How task decomposition and smaller LLMs can make AI more affordable

“Agentic workflows” that use multiple, fine-tuned smaller LLMs — rather than one large one — can improve efficiency.

The expanding use of generative-AI applications has increased the demand for accurate, cost-effective large language models (LLMs). LLMs’ costs vary significantly based on their size, typically measured by the number of parameters: switching to the next smaller size often results in a 70%–90% cost savings. However, simply using smaller, lighter-weight LLMs is not always a viable option due to their diminished capabilities compared to state-of-the-art "frontier LLMs."

Related content
Dependency graphs of business processes with constrained decoding can reduce API hallucinations and out-of-order executions.

While reduction in parameter size usually diminishes performance, evidence suggests that smaller LLMs, when specialized to perform tasks like question-answering or text summarization, can match the performance of larger, unmodified frontier LLMs on those same tasks. This opens the possibility of balancing cost and performance by breaking complex tasks into smaller, manageable subtasks. Such task decomposition enables the use of cost-effective, smaller, more-specialized task- or domain-adapted LLMs while providing control, increasing troubleshooting capability, and potentially reducing hallucinations.

However, this approach comes with trade-offs: while it can lead to significant cost savings, it also increases system complexity, potentially offsetting some of the initial benefits. This blog post explores the balance between cost, performance, and system complexity in task decomposition for LLMs.

As an example, we'll consider the case of using task decomposition to generate a personalized website, demonstrating potential cost savings and performance gains. However, we'll also highlight the potential pitfalls of overengineering, where excessive decomposition can lead to diminishing returns or even undermine the intended benefits.

I. Task decomposition

Ideally, a task would be decomposed into subtasks that are independent of each other. That allows for the creation of targeted prompts and contexts for each subtask, which makes troubleshooting easier by isolating failures to specific subtasks, rather than requiring analysis of a single, large, black-box process.

Related content
“Best-fit packing” adapts bin-packing to avoid unnecessary truncation of training documents, improving LLM performance across a wide range of tasks and reducing hallucination.

Sometimes, however, decomposition into independent subtasks isn’t possible. In those cases, prompt engineering or information retrieval may be necessary to ensure coherence between subtasks. However, overengineering should be avoided, as it can unnecessarily complicate workflows. It also runs the risk of sacrificing the novelty and contextual richness that LLMs can provide by capturing hidden relationships within the complete context of the original task.

But we’ll address these points later. First, let us provide an example where the task of personalized website generation is decomposed into an agentic workflow. The agents in an agentic workflow might be functional agents, which perform specific tasks (e.g., database query), or persona-based agents that mimic human roles in an organization (e.g., UX designer). In this post, I'll focus on the persona-based approach.

A simple example: Creating a personalized website

In our scenario, a business wants to create a website builder that generates tailored web experiences for individual visitors, without human supervision. Generative AI's creativity and ability to work under uncertainty make it suitable for this task. However, it is crucial to control the workflow, ensuring adherence to company policies, best practices, and design guidelines and managing cost and performance.

Generated web pages.png
Examples of web pages produced with generative AI.

This example is based on an agentic-workflow solution we published on the Amazon Web Services (AWS) Machine Learning Blog. For that solution, we divided the overall process into subtasks of a type ordinarily assigned to human agents, such as the personalizer (UX/UI designer/product manager), artist (visual-art creator), and website builder (front-end developer).

LLM decomposition.png
Generating a personalized website using a single large LLM (top) versus decomposing the task using smaller LLMs (bottom).

The personalizer agent aims to provide tailored experiences for website visitors by considering both their profiles and the company's policies, offerings, and design approaches. This is an average-sized text-to-text LLM with some reasoning skills. The agent also incorporates retrieval-augmented generation (RAG) to leverage vetted "company research".

Here’s a sample prompt for the personalizer:

You are an AI UI/UX designer tasked with creating a visually appealing website. Keep in mind the industry pain points [specify relevant pain points — RAG retrieved] to ensure a tailored experience for your customer [provide customer profile — JSON to natural language]. In your response, provide two sections: a website description for front-end developers and visual elements for the artists to follow. You should follow the design guidelines [include relevant design guidelines].

Related content
The fight against hallucination in retrieval-augmented-generation models starts with a method for accurately assessing it.

The artist agent's role is to reflect the visual-elements description in a well-defined image, whether it's a background image or an icon. Text-to-image prompts are more straightforward, starting with "Create an [extracted from personalizer response]."

The final agent is the front-end developer, whose sole responsibility is to create the front-end website artifacts. Here, you can include your design systems, code snippets, or other relevant information. In our simple case, we used this prompt:

You are an experienced front-end web developer tasked with creating an accessible, [specify the website's purpose] website while adhering to the specified guidelines [include relevant guidelines]. Carefully read the 'Website Description' [response from personalizer] provided by the UI/UX designer AI and generate the required HTML, CSS, and JavaScript code to build the described website. Ensure that [include specific requirements].

Here, you can continue the approach with a quality assurance (QA) agent or perform a final pass to see if there are discrepancies.

II. The big trade-off and the trap of overengineering

Task decomposition typically introduces additional components (new LLMs, orchestrators), increasing complexity and adding overhead. While smaller LLMs may offer faster performance, the increased complexity can lead to higher latency. Thus, task decomposition should be evaluated within the broader context.

Let's represent the task complexity as O(n), where n is the task size. With a single LLM, complexity grows linearly with task size. On the other hand, in parallel task decomposition with k subtasks and k smaller language models, the initial decomposition has a constant complexity — O(1). Each of the k language models processes its assigned subtask independently, with a complexity of O(n/k), assuming an even distribution.

Related content
Automated method that uses gradients to identify salient layers prevents regression on previously seen data.

After processing, the results from the k language models need coordination and integration. This step's complexity is O(km), where fully pairwise coordination gives m = 2, but in reality, 1 < m ≤ 2.

Therefore, the overall complexity of using multiple language models with task decomposition can be expressed as

Ok-LLMs = O(1) + k (O(n/k)) + O(km) O(n) + O(km)

While the single-language-model approach has a complexity of O(n), the multiple-language-model approach introduces an additional term, O(km), due to coordination and integration overhead, with 1 < m ≤ 2.

For small k values and pairwise connectivity, the O(km) overhead is negligible compared to O(n), indicating the potential benefit of the multiple-language-model approach. However, as k and m grow, the O(km) overhead becomes significant, potentially diminishing the gains of task decomposition. The optimal approach depends on the task, the available resources, and the trade-off between performance gains and coordination overhead. Improving technologies will reduce m, lowering the complexity of using multiple LLMs.

A mental model for cost and complexity

A helpful mental model for deciding whether to use task decomposition is to consider the estimated total cost of ownership (TCO) of your application. As your user base grows, infrastructure cost becomes dominant, and optimization methods like task decomposition can reduce TCO, despite the upfront engineering and science costs. For smaller applications, a simpler approach, such as selecting a large model, may be more appropriate and cost effective.

Mental model.png
A mental model to help decide the question of complexity versus simplicity.

Overengineering versus novelty and simplicity

Task decomposition and the creation of agentic workflows with smaller LLMs can come at the cost of the novelty and creativity that larger, more powerful models often display. By “manually” breaking tasks into subtasks and relying on specialized models, the overall system may fail to capture the serendipitous connections and novel insights that can emerge from a more holistic approach. Additionally, the process of crafting intricate prompts to fit specific subtasks can result in overly complex and convoluted prompts, which may contribute to reduced accuracy and increased hallucinations.

Task decomposition using multiple, smaller, fine-tuned LLMs offers a promising approach to improving cost efficiency for complex AI applications, potentially providing substantial infrastructure cost savings compared to using a single, large, frontier model. However, care must be taken to avoid overengineering, as excessive decomposition can increase complexity and coordination overhead to the point of diminishing returns. Striking the right balance between cost, performance, simplicity, and retaining AI creativity will be key to unlocking the full potential of this promising approach.

Related content

US, WA, Seattle
Are you a brilliant mind seeking to push the boundaries of what's possible with intelligent robotics? Join our elite team of researchers and engineers - led by Pieter Abeel, Rocky Duan, and Peter Chen - at the forefront of applied science, where we're harnessing the latest advancements in large language models (LLMs) and generative AI to reshape the world of robotics and unlock new realms of innovation. As an Applied Science Intern, you'll have the unique opportunity to work alongside world-renowned experts, gaining invaluable hands-on experience with cutting-edge robotics technologies. You'll dive deep into exciting research projects at the intersection of AI and robotics. This internship is not just about executing tasks – it's about being a driving force behind groundbreaking discoveries. You'll collaborate with cross-functional teams, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning to tackle real-world problems and deliver impactful solutions. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied robotics and AI, where your contributions will shape the future of intelligent systems and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available in San Francisco, CA and Seattle, WA. The ideal candidate should possess: - Strong background in machine learning, deep learning, and/or robotics - Publication record at science conferences such as NeurIPS, CVPR, ICRA, RSS, CoRL, and ICLR. - Experience in areas such as multimodal LLMs, world models, image/video tokenization, real2Sim/Sim2real transfer, bimanual manipulation, open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, and end-to-end vision-language-action models. - Proficiency in Python, Experience with PyTorch or JAX - Excellent problem-solving skills, attention to detail, and the ability to work collaboratively in a team Join us at the forefront of applied robotics and AI, and be a part of the team that's reshaping the future of intelligent systems. Apply now and embark on an extraordinary journey of discovery and innovation! Key job responsibilities - Develop novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of LLMs and generative AI for robotics - Tackle challenging, groundbreaking research problems on production-scale data, with a focus on robotic perception, manipulation, and control - Collaborate with cross-functional teams to solve complex business problems, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning - Demonstrate the ability to work independently, thrive in a fast-paced, ever-changing environment, and communicate effectively with diverse stakeholders
US, WA, Seattle
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers like Pieter Abbeel, Rocky Duan, and Peter Chen to lead key initiatives in robotic intelligence. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as perception, manipulation, scence understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between cutting-edge research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives in robotics foundation models, driving breakthrough approaches through hands-on research and development in areas like open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Guide technical direction for specific research initiatives, ensuring robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with engineering teams to optimize and scale models for real-world applications - Influence technical decisions and implementation strategies within your area of focus A day in the life - Develop and implement novel foundation model architectures, working hands-on with our extensive compute infrastructure - Guide fellow scientists in solving complex technical challenges, from sim2real transfer to efficient multi-task learning - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster - Mentor team members while maintaining significant hands-on contribution to technical solutions Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team, led by pioneering AI researchers Pieter Abbeel, Rocky Duan, and Peter Chen, is building the future of intelligent robotics through groundbreaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
IL, Haifa
We’re looking for a Principal Applied Scientist in the Personalization team with experience in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problem Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, WA, Seattle
The Private Brands Discovery team designs innovative machine learning solutions to drive customer awareness for Amazon’s own brands and help customers discover products they love. Private Brands Discovery is an interdisciplinary team of Scientists and Engineers, who incubate and build disruptive solutions using cutting-edge technology to solve some of the toughest science problems at Amazon. To this end, the team employs methods from Natural Language Processing, Deep learning, multi-armed bandits and reinforcement learning, Bayesian Optimization, causal and statistical inference, and econometrics to drive discovery across the customer journey. Our solutions are crucial for the success of Amazon’s own brands and serve as a beacon for discovery solutions across Amazon. This is a high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and engineers. As a scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions.. With a focus on bias for action, this individual will be able to work equally well with Science, Engineering, Economics and business teams. Key job responsibilities - 5+ yrs of relevant, broad research experience after PhD degree or equivalent. - Advanced expertise and knowledge of applying observational causal interference methods - Strong background in statistics methodology, applications to business problems, and/or big data. - Ability to work in a fast-paced business environment. - Strong research track record. - Effective verbal and written communications skills with both economists and non-economist audiences.
DE, Aachen
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The AWS Marketplace & Partner Services Science team is hiring an Applied Scientist to develop science products that support AWS initiatives to grow AWS Partners. The team is seeking candidates with strong background in machine learning and engineering, creativity, curiosity, and great business judgment. As an applied scientist on the team, you will work on targeting and lead prioritization related AI/ML products, recommendation systems, and deliver them into the production ecosystem. You are comfortable with ambiguity and have a deep understanding of ML algorithms and an analytical mindset. You are capable of summarizing complex data and models through clear visual and written explanations. You thrive in a collaborative environment and are passionate about learning. Key job responsibilities - Work with scientists, product managers and engineers to deliver high-quality science products - Experiment with large amounts of data to deliver the best possible science solutions - Design, build, and deploy innovative ML solutions to impact AWS Co-Sell initiatives About the team The AWS Marketplace & Partner Services team is the center of Analytics, Insights, and Science supporting the AWS Specialist Partner Organization on its mission to provide customers with an outstanding experience while working with AWS partners. The Science team supports science models and recommendation systems that are deployed directly to AWS Customers, AWS partners, and internal AWS Sellers.
US, CA, Palo Alto
We’re working to improve shopping on Amazon using the conversational capabilities of large language models, and are searching for pioneers who are passionate about technology, innovation, and customer experience, and are ready to make a lasting impact on the industry. You'll be working with talented scientists and engineers to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey! Key job responsibilities We seek strong Applied Scientists with domain expertise in machine learning and deep learning, transformers, generative models, large language models, computer vision and multimodal models. You will devise innovative solutions at scale, pushing the technological and science boundaries. You will guide the design, modeling, and architectural choices of state-of-the-art large language models and multimodal models. You will devise and implement new algorithms and new learning strategies and paradigms. You will be technically hands-on and drive the execution from ideation to productionization. You will work in collaborative environment with other technical and business leaders, to innovate on behalf of the customer.
US, CA, Palo Alto
We’re working to improve shopping on Amazon using the conversational capabilities of large language models, and are searching for pioneers who are passionate about technology, innovation, and customer experience, and are ready to make a lasting impact on the industry. You’ll be working with talented scientists, engineers, and technical program managers (TPM) to innovate on behalf of our customers. If you’re fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey!
US, CA, East Palo Alto
The Customer Engagement Technology team leads AI/LLM-driven customer experience transformation using task-oriented dialogue systems. We develop multi-modal, multi-turn, goal-oriented dialog systems that can handle customer issues at Amazon scale across multiple languages. These systems are designed to adapt to changing company policies and invoke correct APIs to automate solutions to customer problems. Additionally, we enhance associate productivity through response/action recommendation, summarization to capture conversation context succinctly, retrieving precise information from documents to provide useful information to the agent, and machine translation to facilitate smoother conversations when the customer and agent speak different languages. Key job responsibilities Research and development of LLM-based chatbots and conversational AI systems for customer service applications. Design and implement state-of-the-art NLP and ML models for tasks such as language understanding, dialogue management, and response generation. Collaborate with cross-functional teams, including data scientists, software engineers, and product managers, to integrate LLM-based solutions into Amazon's customer service platforms. 4. Develop and implement strategies for data collection, annotation, and model training to ensure high-quality and robust performance of the chatbots. Conduct experiments and evaluations to measure the performance of the developed models and systems, and identify areas for improvement. Stay up-to-date with the latest advancements in NLP, LLMs, and conversational AI, and explore opportunities to incorporate new techniques and technologies into Amazon's customer service solutions. Collaborate with internal and external research communities, participate in conferences and publications, and contribute to the advancement of the field. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
US, MA, Boston
The Amazon Dash Cart team is seeking a highly motivated Research Scientist (Level 5) to join our team that is focused on building new technologies for grocery stores. We are a team of scientists invent new algorithms (especially artificial intelligence, computer vision and sensor fusion) to improve customer experiences in grocery shopping. The Amazon Dash Cart is a smart shopping cart that uses sensors to keep track of what a shopper has added. Once done, they can bypass the checkout lane and just walk out. The cart comes with convenience features like a store map, a basket that can weigh produce, and product recommendations. Amazon Dash Cart’s are available at Amazon Fresh, Whole Foods. Learn more about the Dash Cart at https://www.amazon.com/b?ie=UTF8&node=21289116011. Key job responsibilities As a research scientist, you will help solve a variety of technical challenges and mentor other engineers. You will play an active role in translating business and functional requirements into concrete deliverables and build quick prototypes or proofs of concept in partnership with other technology leaders within the team. You will tackle challenging, novel situations every day and given the size of this initiative, you’ll have the opportunity to work with multiple technical teams at Amazon in different locations. You should be comfortable with a degree of ambiguity that’s higher than most projects and relish the idea of solving problems that, frankly, haven’t been solved before - anywhere. Along the way, we guarantee that you’ll learn a ton, have fun and make a positive impact on millions of people. About the team Amazon Dash cart allows shoppers to checkout without lines — you just place the items in the cart and the cart will take care of the rest. When you’re done shopping, you leave the store through a designated dash lane. We charge the payment method in your Amazon account as you walk through the dash lane and send you a receipt. Check it out at https://www.amazon.com/b?ie=UTF8&node=21289116011. Designed and custom-built by Amazonians, our Dash cart uses a variety of technologies including computer vision, sensor fusion, and advanced machine learning.