Why ambient computing needs self-learning

To become the interface for the Internet of things, conversational agents will need to learn on their own. Alexa has already started down that path.

Today at the annual meeting of the ACM Special Interest Group on Information Retrieval (SIGIR), Ruhi Sarikaya, the director of applied science for Alexa AI, delivered a keynote address titled “Intelligent Conversational Agents for Ambient Computing”. This is an edited version of that talk.

For decades, the paradigm of personal computing was a desktop machine. Then came the laptop, and finally mobile devices so small we can hold them in our hands and carry them in our pockets, which felt revolutionary.

All these devices, however, tether you to a screen. For the most part, you need to physically touch them to use them, which does not seem natural or convenient in a number of situations.

So what comes next?

The most likely answer is the Internet of things (IOT) and other intelligent, connected systems and services. What will the interface with the IOT be? Will you need a separate app on your phone for each connected device? Or when you walk into a room, will you simply speak to the device you want to reconfigure?

At Alexa, we’re betting that conversational AI will be the interface for the IOT. And this will mean a shift in our understanding of what conversational AI is.

Related content
Alexa’s chief scientist on how customer-obsessed science is accelerating general intelligence.

In particular, the IOT creates new forms of context for conversational-AI models. By “context”, we mean the set of circumstances and facts that surround a particular event, situation, or entity, which an AI model can exploit to improve its performance.

For instance, context can help resolve ambiguities. Here are some examples of what we mean by context:

  • Device state: If the oven is on, then the question “What is the temperature?” is more likely to refer to oven temperature than it is in other contexts.
  • Device types: If the device has a screen, it’s more likely that “play Hunger Games” refers to the movie than if the device has no screen.
  • Physical/digital activity: If a customer listens only to jazz, “Play music” should elicit a different response than if the customer listens only to hard rock; if the customer always makes coffee after the alarm goes off, that should influence the interpretation of a command like “start brewing”. 

The same type of reasoning applies to other contextual signals, such as time of day, device and user location, environmental changes as measured by sensors, and so on.

Training a conversational agent to factor in so many contextual signals is much more complicated than training it to recognize, say, song titles. Ideally, we would have a substantial number of training examples for every combination of customer, device, and context, but that’s obviously not practical. So how do we scale the training of contextually aware conversational agents?

Self-learning

The answer is self-learning. By self-learning, we mean a framework that enables an autonomous agent to learn from customer-system interactions, system signals, and predictive models.

Related content
Self-learning system uses customers’ rephrased requests as implicit error signals.

Customer-system interactions can provide both implicit feedback and explicit feedback. Alexa already handles both. If a customer interrupts Alexa’s response to a request — a “barge-in”, as we call it — or rephrases the request, that’s implicit feedback. Aggregated across multiple customers, barge-ins and rephrases indicate requests that aren’t being processed correctly.

Customers can also explicitly teach Alexa how to handle particular requests. This can be customer-initiated, as when customers use Alexa’s interactive-teaching capability, or Alexa-initiated, as when Alexa asks, “Did I answer your question?”

The great advantages of self-learning are that it doesn’t require data annotation, so it scales better while protecting customer privacy; it minimizes the time and cost of updating models; and it relies on high-value training data, because customers know best what they mean and want.

We have a few programs targeting different applications of self-learning, including automated generation of ground truth annotations, defect reduction, teachable AI, and determining root causes of failure.

Automated ground truth generation

At Alexa, we have launched a multiyear initiative to shift Alexa’s ML model development from manual-annotation-based to primarily self-learning-based. The challenge we face is to convert customer feedback, which is often binary or low dimensional (yes/no, defect/non-defect), into high-dimensional synthetic labels such as transcriptions and named-entity annotations.

Our approach has two major components: (1) an exploration module and (2) a feedback collection and label generation module. Here’s the architecture of the label generation model:

Label generation model.png
The ground truth generation model converts customer feedback, which is often binary or low dimensional, into high-dimensional synthetic labels.

The input features include the dialogue context (user utterance, Alexa response, previous turns, next turns), categorical features (domain, intent, dialogue status), numerical features (number of tokens, speech recognition and natural-language-understanding confidence scores), and raw audio data. The model consists of a turn-level encoder and a dialogue-level Transformer-based encoder. The turn-level textual encoder is a pretrained RoBERTa model.

We pretrain the model in a self-supervised way, using synthetic contrastive data. For instance, we randomly swap answers from different dialogues as defect samples. After pretraining, the model is trained in a supervised fashion on multiple tasks, using explicit and implicit user feedback.

Related content
Prime Video beats previous state of the art on the MovieNet dataset by 13% with a new model that is 90% smaller and 84% faster.

We evaluate the label generation model on several tasks. Two of these are goal segmentation, or determining which utterances in a dialogue are relevant to the accomplishment of a particular task, and goal evaluation, or determining whether the goal was successfully achieved.

As a baseline for these tasks, we used a set of annotations each of which was produced in a single pass by a single annotator. Our ground truth, for both the model and the baseline, was a set of annotations each of which had been corroborated by three different human annotators.

Our model’s outputs on both tasks were comparable to the human annotators’: our model was slightly more accurate but had a slightly lower F1 score. We can set a higher threshold, exceeding human performance significantly, and still achieve much larger annotation throughput than manual labeling does.

In addition to the goal-related labels, our model also labels utterances according to intent (the action the customer wants performed, such as playing music), slots (the data types the intent operates on, such as song names), and slot-values (the particular values of the slots, such as “Purple Haze”).

As a baseline for slot and intent labeling, we used a RoBERTa-based model that didn’t incorporate contextual information, and we found that our model outperformed it across the board.

Self-learning-based defect reduction

Three years ago, we deployed a self-learning mechanism that automatically corrects defects in Alexa’s interpretation of customer utterances based purely on implicit signals.

Related content
More-autonomous machine learning systems will make Alexa more self-aware, self-learning, and self-service.

This mechanism — unlike the ground truth generation module — doesn’t involve retraining Alexa’s natural-language-understanding models. Instead, it overwrites those models’ outputs, to improve their accuracy.

There are two ways to provide rewrites:

  • Precomputed rewriting produces request-rewrite pairs offline and loads them at run time. This process has no latency constraints, so it can use complex models, and during training, it can take advantage of rich offline signals such as user follow-up turns, user rephrases, Alexa responses, and video click-through rate. Its drawback is that at run time, it can’t take advantage of contextual information.
  • Online rewriting leverages contextual information (e.g., previous dialogue turns, dialogue location, times) at run time to produce rewrites. It enables rewriting of long-tail-defect queries, but it must meet latency constraints, and its training can’t take advantage of offline information.

Precomputed rewriting

We’ve experimented with two different approaches to precomputing rewrite pairs, one that uses pretrained BERT models and one that uses absorbing Markov chains.

This slide illustrates the BERT-based approach:

Rephrase detection.png
The contextual rephrase detection model casts rephrase detection as a span prediction problem, predicting the probability that each token is the start or end of a span.

At left is a sample dialogue in which an Alexa customer rephrases a query twice. The second rephrase elicits the correct response, so it’s a good candidate for a rewrite of the initial query. The final query is not a rephrase, and the rephrase extraction model must learn to differentiate rephrases from unrelated queries.

We cast rephrase detection as a span prediction problem, where we predict the probability that each token is the start or end of a span, using the embedding output of the final BERT layer. We also use timestamping to threshold the number of subsequent customer requests that count as rephrase candidates.

We use absorbing Markov chains to extract rewrite pairs from rephrase candidates that recur across a wide range of interactions.

Absorbing Markov chains.png
The probabilities of sequences of rephrases across customer interactions can be encoded in absorbing Markov chains.

A Markov chain models a dynamic system as a sequence of states, each of which has a certain probability of transitioning to any of several other states. An absorbing Markov chain is one that has a final state, with zero probability of transitioning to any other, which is accessible from any other system state.

We use absorbing Markov chains to encode the probabilities that any given rephrase of the same query will follow any other across a range of interactions. Solving the Markov chain gives us the rewrite for any given request that is most likely to be successful.

Online rewriting

Instead of relying on customers’ own rephrasings, the online rewriting mechanism uses retrieval and ranking models to generate rewrites.

Rewrites are based on customers’ habitual usage patterns with the agent. In the example below, for instance, based on the customer’s interaction history, we rewrite the query “What’s the weather in Wilkerson?” as “What’s the weather in Wilkerson, California?” — even though “What’s the weather in Wilkerson, Washington?” is the more common query across interactions.

The model does, however, include a global layer as well as a personal layer, to prevent overindexing on personalized cases (for instance, inferring that a customer who likes the Selena Gomez song “We Don’t Talk Anymore” will also like the song from Encanto “We Don’t Talk about Bruno”) and to enable the model to provide rewrites when the customer’s interaction history provides little or no guidance.

Online rewriting.png
The online rewriting model’s personal layer factors in customer context, while the global prevents overindexing on personalized cases.

The personalized workstream and the global workstream include both retrieval and ranking models:

  • The retrieval model uses a dense-passage-retrieval (DPR) model, which maps texts into a low-dimensional, continuous space, to extract embeddings for both the index and the query. Then it uses some similarity measurement to decide the rewrite score.
  • The ranking model combines fuzzy match (e.g., through a single-encoder structure) with various metadata to make a reranking decision.

We’ve deployed all three of these self-learning approaches — BERT- and Markov-chain-based offline rewriting and online rewriting — and all have made a significant difference in the quality of Alexa customers’ experience.

Related content
With a new machine learning system, Alexa can infer that an initial question implies a subsequent request.

In experiments, we compared the BERT-based offline approach to four baseline models on six machine-annotated and two human-annotated datasets, and it outperformed all baselines across the board, with improvements of as much as 16% to 17% on some of the machine-annotated datasets, while almost doubling the improvement on the human-annotated ones.

The offline approach that uses absorbing Markov chains has rewritten tens of millions of outputs from Alexa’s automatic-speech-recognition models, and it has a win-loss ratio of 8.5:1, meaning that for every one incorrect rewrite, it has 8.5 correct ones.

And finally, in a series of A/B tests of the online rewrite engine, we found that the global rewrite alone reduced the defect rate by 13%, while the addition of the personal rewrite model reduced defects by a further 4%.

Teachable AI

Query rewrites depend on implicit signals from customers, but customers can also explicitly teach Alexa their personal preferences, such as “I’m a Warriors fan” or “I like Italian restaurants.”

Related content
Deep learning and reasoning enable customers to explicitly teach Alexa how to interpret their novel requests.

Alexa’s teachable-AI mechanism can be either customer-initiated or Alexa-initiated. Alexa proactively senses teachable moments — as when, for instance, a customer repeats the same request multiple times or declares Alexa’s response unsatisfactory. And a customer can initiate a guided Q&A with Alexa with a simple cue like “Alexa, learn my preferences.”

In either case, Alexa can use the customer’s preferences to guide the very next customer interaction.

Failure point isolation

Besides recovering from defects through query rewriting, we also want to understand the root cause of failures for defects.

Dialogue assistants like Alexa depend on multiple models that process customer requests in stages. First, a voice trigger (or “wake word”) model determines whether the user is speaking to the assistant. Then an automatic-speech-recognition (ASR) module converts the audio stream into text. This text passes to a natural-language-understanding (NLU) component that determines the user request. An entity recognition model recognizes and resolves entities, and the assistant generates the best possible response using several subsystems. Finally, the text-to-speech (TTS) model renders the response into human-like speech.

For Alexa, part of self-learning is automatically determining, when a failure occurs, which component has failed. An error in an upstream component can propagate through the pipeline, in which case multiple components may fail. Thus, we focus on the first component that fails in a way that is irrecoverable, which we call the “failure point”.

In our initial work on failure point isolation, we recognize five error points as well as a “correct” class (meaning no component failed). The possible failure points are false wake (errors in voice trigger); ASR errors; NLU errors (for example, incorrectly routing “play Harry Potter” to video instead of audiobook); entity resolution and recognition errors; and result errors (for example, playing the wrong Harry Potter movie).

To better illustrate failure point problem, let's examine a multiturn dialogue:

Failure point isolation slide.png
Failure point isolation identifies the earliest point in the processing pipeline at which a failure occurs, and errors that the conversational agent recovers from are not classified as failures.

In the first turn, the customer is trying to open a garage door, and the conversational assistant recognizes the speech incorrectly. The entity resolution model doesn't recover from this error and also fails. Finally, the dialogue assistant fails to perform the correct action. In this case, ASR is the failure point, despite the other models’ subsequent failure.

On the second turn, the customer repeats the request. ASR makes a small error by not recognizing the article "the" in the speech, but the dialogue assistant takes the correct action. We would mark this turn as correct, as the ASR error didn't lead to downstream failure.

The last turn highlights one of the limitations of our method. The user is asking the dialogue assistant to make a sandwich, which dialogue assistants cannot do — yet. All models have worked correctly, but the user is not satisfied. In our work, we do not consider such turns defective.

On average, our best failure point isolation model achieves close to human performance across different categories (>92% vs human). This model uses extended dialogue context, features derived from logs of the assistants (e.g., ASR confidence), and traces of decision-making components (e.g., NLU modules). We outperform humans in result and correct-class detection. ASR, entity resolution, and NLU are in the 90-95% range.

The day when computing fades into the environment, and we walk from room to room casually instructing embedded computing devices how we want them to behave, may still lie in the future. But at Alexa AI, we’re already a long way down that path. And we’re moving farther forward every day.

Related content

GB, London
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to support the development of GenAI algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in GenAI. About the team The AGI team has a mission to push the envelope with GenAI in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers on a mission to develop a fault-tolerant quantum computer. Throughout your internship journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of Quantum Computing and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Quantum Research Science and Applied Science Internships in Santa Clara, CA and Pasadena, CA. We are particularly interested in candidates with expertise in any of the following areas: superconducting qubits, cavity/circuit QED, quantum optics, open quantum systems, superconductivity, electromagnetic simulations of superconducting circuits, microwave engineering, benchmarking, quantum error correction, etc. In this role, you will work alongside global experts to develop and implement novel, scalable solutions that advance the state-of-the-art in the areas of quantum computing. You will tackle challenging, groundbreaking research problems, work with leading edge technology, focus on highly targeted customer use-cases, and launch products that solve problems for Amazon customers. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation with single and dual arm manipulation - Leverage simulation and real-world data collection to create large datasets for model development - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques - Collaborate effectively with multi-disciplinary teams to co-design hardware and algorithms for dexterous manipulation
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. - We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant but at the same time impact resistant - Can enable power grasps with the same reliability as fine dexterity and nonprehensile manipulation - Can naturally cope with the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement novel highly dexterous and reliable robotic dexterous hand morphologies - Develop parallel paths for rapid finger design and prototyping combining different actuation and sensing technologies as well as different finger morphologies - Develop new testing and validation strategies to support fast continuous integration and modularity - Build and test full hand prototypes to validate the performance of the solution - Create hybrid approaches combining different actuation technologies, under-actuation, active and passive compliance - Hand integration into rest of the embodiment - Partner with cross-functional teams to rapidly create new concepts and prototypes - Work with Amazon's robotics engineering and operations teams to grasp their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
GB, London
Are you a MS or PhD student interested in a 2026 Research Science Internship, where you would be using your experience to initiate the design, development, execution and implementation of scientific research projects? If so, we want to hear from you! Is your research in machine learning, deep learning, automated reasoning, speech, robotics, computer vision, optimization, or quantum computing? If so, we want to hear from you! We are looking for motivated students with research interests in a variety of science domains to build state-of-the-art solutions for never before solved problems You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Research Science Intern, you will have following key job responsibilities; • Work closely with scientists and engineering teams (position-dependent) • Work on an interdisciplinary team on customer-obsessed research • Design new algorithms, models, or other technical solutions • Experience Amazon's customer-focused culture A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain, UAE, and UK). Please note these are not remote internships.
IT, Turin
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, WA, Redmond
Amazon Leo is Amazon’s low Earth orbit satellite broadband network. Its mission is to deliver fast, reliable internet to customers and communities around the world, and we’ve designed the system with the capacity, flexibility, and performance to serve a wide range of customers, from individual households to schools, hospitals, businesses, government agencies, and other organizations operating in locations without reliable connectivity. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. We are searching for a senior manager with expertise in the spaceflight aerospace engineering domain of Flight Dynamics, including Mission Design of LEO Constellations, Trajectory, Maneuver Planning, and Navigation. This role will be responsible for the research and development of core spaceflight algorithms that enable the Amazon Leo mission. This role will manage the team responsible for designing and developing flight dynamics innovations for evolving constellation mission needs. Key job responsibilities This position requires expertise in simulation and analysis of astrodynamics models and spaceflight trajectories. This position requires demonstrated achievement in managing technology research portfolios. A strong candidate will have demonstrated achievement in managing spaceflight engineering Guidance, Navigation, and Control teams for full mission lifecycle including design, prototype development and deployment, and operations. Working with the Leo Flight Dynamics Research Science team, you will manage, guide, and direct staff to: • Implement high fidelity modeling techniques for analysis and simulation of large constellation concepts. • Develop algorithms for station-keeping and constellation maintenance. • Perform analysis in support of multi-disciplinary trades within the Amazon Leo team. • Formulate solutions to address collision avoidance and conjunction assessment challenges. • Develop the Leo ground system’s evolving Flight Dynamics System functional requirements. • Work closely with GNC engineers to manage on-orbit performance and develop flight dynamics operations processes About the team The Flight Dynamics Research Science team is staffed with subject matter experts of various areas within the Flight Dynamics domain. It also includes a growing Position, Navigation, and Timing (PNT) team.
LU, Luxembourg
Are you a MS student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for a customer obsessed Data Scientist Intern who can innovate in a business environment, building and deploying machine learning models to drive step-change innovation and scale it to the EU/worldwide. If this describes you, come and join our Data Science teams at Amazon for an exciting internship opportunity. If you are insatiably curious and always want to learn more, then you’ve come to the right place. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Data Science Intern, you will have following key job responsibilities: • Work closely with scientists and engineers to architect and develop new algorithms to implement scientific solutions for Amazon problems. • Work on an interdisciplinary team on customer-obsessed research • Experience Amazon's customer-focused culture • Create and Deliver Machine Learning projects that can be quickly applied starting locally and scaled to EU/worldwide • Build and deploy Machine Learning models using large data-sets and cloud technology. • Create and share with audiences of varying levels technical papers and presentations • Define metrics and design algorithms to estimate customer satisfaction and engagement A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain and the UK). Please note these are not remote internships.