Why ambient computing needs self-learning

To become the interface for the Internet of things, conversational agents will need to learn on their own. Alexa has already started down that path.

Today at the annual meeting of the ACM Special Interest Group on Information Retrieval (SIGIR), Ruhi Sarikaya, the director of applied science for Alexa AI, delivered a keynote address titled “Intelligent Conversational Agents for Ambient Computing”. This is an edited version of that talk.

For decades, the paradigm of personal computing was a desktop machine. Then came the laptop, and finally mobile devices so small we can hold them in our hands and carry them in our pockets, which felt revolutionary.

All these devices, however, tether you to a screen. For the most part, you need to physically touch them to use them, which does not seem natural or convenient in a number of situations.

So what comes next?

The most likely answer is the Internet of things (IOT) and other intelligent, connected systems and services. What will the interface with the IOT be? Will you need a separate app on your phone for each connected device? Or when you walk into a room, will you simply speak to the device you want to reconfigure?

At Alexa, we’re betting that conversational AI will be the interface for the IOT. And this will mean a shift in our understanding of what conversational AI is.

Related content
Alexa’s chief scientist on how customer-obsessed science is accelerating general intelligence.

In particular, the IOT creates new forms of context for conversational-AI models. By “context”, we mean the set of circumstances and facts that surround a particular event, situation, or entity, which an AI model can exploit to improve its performance.

For instance, context can help resolve ambiguities. Here are some examples of what we mean by context:

  • Device state: If the oven is on, then the question “What is the temperature?” is more likely to refer to oven temperature than it is in other contexts.
  • Device types: If the device has a screen, it’s more likely that “play Hunger Games” refers to the movie than if the device has no screen.
  • Physical/digital activity: If a customer listens only to jazz, “Play music” should elicit a different response than if the customer listens only to hard rock; if the customer always makes coffee after the alarm goes off, that should influence the interpretation of a command like “start brewing”. 

The same type of reasoning applies to other contextual signals, such as time of day, device and user location, environmental changes as measured by sensors, and so on.

Training a conversational agent to factor in so many contextual signals is much more complicated than training it to recognize, say, song titles. Ideally, we would have a substantial number of training examples for every combination of customer, device, and context, but that’s obviously not practical. So how do we scale the training of contextually aware conversational agents?

Self-learning

The answer is self-learning. By self-learning, we mean a framework that enables an autonomous agent to learn from customer-system interactions, system signals, and predictive models.

Related content
Self-learning system uses customers’ rephrased requests as implicit error signals.

Customer-system interactions can provide both implicit feedback and explicit feedback. Alexa already handles both. If a customer interrupts Alexa’s response to a request — a “barge-in”, as we call it — or rephrases the request, that’s implicit feedback. Aggregated across multiple customers, barge-ins and rephrases indicate requests that aren’t being processed correctly.

Customers can also explicitly teach Alexa how to handle particular requests. This can be customer-initiated, as when customers use Alexa’s interactive-teaching capability, or Alexa-initiated, as when Alexa asks, “Did I answer your question?”

The great advantages of self-learning are that it doesn’t require data annotation, so it scales better while protecting customer privacy; it minimizes the time and cost of updating models; and it relies on high-value training data, because customers know best what they mean and want.

We have a few programs targeting different applications of self-learning, including automated generation of ground truth annotations, defect reduction, teachable AI, and determining root causes of failure.

Automated ground truth generation

At Alexa, we have launched a multiyear initiative to shift Alexa’s ML model development from manual-annotation-based to primarily self-learning-based. The challenge we face is to convert customer feedback, which is often binary or low dimensional (yes/no, defect/non-defect), into high-dimensional synthetic labels such as transcriptions and named-entity annotations.

Our approach has two major components: (1) an exploration module and (2) a feedback collection and label generation module. Here’s the architecture of the label generation model:

Label generation model.png
The ground truth generation model converts customer feedback, which is often binary or low dimensional, into high-dimensional synthetic labels.

The input features include the dialogue context (user utterance, Alexa response, previous turns, next turns), categorical features (domain, intent, dialogue status), numerical features (number of tokens, speech recognition and natural-language-understanding confidence scores), and raw audio data. The model consists of a turn-level encoder and a dialogue-level Transformer-based encoder. The turn-level textual encoder is a pretrained RoBERTa model.

We pretrain the model in a self-supervised way, using synthetic contrastive data. For instance, we randomly swap answers from different dialogues as defect samples. After pretraining, the model is trained in a supervised fashion on multiple tasks, using explicit and implicit user feedback.

Related content
Prime Video beats previous state of the art on the MovieNet dataset by 13% with a new model that is 90% smaller and 84% faster.

We evaluate the label generation model on several tasks. Two of these are goal segmentation, or determining which utterances in a dialogue are relevant to the accomplishment of a particular task, and goal evaluation, or determining whether the goal was successfully achieved.

As a baseline for these tasks, we used a set of annotations each of which was produced in a single pass by a single annotator. Our ground truth, for both the model and the baseline, was a set of annotations each of which had been corroborated by three different human annotators.

Our model’s outputs on both tasks were comparable to the human annotators’: our model was slightly more accurate but had a slightly lower F1 score. We can set a higher threshold, exceeding human performance significantly, and still achieve much larger annotation throughput than manual labeling does.

In addition to the goal-related labels, our model also labels utterances according to intent (the action the customer wants performed, such as playing music), slots (the data types the intent operates on, such as song names), and slot-values (the particular values of the slots, such as “Purple Haze”).

As a baseline for slot and intent labeling, we used a RoBERTa-based model that didn’t incorporate contextual information, and we found that our model outperformed it across the board.

Self-learning-based defect reduction

Three years ago, we deployed a self-learning mechanism that automatically corrects defects in Alexa’s interpretation of customer utterances based purely on implicit signals.

Related content
More-autonomous machine learning systems will make Alexa more self-aware, self-learning, and self-service.

This mechanism — unlike the ground truth generation module — doesn’t involve retraining Alexa’s natural-language-understanding models. Instead, it overwrites those models’ outputs, to improve their accuracy.

There are two ways to provide rewrites:

  • Precomputed rewriting produces request-rewrite pairs offline and loads them at run time. This process has no latency constraints, so it can use complex models, and during training, it can take advantage of rich offline signals such as user follow-up turns, user rephrases, Alexa responses, and video click-through rate. Its drawback is that at run time, it can’t take advantage of contextual information.
  • Online rewriting leverages contextual information (e.g., previous dialogue turns, dialogue location, times) at run time to produce rewrites. It enables rewriting of long-tail-defect queries, but it must meet latency constraints, and its training can’t take advantage of offline information.

Precomputed rewriting

We’ve experimented with two different approaches to precomputing rewrite pairs, one that uses pretrained BERT models and one that uses absorbing Markov chains.

This slide illustrates the BERT-based approach:

Rephrase detection.png
The contextual rephrase detection model casts rephrase detection as a span prediction problem, predicting the probability that each token is the start or end of a span.

At left is a sample dialogue in which an Alexa customer rephrases a query twice. The second rephrase elicits the correct response, so it’s a good candidate for a rewrite of the initial query. The final query is not a rephrase, and the rephrase extraction model must learn to differentiate rephrases from unrelated queries.

We cast rephrase detection as a span prediction problem, where we predict the probability that each token is the start or end of a span, using the embedding output of the final BERT layer. We also use timestamping to threshold the number of subsequent customer requests that count as rephrase candidates.

We use absorbing Markov chains to extract rewrite pairs from rephrase candidates that recur across a wide range of interactions.

Absorbing Markov chains.png
The probabilities of sequences of rephrases across customer interactions can be encoded in absorbing Markov chains.

A Markov chain models a dynamic system as a sequence of states, each of which has a certain probability of transitioning to any of several other states. An absorbing Markov chain is one that has a final state, with zero probability of transitioning to any other, which is accessible from any other system state.

We use absorbing Markov chains to encode the probabilities that any given rephrase of the same query will follow any other across a range of interactions. Solving the Markov chain gives us the rewrite for any given request that is most likely to be successful.

Online rewriting

Instead of relying on customers’ own rephrasings, the online rewriting mechanism uses retrieval and ranking models to generate rewrites.

Rewrites are based on customers’ habitual usage patterns with the agent. In the example below, for instance, based on the customer’s interaction history, we rewrite the query “What’s the weather in Wilkerson?” as “What’s the weather in Wilkerson, California?” — even though “What’s the weather in Wilkerson, Washington?” is the more common query across interactions.

The model does, however, include a global layer as well as a personal layer, to prevent overindexing on personalized cases (for instance, inferring that a customer who likes the Selena Gomez song “We Don’t Talk Anymore” will also like the song from Encanto “We Don’t Talk about Bruno”) and to enable the model to provide rewrites when the customer’s interaction history provides little or no guidance.

Online rewriting.png
The online rewriting model’s personal layer factors in customer context, while the global prevents overindexing on personalized cases.

The personalized workstream and the global workstream include both retrieval and ranking models:

  • The retrieval model uses a dense-passage-retrieval (DPR) model, which maps texts into a low-dimensional, continuous space, to extract embeddings for both the index and the query. Then it uses some similarity measurement to decide the rewrite score.
  • The ranking model combines fuzzy match (e.g., through a single-encoder structure) with various metadata to make a reranking decision.

We’ve deployed all three of these self-learning approaches — BERT- and Markov-chain-based offline rewriting and online rewriting — and all have made a significant difference in the quality of Alexa customers’ experience.

Related content
With a new machine learning system, Alexa can infer that an initial question implies a subsequent request.

In experiments, we compared the BERT-based offline approach to four baseline models on six machine-annotated and two human-annotated datasets, and it outperformed all baselines across the board, with improvements of as much as 16% to 17% on some of the machine-annotated datasets, while almost doubling the improvement on the human-annotated ones.

The offline approach that uses absorbing Markov chains has rewritten tens of millions of outputs from Alexa’s automatic-speech-recognition models, and it has a win-loss ratio of 8.5:1, meaning that for every one incorrect rewrite, it has 8.5 correct ones.

And finally, in a series of A/B tests of the online rewrite engine, we found that the global rewrite alone reduced the defect rate by 13%, while the addition of the personal rewrite model reduced defects by a further 4%.

Teachable AI

Query rewrites depend on implicit signals from customers, but customers can also explicitly teach Alexa their personal preferences, such as “I’m a Warriors fan” or “I like Italian restaurants.”

Related content
Deep learning and reasoning enable customers to explicitly teach Alexa how to interpret their novel requests.

Alexa’s teachable-AI mechanism can be either customer-initiated or Alexa-initiated. Alexa proactively senses teachable moments — as when, for instance, a customer repeats the same request multiple times or declares Alexa’s response unsatisfactory. And a customer can initiate a guided Q&A with Alexa with a simple cue like “Alexa, learn my preferences.”

In either case, Alexa can use the customer’s preferences to guide the very next customer interaction.

Failure point isolation

Besides recovering from defects through query rewriting, we also want to understand the root cause of failures for defects.

Dialogue assistants like Alexa depend on multiple models that process customer requests in stages. First, a voice trigger (or “wake word”) model determines whether the user is speaking to the assistant. Then an automatic-speech-recognition (ASR) module converts the audio stream into text. This text passes to a natural-language-understanding (NLU) component that determines the user request. An entity recognition model recognizes and resolves entities, and the assistant generates the best possible response using several subsystems. Finally, the text-to-speech (TTS) model renders the response into human-like speech.

For Alexa, part of self-learning is automatically determining, when a failure occurs, which component has failed. An error in an upstream component can propagate through the pipeline, in which case multiple components may fail. Thus, we focus on the first component that fails in a way that is irrecoverable, which we call the “failure point”.

In our initial work on failure point isolation, we recognize five error points as well as a “correct” class (meaning no component failed). The possible failure points are false wake (errors in voice trigger); ASR errors; NLU errors (for example, incorrectly routing “play Harry Potter” to video instead of audiobook); entity resolution and recognition errors; and result errors (for example, playing the wrong Harry Potter movie).

To better illustrate failure point problem, let's examine a multiturn dialogue:

Failure point isolation slide.png
Failure point isolation identifies the earliest point in the processing pipeline at which a failure occurs, and errors that the conversational agent recovers from are not classified as failures.

In the first turn, the customer is trying to open a garage door, and the conversational assistant recognizes the speech incorrectly. The entity resolution model doesn't recover from this error and also fails. Finally, the dialogue assistant fails to perform the correct action. In this case, ASR is the failure point, despite the other models’ subsequent failure.

On the second turn, the customer repeats the request. ASR makes a small error by not recognizing the article "the" in the speech, but the dialogue assistant takes the correct action. We would mark this turn as correct, as the ASR error didn't lead to downstream failure.

The last turn highlights one of the limitations of our method. The user is asking the dialogue assistant to make a sandwich, which dialogue assistants cannot do — yet. All models have worked correctly, but the user is not satisfied. In our work, we do not consider such turns defective.

On average, our best failure point isolation model achieves close to human performance across different categories (>92% vs human). This model uses extended dialogue context, features derived from logs of the assistants (e.g., ASR confidence), and traces of decision-making components (e.g., NLU modules). We outperform humans in result and correct-class detection. ASR, entity resolution, and NLU are in the 90-95% range.

The day when computing fades into the environment, and we walk from room to room casually instructing embedded computing devices how we want them to behave, may still lie in the future. But at Alexa AI, we’re already a long way down that path. And we’re moving farther forward every day.

Related content

US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.
GB, London
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The AWS Industries Team at AWS helps AWS customers implement Generative AI solutions and realize transformational business opportunities for AWS customers in the most strategic industry verticals. This is a team of data scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and build applications to launch these solutions at scale. The AWS Industries team provides guidance and implements best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. In this Data Scientist role you will be capable of using GenAI and other techniques to design, evangelize, and implement and scale cutting-edge solutions for never-before-solved problems. Key job responsibilities - Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms and build ML systems to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Seattle
We’re working on the future. If you are seeking an iterative fast-paced environment where you can drive innovation, apply state-of-the-art technologies to solve large-scale real world delivery challenges, and provide visible benefit to end-users, this is your opportunity. Come work on the Amazon Prime Air Team! We are seeking a highly skilled weather scientist to help invent and develop new models and strategies to support Prime Air’s drone delivery program. In this role, you will develop, build, and implement novel weather solutions using your expertise in atmospheric science, data science, and software development. You will be supported by a team of world class software engineers, systems engineers, and other scientists. Your work will drive cross-functional decision-making through your excellent oral and written communication skills, define system architecture and requirements, enable the scaling of Prime Air’s operation, and produce innovative technological breakthroughs that unlock opportunities to meet our customers' evolving demands. About the team Prime air has ambitious goals to offer its service to an increasing number of customers. Enabling a lot of concurrent flights over many different locations is central to reaching more customers. To this end, the weather team is building algorithms, tools and services for the safe and efficient operation of prime air's autonomous drone fleet.
US, CA, Palo Alto
Amazon Sponsored Products is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of GenAI/LLM powered self-service performance advertising products that drive discovery and sales. Our products are strategically important to Amazon’s Selling Partners and key to driving their long-term growth. We deliver billions of ad impressions and clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving team with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. This role will be pivotal within the Autonomous Campaigns org of Sponsored Products Ads, where we're pioneering the development of AI-powered advertising innovations that will redefine the future of campaign management and optimization. As a Principal Applied Scientist, you will lead the charge in creating the next generation of self-operating, GenAI-driven advertising systems that will set a new standard for the industry. Our team is at the forefront of designing and implementing these transformative technologies, which will leverage advanced Large Language Models (LLMs) and sophisticated chain-of-thought reasoning to achieve true advertising autonomy. Your work will bring to life systems capable of deeply understanding the nuanced context of each product, market trends, and consumer behavior, making intelligent, real-time decisions that surpass human capabilities. By harnessing the power of these future-state GenAI systems, we will develop advertising solutions capable of autonomously selecting optimal keywords, dynamically adjusting bids based on complex market conditions, and optimizing product targeting across various Amazon platforms. Crucially, these systems will continuously analyze performance metrics and implement strategic pivots, all without requiring manual intervention from advertisers, allowing them to focus on their core business while our AI works tirelessly on their behalf. This is not simply about automating existing processes; your work will redefine what's possible in advertising. Our GenAI systems will employ multi-step reasoning, considering a vast array of factors, from seasonality and competitive landscape to macroeconomic trends, to make decisions that far exceed human speed and effectiveness. This autonomous, context-aware approach represents a paradigm shift in how advertising campaigns are conceived, executed, and optimized. As a Principal Applied Scientist, you will be at the forefront of this transformation, tackling complex challenges in natural language processing, reinforcement learning, and causal inference. Your pioneering efforts will directly shape the future of e-commerce advertising, with the potential to influence marketplace dynamics on a global scale. This is an unparalleled opportunity to push the boundaries of what's achievable in AI-driven advertising and leave an indelible mark on the industry. Key job responsibilities • Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business using GenAI, LLM, and ML solutions. • Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in AI/ML. • Design and lead organization-wide AI/ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our advertisers. • Work with our engineering partners and draw upon your experience to meet latency and other system constraints. • Identify untapped, high-risk technical and scientific directions, and devise new research directions that you will drive to completion and deliver. • Be responsible for communicating our Generative AI/ Traditional AI/ML innovations to the broader internal & external scientific community.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As a Data Scientist on this team you will: - Lead Data Science solutions from beginning to end. - Deliver with independence on challenging large-scale problems with complexity and ambiguity. - Write code (Python, R, Scala, SQL, etc.) to obtain, manipulate, and analyze data. - Build Machine Learning and statistical models to solve specific business problems. - Retrieve, synthesize, and present critical data in a format that is immediately useful to answering specific questions or improving system performance. - Analyze historical data to identify trends and support optimal decision making. - Apply statistical and machine learning knowledge to specific business problems and data. - Formalize assumptions about how our systems should work, create statistical definitions of outliers, and develop methods to systematically identify outliers. Work out why such examples are outliers and define if any actions needed. - Given anecdotes about anomalies or generate automatic scripts to define anomalies, deep dive to explain why they happen, and identify fixes. - Build decision-making models and propose effective solutions for the business problems you define. - Conduct written and verbal presentations to share insights to audiences of varying levels of technical sophistication. Why you will love this opportunity: Amazon has invested heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video ~ https://youtu.be/zD_6Lzw8raE
US, CO, Boulder
Do you want to lead the Ads industry and redefine how we measure the effectiveness of the WW Amazon Ads business? Are you passionate about causal inference, Deep Learning/DNN, raising the science bar, and connecting leading-edge science research to Amazon-scale implementation? If so, come join Amazon Ads to be an Applied Science leader within our Advertising Incrementality Measurement science team! Key job responsibilities As an Applied Science leader within the Advertising Incrementality Measurement (AIM) science team, you are responsible for defining and executing on key workstreams within our overall causal measurement science vision. In particular, you will lead the science development of our Deep Neural Net (DNN) ML model, a foundational ML model to understand the impact of individual ad touchpoints for billions of daily ad touchpoints. You will work on a team of Applied Scientists, Economists, and Data Scientists to work backwards from customer needs and translate product ideas into concrete science deliverables. You will be a thought leader for inventing scalable causal measurement solutions that support highly accurate and actionable causal insights--from defining and executing hundreds of thousands of RCTs, to developing an exciting science R&D agenda. You will solve hard problems, advance science at Amazon, and be a leading innovator in the causal measurement of advertising effectiveness. In this role, you will work with a team of applied scientists, economists, engineers, product managers, and UX designers to define and build the future of advertising causal measurement. You will be working with massive data, a dedicated engineering team, and industry-leading partner scientists. Your team’s work will help shape the future of Amazon Advertising.