Automated evaluation of RAG pipelines with exam generation

The fight against hallucination in retrieval-augmented-generation models starts with a method for accurately assessing it.

In the swiftly evolving domain of large language models (LLMs), the accurate evaluation of retrieval-augmented-generation (RAG) models is paramount. In this blog, we introduce a pioneering methodology that employs an automated exam generation process, enhanced by item response theory (IRT), to evaluate the factual accuracy of RAG models on specific tasks. Our approach is not only robust and interpretable but also cost efficient, strategically identifying model strengths and refining exams to optimize their evaluative utility. We describe our methodology in a paper we will present in July at the 2024 International Conference on Machine Learning (ICML).

Exam generation process

RAG is a method for handling natural-language queries by retrieving relevant documents and using text from them to seed the response generated by an LLM. The expectation is that factual assertions from reliable documents will curb the LLM’s tendency to “hallucinate”, or generate reasonable-sounding but false sentences.

To evaluate a RAG model on a particular task, we use an LLM to generate multiple-choice questions from a task-specific knowledge corpus. Our method is agnostic to the retriever and generative model used in both the RAG system and the exam generation task.

RAG diagram.png
Summary of the proposed exam generation, evaluation, and iterative-improvement processes.

Our approach has two steps. For each document in the knowledge corpus, we use an LLM and several prompt-engineering strategies to create candidate questions. Then we use several natural-language-processing filters to remove low-quality questions along various axes, such as length, incorrectness, and self-containment.

We note an interesting asymmetry: given a document corpus, it is relatively easy for an LLM to generate a question and the correct answer, as the content of both is contained in the prompt. However, it is considerably more difficult to create high-quality incorrect answers, commonly referred to as discriminators.

To filter out degenerate questions, we use the Jaccard similarity coefficient and embedding-based similarity metrics.

Here is the prompt that we used for exam generation:

Human: Here is some documentation from {task_domain}: {documentation}.\n
From this generate a difficult multi-form question for an exam.
It should have 4 candidates, 1 correct answer, and explanations.

Syntax should be Question: {question}\n
A){candidate A}\n
B){candidate B}\n
C){candidate C}\n
D){candidate D}

Correct Answer: {correct answer}\n
### Assistant:"

In our research, we analyzed several RAG pipeline variants, including closed-book (no knowledge from the document corpus is provided to the LLM), oracle (the exam taker has access to the specific document used to generate the question-and-answer pair, in addition to the question itself and all possible candidate answers), and classical retrieval models such as MultiQA embeddings, Siamese network embeddings, and BM25. Our evaluations also extended to different scales of language models, from 7 billion parameters to 70 billion, to understand the impact of model scale on performance.

To demonstrate the practical utility of this methodology, we deployed it across a wide range of domains. These include Amazon Web Services (AWS) DevOps, where troubleshooting guides for cloud-based services tests the models' operational effectiveness; arXiv abstracts, which challenge the models' ability to parse and generate insights from dense scientific texts; StackExchange questions, which probe the models' responsiveness and accuracy; and SEC filings, where the complexity of financial reporting tests the models’ capacity to extract nuanced information from structured corporate documents. This multi-domain approach not only enhances the robustness of our evaluations but also ensures that our models are versatile and reliable across various real-world applications.

Evaluating the exam generation model

The following figure shows granular results of our evaluation method for the task of AWS DevOps troubleshooting. We report accuracy for different retrieval approaches and retriever sizes, on a percentage scale. Labels on the diameter show the AWS resources we’re using. Colors correspond to different retrieval approaches (Oracle, DPRV2, MultiQA, ClosedBook), and solid and broken lines correspond to different base LLM sizes (7B, 13B, and 70B). For instance, we observe that a small model such as Mistral-7B with MultiQA embeddings has an accuracy of around 80% for the AWS resource Relational Database Service (RDS).

Granular results of our exam evaluation for the task of AWS DevOps troubleshooting.png
A comparison of several different models, at a range of sizes, on the task of DevOps troubleshooting for eight different AWS resources.

Our experiments yielded four key findings. First, there’s no one-size-fits-all solution; the optimal choice of retrieval method, and to a lesser extent LLM, is typically task dependent. For example, in tasks such as SEC filings and arXiv abstracts, BM25 outperforms MultiQA and Siamese network embeddings, indicating that sparse retrieval is generally more effective than dense retrieval. This could be because such tasks often contain easily identifiable terms (e.g., AWS service names in AWS DevOps) that can be retrieved with keyword search, while other tasks, such as StackExchange, mostly contain common words.

Second, the right choice of retrieval method can lead to greater performance improvements than simply using larger LLMs. For instance, in SEC filings, we observed a greater performance gain from switching from Siamese network embeddings to DPRV2 than from switching to larger LLMs.

Third, for tasks involving closed-source knowledge, the accuracy bottleneck is typically the LLM rather than the retrieval method. Finally, a poorly aligned retriever component can result in worse accuracy than having no retrieval at all.

Exam enhancements through item response theory

Integrating item response theory (IRT) into our process has significantly improved the quality of the exams. IRT models the likelihood of a correct response based on characteristics of a question and the capabilities of a model. It uses three factors — difficulty, discrimination, and guessing chance — to create exams that more accurately reflect and predict model performance.

IRT posits that a model’s probability of correctly answering a question is correlated with a latent variable known as ability, and it provides a method for estimating the value of that variable. As such, it offers a way to quantify a model’s ability level.

Our process begins with an initial exam assessment, identifying and removing questions that contribute minimally to discriminative insights. The exam is then refined iteratively, based on updated IRT parameters, which helps it accurately gauge nuanced model behaviors.

By continuously analyzing and adjusting exams based on IRT parameters, we have seen substantial improvements in the exams’ ability to discriminate among models. For instance, we use Fisher information to quantify the informativeness of exam questions. Fisher information measures the amount of information that an observable random variable provides about an unknown parameter, offering a way to gauge the precision of statistical estimators in parameter estimation theory.

During iterative improvements for the arXiv task, the Fisher information function consistently showed progress, marking a considerable enhancement of the exams' capacity to differentiate model capabilities. This iterative process ensures that each new version of the exam is more informative than the last and effectively evaluates the RAG model’s abilities.

Evaluating the generated exams

To further enhance the assessment of RAG models, we categorize exam questions using both semantic analysis and Bloom’s revised taxonomy, devised by the University of Chicago psychologist Benjamin Bloom. Bloom’s taxonomy helps classify questions by cognitive complexity — from basic recall to analytical tasks — enabling structured evaluation of model capabilities.

Different levels in Bloom's taxonomy differentiate between the knowledge dimension (factual, conceptual, procedural, and meta-cognitive) and the cognitive-process dimension (remember, understand, apply, analyze, evaluate, and create). Additionally, we classify questions semantically by identifying keywords like “what” and “which.” These additional classifications allow us to assess how well models perform at different ability levels.

Bloom's Taxonomy.png
Average Fisher information for each category in Bloom’s taxonomy category (left) and semantic category (right) for the StackExchange task.

The above two figures present the average Fisher information value for each Bloom category (left) and semantic category (right) for the StackExchange task. For this specific task, we observe that “evaluating” and “understanding” are the most discriminate dimensions in Bloom’s taxonomy across different ability levels, while “remembering” is the least discriminatory.

On the semantic categories, we observe that “what” and “which” were the most discriminatory terms for lower ability levels, and “when” discriminated more at higher ability levels. One interpretation is that “what” and “how” questions tend to be more factual and syntax-based in the StackExchange domain, so at lower ability levels, RAG struggles more with these genres of questions.

The following figure illustrates the maximization process for the arXiv task as the exam and IRT estimation evolve. We show the results for three incremental steps. We observe a 0.05 increase in Fisher information even with a single iteration. This progress reaches a 0.1 increase in the subsequent steps.

Exam Information Curve.png
The maximization process, as the exam and IRT estimation evolve, for the task of generating abstracts for arXiv papers.

To expand our approach beyond Q&A applications, our future research will focus on domains such as summarization, translation, and sentiment analysis. We are also addressing the complex task of meta-evaluation, comparing and refining our evaluation methods to account for the multidimensional nature of LLM performance. Additionally, we will continuously update our methodologies to accommodate the rapid evolution of LLM technology, ensuring robust and comprehensive assessment of emerging models.

Acknowledgments: Laurent Callot

Research areas

Related content

US, WA, Seattle
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities - Leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). - Work with talented peers to lead the development of novel algorithms and modeling techniques to advance the state of the art with LLMs. - Collaborate with other science and engineering teams as well as business stakeholders to maximize the velocity and impact of your contributions. About the team It's an exciting time to be a leader in AI research. In Amazon's AGI Information team, you can make your mark by improving information-driven experiences of Amazon customers worldwide. Your work will directly impact our customers in the form of products and services that make use of language and multimodal technology!
US, WA, Seattle
Are you excited about developing foundation models to revolutionize automation, robotics and computer vision? Are you looking for opportunities to build and deploy them on real problems at truly vast scale? At Amazon Fulfillment Technologies and Robotics we are on a mission to build high-performance autonomous systems that perceive and act to further improve our world-class customer experience - at Amazon scale. We are looking for collaborative scientists, engineers and program managers for a variety of roles. The Amazon Robotics software team is seeking an experienced and senior Applied Scientist to focus on computer vision machine learning models. This includes building multi-viewpoint and time-series computer vision systems. It includes building large-scale models using data from many different tasks and scenes. This work spans from basic research such as cross domain training, to experimenting on prototype in the lab, to running wide-scale A/B tests on robots in our facilities. Key job responsibilities * Research vision - Where should we be focusing our efforts * Research delivery – Proving/dis-proving strategies in offline data or in the lab * Production studies - Insights from production data or ad-hoc experimentation. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
US, CA, East Palo Alto
The Customer Engagement Technology team leads AI/LLM-driven customer experience transformation using task-oriented dialogue systems. We develop multi-modal, multi-turn, goal-oriented dialog systems that can handle customer issues at Amazon scale across multiple languages. These systems are designed to adapt to changing company policies and invoke correct APIs to automate solutions to customer problems. Additionally, we enhance associate productivity through response/action recommendation, summarization to capture conversation context succinctly, retrieving precise information from documents to provide useful information to the agent, and machine translation to facilitate smoother conversations when the customer and agent speak different languages. Key job responsibilities Research and development of LLM-based chatbots and conversational AI systems for customer service applications. Design and implement state-of-the-art NLP and ML models for tasks such as language understanding, dialogue management, and response generation. Collaborate with cross-functional teams, including data scientists, software engineers, and product managers, to integrate LLM-based solutions into Amazon's customer service platforms. 4. Develop and implement strategies for data collection, annotation, and model training to ensure high-quality and robust performance of the chatbots. Conduct experiments and evaluations to measure the performance of the developed models and systems, and identify areas for improvement. Stay up-to-date with the latest advancements in NLP, LLMs, and conversational AI, and explore opportunities to incorporate new techniques and technologies into Amazon's customer service solutions. Collaborate with internal and external research communities, participate in conferences and publications, and contribute to the advancement of the field. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
US, MA, Boston
The Amazon Dash Cart team is seeking a highly motivated Research Scientist (Level 5) to join our team that is focused on building new technologies for grocery stores. We are a team of scientists invent new algorithms (especially artificial intelligence, computer vision and sensor fusion) to improve customer experiences in grocery shopping. The Amazon Dash Cart is a smart shopping cart that uses sensors to keep track of what a shopper has added. Once done, they can bypass the checkout lane and just walk out. The cart comes with convenience features like a store map, a basket that can weigh produce, and product recommendations. Amazon Dash Cart’s are available at Amazon Fresh, Whole Foods. Learn more about the Dash Cart at https://www.amazon.com/b?ie=UTF8&node=21289116011. Key job responsibilities As a research scientist, you will help solve a variety of technical challenges and mentor other engineers. You will play an active role in translating business and functional requirements into concrete deliverables and build quick prototypes or proofs of concept in partnership with other technology leaders within the team. You will tackle challenging, novel situations every day and given the size of this initiative, you’ll have the opportunity to work with multiple technical teams at Amazon in different locations. You should be comfortable with a degree of ambiguity that’s higher than most projects and relish the idea of solving problems that, frankly, haven’t been solved before - anywhere. Along the way, we guarantee that you’ll learn a ton, have fun and make a positive impact on millions of people. About the team Amazon Dash cart allows shoppers to checkout without lines — you just place the items in the cart and the cart will take care of the rest. When you’re done shopping, you leave the store through a designated dash lane. We charge the payment method in your Amazon account as you walk through the dash lane and send you a receipt. Check it out at https://www.amazon.com/b?ie=UTF8&node=21289116011. Designed and custom-built by Amazonians, our Dash cart uses a variety of technologies including computer vision, sensor fusion, and advanced machine learning.
US, WA, Seattle
The Customer Engagement Technology team leads AI/LLM-driven customer experience transformation using task-oriented dialogue systems. We develop multi-modal, multi-turn, goal-oriented dialog systems that can handle customer issues at Amazon scale across multiple languages. These systems are designed to adapt to changing company policies and invoke correct APIs to automate solutions to customer problems. Additionally, we enhance associate productivity through response/action recommendation, summarization to capture conversation context succinctly, retrieving precise information from documents to provide useful information to the agent, and machine translation to facilitate smoother conversations when the customer and agent speak different languages. Key job responsibilities Research and development of LLM-based chatbots and conversational AI systems for customer service applications. Design and implement state-of-the-art NLP and ML models for tasks such as language understanding, dialogue management, and response generation. Collaborate with cross-functional teams, including data scientists, software engineers, and product managers, to integrate LLM-based solutions into Amazon's customer service platforms. Develop and implement strategies for data collection, annotation, and model training to ensure high-quality and robust performance of the chatbots. Conduct experiments and evaluations to measure the performance of the developed models and systems, and identify areas for improvement. Stay up-to-date with the latest advancements in NLP, LLMs, and conversational AI, and explore opportunities to incorporate new techniques and technologies into Amazon's customer service solutions. Collaborate with internal and external research communities, participate in conferences and publications, and contribute to the advancement of the field. A day in the life We thrive on solving challenging problems to innovate for our customers. By pushing the boundaries of technology, we create unparalleled experiences that enable us to rapidly adapt in a dynamic environment. Our decisions are guided by data, and we collaborate with engineering, science, and product teams to foster an innovative learning environment. If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! Benefits Summary: Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan About the team Join our team of scientists and engineers who develop and deploy LLM-based Conversational AI systems to enhance Amazon's customer service experience and effectiveness. We work on innovative solutions that help customers solve their issues and get their questions answered efficiently, and associate-facing products that support our customer service associate workforce.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role Data is critical to the algorithms that power the recommendation, search, and ranking systems. It's also critical to making decisions, especially working on systems that are themselves data-driven. As a Senior Data Scientist on the CDML team, you'll be responsible for helping drive improvements to the machine learning systems as well as analytics to drive decision-making. While there is a team of Applied Scientists building and shipping the algorithms themselves, data science can help improve these systems directly. In this role, you can identify and build new signals to input into the models. We're also working on the value model that the algorithm optimizes, and your input will be critical to understanding the tradeoffs and balancing multiple objectives in a scientific way. We also still have big unanswered analytics questions to solve. How often do viewers just want to get to the content they already know they want to watch, and when are they open to exploring new channels? These are the sorts of questions you'll be tackling. You Will - Inform product strategies by defining and updating core metrics for each initiative - Estimate the opportunity sizing of new features the team could take on - Identify and build new signals to incorporate into the algorithms driving recommendations, search, and feed ranking at Twitch - Identify metric tradeoff ratios that help inform value model choices, long-term impact from early-growth-funnel users, and other product decisions - Establish analytical framework for your team: ad-hoc analysis, automated dashboards, and self-service reporting tools to surface key data to stakeholders - Design A/B experiments to drive product direction with iterative innovation and measurement - Work hand-in-hand with business, product, engineering, and design to proactively influence and inform teammates' decisions throughout the product life cycle - Distill ambiguous product or business questions, find clever ways to answer them, and to quantify the uncertainty Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount
US, WA, Seattle
The People eXperience and Technology (PXT) Central Science Team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms, process improvements and products, which simultaneously improve Amazon and the lives, wellbeing, and the value of work of Amazonians. We are an interdisciplinary team which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We invest in innovation and rapid prototyping of scientific models, AI/ML technologies and software solutions to accelerate informed, accurate, and reliable decision backed by science and data. As a research scientist you will you will design and carry out surveys to address business questions; analyze survey and other forms of data with regression models; perform weighting and multiple imputation to reduce bias due to nonresponse. You will conduct methodological and statistical research to understand the quality of survey data. You will work with economists, engineers, and computer scientists to select samples, draft and test survey questions, calculate nonresponse adjusted weights, and estimate regression models on large scale data. You will evaluate, diagnose, understand, and surface drivers and moderators for key research streams, including (but are not limited to) attrition, engagement, productivity, inclusion, and Amazon culture. Key job responsibilities Help to design and execute a scalable global content development and validation strategy to drive more effective decisions and improve the employee experience across all of Amazon Conduct psychometric and econometric analyses to evaluate integrity and practical application of survey questions and data Identify and execute research streams to evaluate how to mitigate or remove sources of measurement error Partner closely and drive effective collaborations across multi-disciplinary research and product teams Manage full life cycle of large-scale research programs (Develop strategy, gather requirements, manage and execute)
US, WA, Seattle
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers like Pieter Abbeel, Rocky Duan, and Peter Chen to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scence understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between cutting-edge research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team, led by pioneering AI researchers Pieter Abbeel, Rocky Duan, and Peter Chen, is building the future of intelligent robotics through groundbreaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
IN, KA, Bengaluru
Alexa is the voice activated digital assistant powering devices like Amazon Echo, Echo Dot, Echo Show, and Fire TV, which are at the forefront of this latest technology wave. To preserve our customers’ experience and trust, the Alexa Sensitive Content Intelligence (ASCI) team builds services and tools through Machine Learning techniques to implement our policies to detect and mitigate sensitive content in across Alexa. We are looking for a passionate, talented, and inventive Data Scientist-II to help build industry-leading technology with Large Language Models (LLMs) and multimodal systems, requiring good learning and generative models knowledge. You will be working with a team of exceptional Data Scientists working in a hybrid, fast-paced organization where scientists, engineers, and product managers work together to build customer facing experiences. You will collaborate with other data scientists while understanding the role data plays in developing data sets and exemplars that meet customer needs. You will analyze and automate processes for collecting and annotating LLM inputs and outputs to assess data quality and measurement. You will apply state-of-the-art Generative AI techniques to analyze how well our data represents human language and run experiments to gauge downstream interactions. You will work collaboratively with other data scientists and applied scientists to design and implement principled strategies for data optimization. Key job responsibilities A Data Scientist-II should have a reasonably good understanding of NLP models (e.g. LSTM, LLMs, other transformer based models) or CV models (e.g. CNN, AlexNet, ResNet, GANs, ViT) and know of ways to improve their performance using data. You leverage your technical expertise in improving and extending existing models. Your work will directly impact our customers in the form of products and services that make use of speech, language, and computer vision technologies. You will be joining a select group of people making history producing one of the most highly rated products in Amazon's history, so if you are looking for a challenging and innovative role where you can solve important problems while growing in your career, this may be the place for you. A day in the life You will be working with a group of talented scientists on running experiments to test scientific proposal/solutions to improve our sensitive contents detection and mitigation for worldwide coverage. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, model development, and solution implementation. You will work with other scientists, collaborating and contributing to extending and improving solutions for the team. About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.
US, WA, Seattle
The AWS Marketplace & Partner Services Science team is hiring an Applied Scientist to develop state-of-the-art recommendations systems, Conversational AI agents, and personalization capabilities within AWS Marketplace. This role will revolutionize discovery of solutions that accelerate customer cloud migrations for our customers, bringing personalization to AWS customers. The ideal candidate is comfortable leading production level recommendations strategies, implementing agent based conversationalAI experience, and mentoring other scientists on the team. You able to evaluate feasibility of scientific approaches and influence business leaders to develop the best experience for our customers. You thrive in a collaborative environment, where mentorship, learning, and teamwork is critical. Key job responsibilities - Work with customers, product managers, scientists, and engineers to deliver production level recommendation experiences - Ability to write production level code and support requirements for MLOps/LLMOps - Mentor Scientists on the team, and guide scientific approach across the organization About the team The AWS Marketplace & Partner Services Science team supports science models and recommendations that are deployed directly to AWS Customers (via AWS Marketplace), to our partners (via Partner Central), and to our internal AWS Sellers. Our mission is to accelerate cloud migrations and modernizations, supporting AWS customers to innovate, and the growth of our AWS Partners.