3 ways reinforcement learning is changing the world around you

Sahika Genc, Amazon principal applied scientist, writes about three important ways reinforcement learning is used in the real world, and explains how you can get hands on with it.

Sahika Genc is a principal applied scientist with Amazon. Her team works on reinforcement learning (RL) algorithms for Amazon Sagemaker, which provides every developer and data scientist with the ability to build, train, and deploy machine learning models quickly. Genc also leads the science team on AWS DeepRacer, which enables developers to have a way to get hands-on with RL, experiment, and learn through autonomous driving.

Sahika Genc
Sahika Genc, Amazon principal applied scientist
Credit: Alexandra Tatarzyn

When the concept of reinforcement learning was first introduced in the 1950s, there were two themes – the first focused on developing learning methods via a trial-and-error process, while the other provided a more theoretical framework to solve optimal control problems. These practical and theoretical methods merged in the 1980s to give birth to reinforcement learning as a more formalized field of study and development.

At the time, luminaries like Richard Sutton and Andrew Barto highlighted theories like optimal control and dynamic programming, and identified key component ideas, such as temporal difference learning, dynamic programming, and function approximation.

Fast forward to the 2000s, where deep learning gave reinforcement learning a massive boost by eliminating the need to manually configure features, and use raw sensor data (such as the pixels of an image rather than a segmented image).

But what exactly is reinforcement learning?

As opposed to supervised learning (which uses labeled training data) or unsupervised learning (where you draw inferences from input data without labeled responses), reinforcement learning involves a system making short-term decisions while optimizing for a longer-term goal through trial and error. Deep learning is used to make mathematical representations of important variables, while the reinforcement learning agent learns the actions needed to maximize rewards over a longer period of time.

Here are three applications of reinforcement learning that are changing our world in profound ways:

1. Recommendation systems

Reinforcement learning has obvious advantages in developing recommendation systems for news feeds, products or videos. In this case, the goal of the system is to personalize product recommendations.

The state of a system changes constantly as users interact with it. This makes supervised learning less than ideal for recommendation systems, as you would constantly need additional infrastructure for deploying recurring model updates. On the other hand, systems that use reinforcement learning can continually update recommendations based on user feedback. Deep learning provides mathematical representations of the product, consumer interest, and consumer satisfaction. The reinforcement learning agent can personalize the content to each individual based on their preferences over a period of time, in a way that maximizes the reward over the long term.

In recent years, there has been an increased uptake in deep reinforcement learning for use cases such as push notifications, faster video loading by pre-fetching content and for delivering product recommendations. Visit the Amazon Sagemaker notebook on recommendation systems to get a deep dive on reinforcement learning in action.

2. Energy smart grids

According to the International Energy Agency (IEA), global energy consumption grew by 2.3% in 2018 – twice as fast as the average over the last ten years. Reinforcement learning has outperformed advanced control systems traditionally used for energy optimization for applications like datacenter cooling and select smart grid applications.

Energy systems interact with the environment in complex and non-linear ways. Traditional formula-based engineering and human intuition cannot adapt to rapidly changing conditions like the weather. It is impossible to come up with rules and heuristics for every operating scenario. A general intelligence framework is needed to understand the data center’s interactions with the environment.

Deep reinforcement learning has been used to extract knowledge from past consumption patterns, production time series and available forecasts to tailor energy distribution for datacenters and buildings. Here, deep learning is used to make mathematical representations of complex thermodynamic equations. By seeking reward maximization, the reinforcement learning agent learns the right actions to take (such as which systems to turn on and off) over the course of entire days, weeks, months and years. See the Amazon Sagemaker notebook for energy use cases to get hands on with practical applications of reinforcement learning.

3. Robotics

Most of the industrial robots used in environments like manufacturing floors are blind. This is because image sensing has not been a commodity until recent times. However, there has been an increase in the use of image data from camera, LIDAR or radar sensors.

Consequently, deep reinforcement learning can be used to train robots to take actions such as picking up or moving objects in warehouses and factories. In this scenario, deep learning is used to interpret images by looking at every pixel, while reinforcement learning agents learn how to make the right decisions over a period of time based on which action was successful. The Amazon Sagemaker notebook is a great place to get started with reinforcement learning and robotics.

There are still many challenges we must work through. These have to do with not only the high volume, but the high dimensionality of data, which can make it challenging to design responsive systems. In addition, be it for recommender systems or energy grids, both the data and relationships between variables can change over time. This can make it incredibly difficult to avoid concept drift.

AWS Deep Racer.png
AWS DeepRacer gives you an interesting and fun way to get started with reinforcement learning (RL)
image Credit: Amazon

Finally, the moral of the story of Midas is applicable to machine learning. Be careful what you wish for. There can be a huge gap between the intended reward and stated reward — and you can find your system maximizing for end states that aren’t entirely desirable.

In many ways, it’s still early days when it comes to Deep Reinforcement Learning. There’s no better time to get on board. With AWS DeepRacer, you now have a way to get hands-on with RL, experiment, and learn through autonomous driving. You can get started with the virtual car and tracks in the cloud-based 3D racing simulator. For a real-world experience, you can deploy your trained models onto AWS DeepRacer and race your friends, or take part in the global AWS DeepRacer League. Visit the AWS DeepRacer page to get started.

Related content

CA, BC, Vancouver
Machine learning (ML) has been strategic to Amazon from the early years. We are pioneers in areas such as recommendation engines, product search, eCommerce fraud detection, and large-scale optimization of fulfillment center operations. The Amazon ML Solutions Lab team helps AWS customers accelerate the use of machine learning to solve business and operational challenges and promote innovation in their organization. We are looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help develop solutions by pushing the envelope in Time Series, Automatic Speech Recognition (ASR), Natural Language Understanding (NLU), Machine Learning (ML) and Computer Vision (CV).Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. As a ML Solutions Lab Applied Scientist, you are proficient in designing and developing advanced ML models to solve diverse challenges and opportunities. You will be working with terabytes of text, images, and other types of data and develop novel models to solve real-world problems. You'll design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. You will apply classical ML algorithms and cutting-edge deep learning (DL) approaches to areas such as drug discovery, customer segmentation, fraud prevention, capacity planning, predictive maintenance, pricing optimization, call center analytics, player pose estimation, and event detection among others. The primary responsibilities of this role are to: Design, develop, and evaluate innovative ML/DL models to solve diverse challenges and opportunities across industriesInteract with customer directly to understand their business problems, and help them with defining and implementing scalable ML/DL solutions to solve themWork closely with account teams, research scientist teams, and product engineering teams to drive model implementations and new algorithmsThis position requires travel of up to 20%.
US, WA, Seattle
Are you a Ph.D. interested in the fields of machine learning, deep learning, automated reasoning, speech, robotics, computer vision, optimization, or quantum computing? Do you enjoy diving deep into hard technical problems and coming up with solutions that enable successful products that improve the lives of people in a meaningful way? If this describes you, come join our science teams at Amazon. As an Applied Scientist, you will have access to large datasets with billions of images and video to build large-scale systems. Additionally, you will analyze and model terabytes of text, images, and other types of data to solve real-world problems and translate business and functional requirements into quick prototypes or proofs of concept. We are looking for smart scientists capable of using a variety of domain expertise to invent, design, evangelize, and implement state-of-the-art solutions for never-before-solved problems.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person.Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel.CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, IL, Chicago
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist ILocation: Chicago, IllinoisPosition Responsibilities:Build the core intelligence, insights, and algorithms that support the real estate acquisition strategies for Amazon physical stores. Tackle cutting-edge, complex problems such as predicting the optimal location for new Amazon stores by bringing together numerous data assets, and using best-in-class modeling solutions to extract the most information out of them. Work with business stakeholders, software development engineers, and other data scientists across multiple teams to develop innovative solutions at massive scale.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, WA, Seattle
Note that this posting is for a handful of teams within Amazon Robotics. Teams include: Robotics, Computer Vision, Machine Learning, Optimization, and more.Are you excited about building high-performance robotic systems that can perceive and learn to help deliver for customers? The Amazon Robotics team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.Amazon Robotics is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. We will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Come join us!A day in the lifeAs an intern you will develop a new algorithm to solve one of the challenging computer vision and manipulation problems in Amazon's robotic warehouses. Your project will fit your academic research experience and interests. You will code and test out your solutions in increasingly realistic scenarios and iterate on the idea with your mentor to find the best solution to the problem.
US, WA, Seattle
Are you excited about building high-performance robotic systems that can perceive, learn, and act intelligently alongside humans? The Robotics AI team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.The Amazon Robotics team is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. Come join us!
US, WA, Bellevue
Employer: Amazon.com Services LLCPosition: Research Scientist IILocation: Bellevue, WA Multiple Positions Available1. Research, build and implement highly effective and innovative methods in Statistical Modeling, Machine Learning, and other quantitative techniques such as operational research and optimization to deliver algorithms that solve real business problems.2. Take initiative to scope and plan research projects based on roadmap of business owners and enable data-driven solutions. Participate in shaping roadmap for the research team.3. Ensure data quality throughout all stages of acquisition and processing of the data, including such areas as data sourcing/collection, ground truth generation, data analysis, experiment, evaluation and visualization etc.4. Navigate a variety of data sources, understand the business reality behind large-scale data and develop meaningful science solutions.5. Partner closely with product or/and program owners, as well as scientists and engineers in cross-functional teams with a clear path to business impact and deliver on demanding projects.6. Present proposals and results in a clear manner backed by data and coupled with conclusions to business customers and leadership team with various levels of technical knowledge, educating them about underlying systems, as well as sharing insights.7. Perform experiments to validate the feature additions as requested by domain expert teams.8. Some telecommuting benefits available.The pay range for this position in Bellevue, WA is $136,000-$184,000 (yr); however, base pay offered may vary depending on job-related knowledge, skills, and experience. A sign-on bonus and restricted stock units may be provided as part of the compensation package, in addition to a full range of medical, financial, and/or other benefits, dependent on the position offered. This information is provided by the Washington Equal Pay Act. Base pay information is based on market location. Applicants should apply via Amazon's internal or external careers site.#0000
US, VA, Arlington
The Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. As Director for PXT Central Science Technology, you will be responsible for leading multiple teams through rapidly evolving complex demands and define, develop, deliver and execute on our science roadmap and vision. You will provide thought leadership to scientists and engineers to invent and implement scalable machine learning recommendations and data driven algorithms supporting flexible UI frameworks. You will manage and be responsible for delivering some of our most strategic technical initiatives. You will design, develop and operate new, highly scalable software systems that support Amazon’s efforts to be Earth’s Best Employer and have a significant impact on Amazon’s commitment to our employees and communities where we both serve and employ 1.3 million Amazonians. As Director of Applied Science, you will be part of the larger technical leadership community at Amazon. This community forms the backbone of the company, plays a critical role in the broad business planning, works closely with senior executives to develop business targets and resource requirements, influences our long-term technical and business strategy, helps hire and develop engineering leaders and developers, and ultimately enables us to deliver engineering innovations.This role is posted for Arlington, VA, but we are flexible on location at many of our offices in the US and Canada.
US, VA, Arlington
Employer: Amazon.com Services LLCPosition: Data Scientist IILocation: Arlington, VAMultiple Positions Available1. Manage and execute entire projects or components of large projects from start to finish including data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights and recommendations.2. Oversee the development and implementation of data integration and analytic strategies to support population health initiatives.3. Leverage big data to explore and introduce areas of analytics and technologies.4. Analyze data to identify opportunities to impact populations.5. Perform advanced integrated comprehensive reporting, consultative, and analytical expertise to provide healthcare cost and utilization data and translate findings into actionable information for internal and external stakeholders.6. Oversee the collection of data, ensuring timelines are met, data is accurate and within established format.7. Act as a data and technical resource and escalation point for data issues, ensuring they are brought to resolution.8. Serve as the subject matter expert on health care benefits data modeling, system architecture, data governance, and business intelligence tools. #0000
US, TX, Dallas
Employer: Amazon.com Services LLCPosition: Data Scientist II (multiple positions available)Location: Dallas, TX Multiple Positions Available:1. Assist customers to deliver Machine Learning (ML) and Deep Learning (DL) projects from beginning to end, by aggregating data, exploring data, building and validating predictive models, and deploying completed models to deliver business impact to the organization;2. Apply understanding of the customer’s business need and guide them to a solution using AWS AI Services, AWS AI Platforms, AWS AI Frameworks, and AWS AI EC2 Instances;3. Use Deep Learning frameworks like MXNet, PyTorch, Caffe 2, Tensorflow, Theano, CNTK, and Keras to help our customers build DL models;4. Research, design, implement and evaluate novel computer vision algorithms and ML/DL algorithms;5. Work with data architects and engineers to analyze, extract, normalize, and label relevant data;6. Work with DevOps engineers to help customers operationalize models after they are built;7. Assist customers with identifying model drift and retraining models;8. Research and implement novel ML and DL approaches, including using FPGA;9. Develop computer vision and machine learning methods and algorithms to address real-world customer use-cases; and10. Design and run experiments, research new algorithms, and work closely with engineers to put algorithms and models into practice to help solve customers' most challenging problems.11. Approximately 15% domestic and international travel required.12. Telecommuting benefits are available.#0000