How task decomposition and smaller LLMs can make AI more affordable

“Agentic workflows” that use multiple, fine-tuned smaller LLMs — rather than one large one — can improve efficiency.

The expanding use of generative-AI applications has increased the demand for accurate, cost-effective large language models (LLMs). LLMs’ costs vary significantly based on their size, typically measured by the number of parameters: switching to the next smaller size often results in a 70%–90% cost savings. However, simply using smaller, lighter-weight LLMs is not always a viable option due to their diminished capabilities compared to state-of-the-art "frontier LLMs."

Related content
Dependency graphs of business processes with constrained decoding can reduce API hallucinations and out-of-order executions.

While reduction in parameter size usually diminishes performance, evidence suggests that smaller LLMs, when specialized to perform tasks like question-answering or text summarization, can match the performance of larger, unmodified frontier LLMs on those same tasks. This opens the possibility of balancing cost and performance by breaking complex tasks into smaller, manageable subtasks. Such task decomposition enables the use of cost-effective, smaller, more-specialized task- or domain-adapted LLMs while providing control, increasing troubleshooting capability, and potentially reducing hallucinations.

However, this approach comes with trade-offs: while it can lead to significant cost savings, it also increases system complexity, potentially offsetting some of the initial benefits. This blog post explores the balance between cost, performance, and system complexity in task decomposition for LLMs.

As an example, we'll consider the case of using task decomposition to generate a personalized website, demonstrating potential cost savings and performance gains. However, we'll also highlight the potential pitfalls of overengineering, where excessive decomposition can lead to diminishing returns or even undermine the intended benefits.

I. Task decomposition

Ideally, a task would be decomposed into subtasks that are independent of each other. That allows for the creation of targeted prompts and contexts for each subtask, which makes troubleshooting easier by isolating failures to specific subtasks, rather than requiring analysis of a single, large, black-box process.

Related content
“Best-fit packing” adapts bin-packing to avoid unnecessary truncation of training documents, improving LLM performance across a wide range of tasks and reducing hallucination.

Sometimes, however, decomposition into independent subtasks isn’t possible. In those cases, prompt engineering or information retrieval may be necessary to ensure coherence between subtasks. However, overengineering should be avoided, as it can unnecessarily complicate workflows. It also runs the risk of sacrificing the novelty and contextual richness that LLMs can provide by capturing hidden relationships within the complete context of the original task.

But we’ll address these points later. First, let us provide an example where the task of personalized website generation is decomposed into an agentic workflow. The agents in an agentic workflow might be functional agents, which perform specific tasks (e.g., database query), or persona-based agents that mimic human roles in an organization (e.g., UX designer). In this post, I'll focus on the persona-based approach.

A simple example: Creating a personalized website

In our scenario, a business wants to create a website builder that generates tailored web experiences for individual visitors, without human supervision. Generative AI's creativity and ability to work under uncertainty make it suitable for this task. However, it is crucial to control the workflow, ensuring adherence to company policies, best practices, and design guidelines and managing cost and performance.

Generated web pages.png
Examples of web pages produced with generative AI.

This example is based on an agentic-workflow solution we published on the Amazon Web Services (AWS) Machine Learning Blog. For that solution, we divided the overall process into subtasks of a type ordinarily assigned to human agents, such as the personalizer (UX/UI designer/product manager), artist (visual-art creator), and website builder (front-end developer).

LLM decomposition.png
Generating a personalized website using a single large LLM (top) versus decomposing the task using smaller LLMs (bottom).

The personalizer agent aims to provide tailored experiences for website visitors by considering both their profiles and the company's policies, offerings, and design approaches. This is an average-sized text-to-text LLM with some reasoning skills. The agent also incorporates retrieval-augmented generation (RAG) to leverage vetted "company research".

Here’s a sample prompt for the personalizer:

You are an AI UI/UX designer tasked with creating a visually appealing website. Keep in mind the industry pain points [specify relevant pain points — RAG retrieved] to ensure a tailored experience for your customer [provide customer profile — JSON to natural language]. In your response, provide two sections: a website description for front-end developers and visual elements for the artists to follow. You should follow the design guidelines [include relevant design guidelines].

Related content
The fight against hallucination in retrieval-augmented-generation models starts with a method for accurately assessing it.

The artist agent's role is to reflect the visual-elements description in a well-defined image, whether it's a background image or an icon. Text-to-image prompts are more straightforward, starting with "Create an [extracted from personalizer response]."

The final agent is the front-end developer, whose sole responsibility is to create the front-end website artifacts. Here, you can include your design systems, code snippets, or other relevant information. In our simple case, we used this prompt:

You are an experienced front-end web developer tasked with creating an accessible, [specify the website's purpose] website while adhering to the specified guidelines [include relevant guidelines]. Carefully read the 'Website Description' [response from personalizer] provided by the UI/UX designer AI and generate the required HTML, CSS, and JavaScript code to build the described website. Ensure that [include specific requirements].

Here, you can continue the approach with a quality assurance (QA) agent or perform a final pass to see if there are discrepancies.

II. The big trade-off and the trap of overengineering

Task decomposition typically introduces additional components (new LLMs, orchestrators), increasing complexity and adding overhead. While smaller LLMs may offer faster performance, the increased complexity can lead to higher latency. Thus, task decomposition should be evaluated within the broader context.

Let's represent the task complexity as O(n), where n is the task size. With a single LLM, complexity grows linearly with task size. On the other hand, in parallel task decomposition with k subtasks and k smaller language models, the initial decomposition has a constant complexity — O(1). Each of the k language models processes its assigned subtask independently, with a complexity of O(n/k), assuming an even distribution.

Related content
Automated method that uses gradients to identify salient layers prevents regression on previously seen data.

After processing, the results from the k language models need coordination and integration. This step's complexity is O(km), where fully pairwise coordination gives m = 2, but in reality, 1 < m ≤ 2.

Therefore, the overall complexity of using multiple language models with task decomposition can be expressed as

Ok-LLMs = O(1) + k (O(n/k)) + O(km) O(n) + O(km)

While the single-language-model approach has a complexity of O(n), the multiple-language-model approach introduces an additional term, O(km), due to coordination and integration overhead, with 1 < m ≤ 2.

For small k values and pairwise connectivity, the O(km) overhead is negligible compared to O(n), indicating the potential benefit of the multiple-language-model approach. However, as k and m grow, the O(km) overhead becomes significant, potentially diminishing the gains of task decomposition. The optimal approach depends on the task, the available resources, and the trade-off between performance gains and coordination overhead. Improving technologies will reduce m, lowering the complexity of using multiple LLMs.

A mental model for cost and complexity

A helpful mental model for deciding whether to use task decomposition is to consider the estimated total cost of ownership (TCO) of your application. As your user base grows, infrastructure cost becomes dominant, and optimization methods like task decomposition can reduce TCO, despite the upfront engineering and science costs. For smaller applications, a simpler approach, such as selecting a large model, may be more appropriate and cost effective.

Mental model.png
A mental model to help decide the question of complexity versus simplicity.

Overengineering versus novelty and simplicity

Task decomposition and the creation of agentic workflows with smaller LLMs can come at the cost of the novelty and creativity that larger, more powerful models often display. By “manually” breaking tasks into subtasks and relying on specialized models, the overall system may fail to capture the serendipitous connections and novel insights that can emerge from a more holistic approach. Additionally, the process of crafting intricate prompts to fit specific subtasks can result in overly complex and convoluted prompts, which may contribute to reduced accuracy and increased hallucinations.

Task decomposition using multiple, smaller, fine-tuned LLMs offers a promising approach to improving cost efficiency for complex AI applications, potentially providing substantial infrastructure cost savings compared to using a single, large, frontier model. However, care must be taken to avoid overengineering, as excessive decomposition can increase complexity and coordination overhead to the point of diminishing returns. Striking the right balance between cost, performance, simplicity, and retaining AI creativity will be key to unlocking the full potential of this promising approach.

Related content

US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, WA, Seattle
The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team PXTCS is a multidisciplinary science team that develops innovative solutions to make Amazon Earth's Best Employer
US, NY, New York
The Ads Measurement Science team in the Measurement, Ad Tech, and Data Science (MADS) team of Amazon Ads serves a centralized role developing solutions for a multitude of performance measurement products. We create solutions which measure the comprehensive impact of advertiser's ad spend, including sales impacts both online and offline and across timescales, and provide actionable insights that enable our advertisers to optimize their media portfolios. We also own the science solutions for AI tools that unlock new insights and automate high-effort customer workflows, such as custom query and report generation based on natural language user requests. We leverage a host of scientific technologies to accomplish this mission, including Generative AI, classical ML, Causal Inference, Natural Language Processing, and Computer Vision. As an Applied Scientist on the team, you will lead measurement solutions end-to-end from inception to production. You will propose, design, analyze, and productionize models to provide novel measurement insights to our customers. Key job responsibilities - Leverage deep expertise in one or more scientific disciplines to invent solutions to ambiguous ads measurement problems - Disambiguate problems to propose clear evaluation frameworks and success criteria - Work autonomously and write high quality technical documents - Implement a significant portion of critical-path code, and partner with engineers to directly carry solutions into production - Partner closely with other scientists to deliver large, multi-faceted technical projects - Share and publish works with the broader scientific community through meetings and conferences - Communicate clearly to both technical and non-technical audiences - Contribute new ideas that shape the direction of the team's work - Mentor more junior scientists and participate in the hiring process About the team We are a team of scientists across Applied, Research, Data Science and Economist disciplines. You will work with colleagues with deep expertise in ML, NLP, CV, Gen AI, and Causal Inference with a diverse range of backgrounds. We partner closely with top-notch engineers, product managers, sales leaders, and other scientists with expertise in the ads industry and on building scalable modeling and software solutions.
US, WA, Bellevue
We are seeking a passionate, talented, and inventive individual to join the Applied AI team and help build industry-leading technologies that customers will love. This team offers a unique opportunity to make a significant impact on the customer experience and contribute to the design, architecture, and implementation of a highly innovative product. The mission of the Applied AI team is to enable organizations within Worldwide Amazon.com Stores to accelerate the adoption of AI technologies across various parts of our business. We are looking for a Senior Applied Science manager to join our Applied AI team and lead a cross-functional team of scientists and engineers who work on LLM-based solutions. On our team you will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. You will be responsible for leading a cross functional team of scientists and engineer and developing and maintaining the systems and tools that enable us to accelerate knowledge operations and work in the intersection of Science and Engineering. You will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. We are seeking an experienced Senior Applied Science Manager who combines superb technical, research, analytical and leadership capabilities with a demonstrated ability to get the right things done quickly and effectively. This person must be comfortable working with a team of top-notch developers and collaborating with our research teams. We’re looking for someone who innovates, and loves solving hard problems. You will be expected to have an established background in leading teams that build highly scalable systems and system design, have excellent project management skills, great communication skills, and a motivation to achieve results in a fast-paced environment. You should be somebody who enjoys working on complex problems, is customer-centric, and feels strongly about building good software as well as making that software achieve its operational goals. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. Your work will directly impact our customers in the form of novel products and services.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. The Sr. Applied Scientist will be in a team of exceptional scientists to develop novel algorithms and modeling techniques to advance the state of the art in Natural Language Processing (NLP) or Computer Vision (CV) related tasks. They will work in a hybrid, fast-paced organization where scientists, engineers, and product managers work together to build customer facing experiences. They will collaborate with and mentor other scientists to raise the bar of scientific research in Amazon. Their work will directly impact our customers in the form of products and services that make use of speech, language, and computer vision technologies. Key job responsibilities - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test scientific proposal/solutions to improve solutions powering customer experience on Alexa+. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. You work closely with partner teams across Alexa to deliver platform features that require cross-team leadership.
US, VA, Arlington
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Within ITA, the Global Hiring Science (GHS) team designs and implements innovative hiring solutions at scale. We work in a fast-paced, global environment where we use research to solve complex problems and build scalable hiring products that deliver measurable impact to our customers. We are seeking selection researchers with a strong foundation in hiring assessment development, legally-defensible validation approaches, research and experimental design, and data analysis. Preferred candidates will have experience across the full hiring assessment lifecycle, from solution design to content development and validation to impact analysis. We are looking for equal parts researcher and consultant, who is able to influence customers with insights derived from science and data. You will work closely with cross-functional teams to design new hiring solutions and experiment with measurement methods intended to precisely define exactly what job success looks like and how best to predict it. Key job responsibilities What you’ll do as a GHS Research Scientist: - Design large-scale personnel selection research that shapes Amazon’s global talent assessment practices across a variety of topics (e.g., assessment validation, measuring post-hire impact) - Partner with key stakeholders to create innovative solutions that blend scientific rigor with real-world business impact while navigating complex legal and professional standards - Apply advanced statistical techniques to analyze massive, diverse datasets to uncover insights that optimize our candidate evaluation processes and drive hiring excellence - Explore emerging technologies and innovative methodologies to enhance talent measurement while maintaining Amazon's commitment to scientific integrity - Translate complex research findings into compelling, actionable strategies that influence senior leader/business decisions and shape Amazon's talent acquisition roadmap - Write impactful documents that distill intricate scientific concepts into clear, persuasive communications for diverse audiences, from data scientists to business leaders - Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities A day in the life Imagine diving into challenges that impact millions of employees across Amazon's global operations. As a GHS Research Scientist, you'll tackle questions about hiring and organizational effectiveness on a global scale. Your day might begin with analyzing datasets to inform how we attract and select world-class talent. Throughout the day, you'll collaborate with peers in our research community, discussing different research methodologies and sharing innovative approaches to solving unique personnel challenges. This role offers a blend of focused analytical time and interacting with stakeholders across the globe.
US, VA, Arlington
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Within ITA, the Global Hiring Science (GHS) team designs and implements innovative hiring solutions at scale. We work in a fast-paced, global environment where we use research to solve complex problems and build scalable hiring products that deliver measurable impact to our customers. We are seeking selection researchers with a strong foundation in hiring assessment development, legally-defensible validation approaches, research and experimental design, and data analysis. Preferred candidates will have experience across the full hiring assessment lifecycle, from solution design to content development and validation to impact analysis. We are looking for equal parts researcher and consultant, who is able to influence customers with insights derived from science and data. You will work closely with cross-functional teams to design new hiring solutions and experiment with measurement methods intended to precisely define exactly what job success looks like and how best to predict it. Key job responsibilities What you’ll do as a GHS Research Scientist: • Design large-scale personnel selection research that shapes Amazon’s global talent assessment practices across a variety of topics (e.g., assessment validation, measuring post-hire impact) • Partner with key stakeholders to create innovative solutions that blend scientific rigor with real-world business impact while navigating complex legal and professional standards • Apply advanced statistical techniques to analyze massive, diverse datasets to uncover insights that optimize our candidate evaluation processes and drive hiring excellence • Explore emerging technologies and innovative methodologies to enhance talent measurement while maintaining Amazon's commitment to scientific integrity • Translate complex research findings into compelling, actionable strategies that influence senior leader/business decisions and shape Amazon's talent acquisition roadmap • Write impactful documents that distill intricate scientific concepts into clear, persuasive communications for diverse audiences, from data scientists to business leaders • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities A day in the life Imagine diving into challenges that impact millions of employees across Amazon's global operations. As a GHS Research Scientist, you'll tackle questions about hiring and organizational effectiveness on a global scale. Your day might begin with analyzing datasets to inform how we attract and select world-class talent. Throughout the day, you'll collaborate with peers in our research community, discussing different research methodologies and sharing innovative approaches to solving unique personnel challenges. This role offers a blend of focused analytical time and interacting with stakeholders across the globe.
US, WA, Redmond
Project Kuiper is Amazon’s low Earth orbit satellite broadband network. Its mission is to deliver fast, reliable internet to customers and communities around the world, and we’ve designed the system with the capacity, flexibility, and performance to serve a wide range of customers, from individual households to schools, hospitals, businesses, government agencies, and other organizations operating in locations without reliable connectivity. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. This position is part of the Satellite Attitude Determination and Control team. You will design and analyze the control system and algorithms, support development of our flight hardware and software, help integrate the satellite in our labs, participate in flight operations, and see a constellation of satellites flow through the production line in the building next door. Key job responsibilities - Design and analyze algorithms for estimation, flight control, and precise pointing using linear methods and simulation. - Develop and apply models and simulations, with various levels of fidelity, of the satellite and our constellation. - Component level environmental testing, functional and performance checkout, subsystem integration, satellite integration, and in space operations. - Manage the spacecraft constellation as it grows and evolves. - Continuously improve our ability to serve customers by maximizing payload operations time. - Develop autonomy for Fault Detection and Isolation on board the spacecraft. A day in the life This is an opportunity to play a significant role in the design of an entirely new satellite system with challenging performance requirements. The large, integrated constellation brings opportunities for advanced capabilities that need investigation and development. The constellation size also puts emphasis on engineering excellence so our tools and methods, from conceptualization through manufacturing and all phases of test, will be state of the art as will the satellite and supporting infrastructure on the ground. You will find that Kuiper's mission is compelling, so our program is staffed with some of the top engineers in the industry. Our daily collaboration with other teams on the program brings constant opportunity for discovery, learning, and growth. About the team Our team has lots of experience with various satellite systems and many other flight vehicles. We have bench strength in both our mission and core GNC disciplines. We design, prototype, test, iterate and learn together. Because GNC is central to safe flight, we tend to drive Concepts of Operation and many system level analyses.
US, CA, Santa Clara
Join the next science and engineering revolution at Amazon's Delivery Foundation Model team, where you'll work alongside world-class scientists and engineers to pioneer the next frontier of logistics through advanced AI and foundation models. We are seeking an exceptional Senior Applied Scientist to help develop innovative foundation models that enable delivery of billions of packages worldwide. In this role, you'll combine highly technical work with scientific leadership, ensuring the team delivers robust solutions for dynamic real-world environments. Your team will leverage Amazon's vast data and computational resources to tackle ambitious problems across a diverse set of Amazon delivery use cases. Key job responsibilities - Design and implement novel deep learning architectures combining a multitude of modalities, including image, video, and geospatial data. - Solve computational problems to train foundation models on vast amounts of Amazon data and infer at Amazon scale, taking advantage of latest developments in hardware and deep learning libraries. - As a foundation model developer, collaborate with multiple science and engineering teams to help build adaptations that power use cases across Amazon Last Mile deliveries, improving experience and safety of a delivery driver, an Amazon customer, and improving efficiency of Amazon delivery network. - Guide technical direction for specific research initiatives, ensuring robust performance in production environments. - Mentor fellow scientists while maintaining strong individual technical contributions. A day in the life As a member of the Delivery Foundation Model team, you’ll spend your day on the following: - Develop and implement novel foundation model architectures, working hands-on with data and our extensive training and evaluation infrastructure - Guide and support fellow scientists in solving complex technical challenges, from trajectory planning to efficient multi-task learning - Guide and support fellow engineers in building scalable and reusable infra to support model training, evaluation, and inference - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems- Drive technical discussions within the team and and key stakeholders - Conduct experiments and prototype new ideas - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team The Delivery Foundation Model team combines ambitious research vision with real-world impact. Our foundation models provide generative reasoning capabilities required to meet the demands of Amazon's global Last Mile delivery network. We leverage Amazon's unparalleled computational infrastructure and extensive datasets to deploy state-of-the-art foundation models to improve the safety, quality, and efficiency of Amazon deliveries. Our work spans the full spectrum of foundation model development, from multimodal training using images, videos, and sensor data, to sophisticated modeling strategies that can handle diverse real-world scenarios. We build everything end to end, from data preparation to model training and evaluation to inference, along with all the tooling needed to understand and analyze model performance. Join us if you're excited about pushing the boundaries of what's possible in logistics, working with world-class scientists and engineers, and seeing your innovations deployed at unprecedented scale.
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLE Employer: AMAZON.COM SERVICES LLC Offered Position: Economist III Job Location: Arlington, Virginia Job Number: AMZ9442487 Position Responsibilities: Develop advanced structural demand and econometric frameworks for products and services in Amazon Devices. Create and drive the scientific roadmap for the team, and influence partner science teams. Drive cross-functional collaboration with scientists, engineers, and business leaders to integrate economic insights into strategic decision-making processes and shape future initiatives. Communicate insights in writing and verbally, to senior leaders on Product and Finance teams within the company. Actively mentor junior scientists on advanced econometric techniques. Position Requirements: Ph.D. or foreign equivalent degree in Economics or a related field and three years of research or work experience in the job offered or a related occupation. Must have three years of research or work experience in the following skill(s): (1) working with and using econometrics (including with program evaluation, forecasting, time series, panel data, or high dimensional problems), economic theory, and quantitative methods; and (2) building statistical models using R, Python, STATA, or a related software. Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation. 40 hours / week, 8:00am-5:00pm, Salary Range $159,200/year to $215,300/year. Amazon is a total compensation company. Dependent on the position offered, equity, sign-on payments, and other forms of compensation may be provided as part of a total compensation package, in addition to a full range of medical, financial, and/or other benefits. For more information, visit: https://www.aboutamazon.com/workplace/employee-benefits.#0000