineers and applied scientists by expanding into new areas. This is a position on Global Search Quality team in Seattle Washington. We are moving fast to change the way Amazon search works. Together with a multi-disciplinary team you will work on building solutions with NLP/ML/DL at its core. Along the way, you’ll learn a ton, have fun and make a positive impact on millions of people. Come and join us as we invent new ways to delight Amazon customers.
US, WA, Seattle
This is a unique opportunity to build technology and science that millions of people will use every day. Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Deep Learning (DL)? We are embarking on a multi-year journey to improve the shopping experience for customers globally. Amazon Search team creates customer-focused search solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. As Amazon expands to new geographies, we are faced with the unique challenge of maintaining the bar on Search Quality due to the diversity in user preferences, multilingual search and data scarcity in new locales. We are looking for an applied researcher to work on improving search on Amazon using NLP, ML, and DL technology. As an Applied Scientist, you will lead our efforts in query understanding, semantic matching (e.g. is a drone the same as quadcopter?), relevance ranking (what is a "funny halloween costume"?), language identification (did the customer just switch to their mother tongue?), machine translation (猫の餌を注文する). This is a highly visible role with a huge impact on Amazon customers and business. As part of this role, you will develop high precision, high recall, and low latency solutions for search. Your solutions should work for all languages that Amazon supports and will be used in all Amazon locales world-wide. You will develop scalable science and engineering solutions that work successfully in production. You will work with leaders to develop a strategic vision and long term plans to improve search globally. We are growing our collaborative group of engineers and applied scientists by expanding into new areas. This is a position on Global Search Quality team in Seattle Washington. We are moving fast to change the way Amazon search works. Together with a multi-disciplinary team you will work on building solutions with NLP/ML/DL at its core. Along the way, you’ll learn a ton, have fun and make a positive impact on millions of people. Come and join us as we invent new ways to delight Amazon customers.
US, WA, Seattle
The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals. We are seeking an experienced high-energy Economist to help envision, design and build the next generation of retail pricing capabilities. You will work at the intersection of economic theory, statistical inference, and machine learning to design new methods and pricing strategies to deliver game changing value to our customers. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities Amazon’s Pricing Science and Research team is seeking an Economist to help envision, design and build the next generation of pricing capabilities behind Amazon’s on-line retail business. As an economist on our team, you will work at the intersection of economic theory, statistical inference, and machine learning to design new methods and pricing strategies with the potential to deliver game changing value to our customers. This is an opportunity for a high-energy individual to work with our unprecedented retail data to bring cutting edge research into real world applications, and communicate the insights we produce to our leadership. This position is perfect for someone who has a deep and broad analytic background and is passionate about using mathematical modeling and statistical analysis to make a real difference. You should be familiar with modern tools for data science and business analysis. We are particularly interested in candidates with research background in applied microeconomics, econometrics, statistical inference and/or finance. A day in the life Discussions with business partners, as well as product managers and tech leaders to understand the business problem. Brainstorming with other scientists and economists to design the right model for the problem in hand. Present the results and new ideas for existing or forward looking problems to leadership. Deep dive into the data. Modeling and creating working prototypes. Analyze the results and review with partners. Partnering with other scientists for research problems. About the team The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals.
US, CA, San Francisco
The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon's on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon's goods and services are aligned with Amazon's corporate goals. We are seeking an experienced high-energy Economist to help envision, design and build the next generation of retail pricing capabilities. You will work at the intersection of statistical inference, experimentation design, economic theory and machine learning to design new methods and pricing strategies for assessing pricing innovations. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities Amazon's Pricing Science and Research team is seeking an Economist to help envision, design and build the next generation of pricing capabilities behind Amazon's on-line retail business. As an economist on our team, you will will have the opportunity to work with our unprecedented retail data to bring cutting edge research into real world applications, and communicate the insights we produce to our leadership. This position is perfect for someone who has a deep and broad analytic background and is passionate about using mathematical modeling and statistical analysis to make a real difference. You should be familiar with modern tools for data science and business analysis. We are particularly interested in candidates with research background in experimentation design, applied microeconomics, econometrics, statistical inference and/or finance. A day in the life Discussions with business partners, as well as product managers and tech leaders to understand the business problem. Brainstorming with other scientists and economists to design the right model for the problem in hand. Present the results and new ideas for existing or forward looking problems to leadership. Deep dive into the data. Modeling and creating working prototypes. Analyze the results and review with partners. Partnering with other scientists for research problems. About the team The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon's on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon's goods and services are aligned with Amazon's corporate goals.
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US
The Amazon Supply Chain Optimization Technology (SCOT) organization is looking for an Intern in Economics to work on exciting and challenging problems related to Amazon's worldwide inventory planning. SCOT provides unique opportunities to both create and see the direct impact of your work on billions of dollars’ worth of inventory, in one of the world’s most advanced supply chains, and at massive scale. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. We are looking for a PhD candidate with exposure to Program Evaluation/Causal Inference. Knowledge of econometrics and Stata/R/or Python is necessary, and experience with SQL, Hadoop, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
The Selling Partner Fees team owns the end-to-end fees experience for two million active third party sellers. We own the fee strategy, fee seller experience, fee accuracy and integrity, fee science and analytics, and we provide scalable technology to monetize all services available to third-party sellers. We are looking for an Intern Economist with excellent coding skills to design and develop rigorous models to assess the causal impact of fees on third party sellers’ behavior and business performance. As a Science Intern, you will have access to large datasets with billions of transactions and will translate ambiguous fee related business problems into rigorous scientific models. You will work on real world problems which will help to inform strategic direction and have the opportunity to make an impact for both Amazon and our Selling Partners.