Detección de pronunciación para la nueva experiencia de aprendizaje de inglés de Alexa

El aumento de datos, novedosas funciones de pérdidas y un entrenamiento con poca supervisión permiten crear un modelo innovador para detectar errores de pronunciación.

En enero de 2023, Alexa lanzó en España una experiencia de aprendizaje de idiomas para ayudar a los hispanohablantes a aprender inglés para principiantes. Esta experiencia se desarrolló en colaboración con Vaughan, el principal proveedor de aprendizaje de inglés en España, con el objetivo de ofrecer un programa de aprendizaje de inglés inmersivo centrado en la mejora de la pronunciación.

Ahora estamos ampliando esta oferta a México y a la población de habla hispana de Estados Unidos, y en el futuro planeamos añadir más idiomas. Esta experiencia de aprendizaje de idiomas incluye lecciones estructuradas de vocabulario, gramática, expresión y pronunciación, con ejercicios prácticos y pruebas. Para probarla, configura el idioma de tu dispositivo a español y dile a Alexa "Quiero aprender inglés".

Mini-lesson content page_ES.png
Página de contenidos de lecciones cortas: lecciones de vocabulario, gramática, expresión y pronunciación.

Lo más destacado de esta skill de Alexa es su función de pronunciación, la cual proporciona información precisa cada vez que un cliente pronuncia mal una palabra o frase. En la Conferencia Internacional de Acústica, Habla y Procesamiento de Señales (ICASSP por sus siglas en inglés) de este año, presentamos un artículo en el que describíamos nuestro innovador método de detección de errores de pronunciación.

alexaspeechspanish.jpg
Corrección de pronunciación: El texto en azul indica una pronunciación correcta, mientras que el rojo indica una pronunciación incorrecta. Para frases/palabras pronunciadas incorrectamente, Alexa brindará instrucciones detalladas sobre cómo pronunciarlas.

Nuestro método utiliza un novedoso modelo fonético de redes neuronales recurrentes (RNN-T por sus siglas en inglés) que predice los fonemas, las unidades más pequeñas del habla, a partir de la pronunciación del alumno. Por lo tanto, el modelo puede proporcionar una evaluación detallada de la pronunciación a nivel de palabra, sílaba o fonema. Por ejemplo, si un alumno pronuncia incorrectamente la palabra "rabbit" como "rabid", el modelo mostrará la secuencia de cinco fonemas R AE B IH D. Posteriormente, puede detectar los fonemas (IH D) y la sílaba (-bid) mal pronunciados utilizando la alineación de Levenshtein para comparar la secuencia de fonemas con la secuencia de referencia "R AE B AH T".

El artículo destaca dos brechas de conocimiento que no se habían abordado en anteriores modelos de pronunciación. La primera es la capacidad de distinguir fonemas similares en distintos idiomas (por ejemplo, la "r" rodada en español vs. la "r" en inglés). Para ello, diseñamos un léxico de pronunciación multilingüe y creamos un inmenso conjunto de datos fonéticos mixtos para el programa de aprendizaje.

La otra brecha de conocimiento es la capacidad de aprender patrones únicos de pronunciación errónea de los alumnos de idiomas. Para ello, aprovechamos la autorregresividad del modelo RNN-T, es decir, la dependencia de sus resultados de las entradas y salidas anteriores. Este conocimiento del contexto significa que el modelo puede captar patrones frecuentes de pronunciación errónea a partir de los datos del entrenamiento. Nuestro modelo de pronunciación ha obtenido los mejores resultados tanto en precisión de predicción de fonemas, como de detección de errores de pronunciación.

Aumento de datos L2

Uno de los principales retos técnicos a la hora de crear un modelo de reconocimiento fonético para hablantes no nativos (L2) es que los conjuntos de datos para el diagnóstico de errores de pronunciación son muy limitados. En nuestro artículo de Interspeech 2022 "L2-GEN: Un enfoque neuronal de parafraseo de fonemas para el diagnóstico de errores de pronunciación en síntesis del habla L2", planteamos cerrar esta brecha mediante el incremento de datos. En concreto, creamos un parafraseador de fonemas que puede generar fonemas realistas de L2 para hablantes de un lugar específico, por ejemplo, fonemas que representen a un hablante nativo de español hablando en inglés.

Como es habitual en las tareas de corrección de errores gramaticales, utilizamos un modelo de secuencia a secuencia, pero invertimos la dirección de la tarea entrenando al modelo para pronunciar mal las palabras en lugar de corregir los errores de pronunciación. Además, para enriquecer y diversificar aún más las secuencias de fonemas L2 generados, propusimos un componente de decodificación diversificado y consciente de las preferencias que combina una búsqueda en haz diversificada con una pérdida de preferencia que se inclina hacia los errores de pronunciación similares a los humanos.

Para cada tono de entrada o fragmento del habla, el modelo produce varios fonemas posibles como salidas, y las secuencias de fonemas se modelan como un árbol en el que las posibilidades proliferan con cada nuevo tono. Normalmente, las secuencias de fonemas mejor clasificadas se extraen del árbol mediante las búsquedas en haz que persigue solo las ramas del árbol con las probabilidades más altas. En nuestro trabajo, sin embargo, propusimos un método de búsqueda en haz que da prioridad a los fonemas inusuales, o candidatos a fonema que difieren de la mayoría de los demás en la misma profundidad del árbol.

A partir de fuentes establecidas en la documentación sobre aprendizaje de idiomas, también elaboramos listas de errores de pronunciación comunes a nivel de fonema, representados como pares de fonemas, uno del fonema estándar de la lengua y otro de su variante no estándar. Construimos una función de pérdida que, durante el proceso de aprendizaje del modelo, da prioridad a los resultados que utilizan las variantes no estándar de nuestra lista.

En los experimentos observamos mejoras de precisión de hasta el 5% en la detección de errores de pronunciación con respecto a un modelo de referencia entrenado sin datos adicionales.

Equilibrando el falso rechazo y la falsa aceptación

Una consideración clave a la hora de diseñar un modelo de pronunciación para una experiencia de aprendizaje de idiomas es equilibrar la proporción de falsos rechazos y falsas aceptaciones. Un falso rechazo se produce cuando el modelo de pronunciación detecta un error de pronunciación, pero en realidad el alumno estaba en lo cierto o utilizaba una pronunciación coherente pero ligeramente acentuada. Una falsa aceptación se produce cuando un alumno pronuncia mal una palabra y el modelo no lo detecta.

Nuestro sistema tiene dos características de diseño enfocadas a equilibrar estas dos métricas. Para reducir las falsas aceptaciones, primero combinamos nuestros léxicos de pronunciación estándar para inglés y español en un léxico único con múltiples fonemas correspondientes a cada palabra. Después, utilizamos ese léxico para analizar automáticamente muestras de habla no comentadas que se clasifican en tres categorías: español nativo, inglés nativo y español e inglés codificados. El entrenamiento del modelo con este conjunto de datos le permite distinguir diferencias muy sutiles entre fonemas.

Para reducir los falsos rechazos utilizamos un léxico de pronunciación multirreferencial en el que cada palabra se asocia a varias pronunciaciones de referencia. Por ejemplo, la palabra "data" puede pronunciarse como "day-tah" o "dah-tah" y el sistema aceptará ambas variaciones como correctas.

Actualmente seguimos estudiando varios métodos para mejorar nuestra función de evaluación de la pronunciación. Uno de ellos es la creación de un modelo multilingüe que pueda utilizarse para evaluar la pronunciación en muchos idiomas. También estamos ampliando el modelo para diagnosticar más características de pronunciación errónea, como el tono y el acento léxico.

Research areas

Related content

ES, M, Madrid
Amazon's International Technology org in EU (EU INTech) is creating new ways for Amazon customers discovering Amazon catalog through new and innovative Customer experiences. Our vision is to provide the most relevant content and CX for their shopping mission. We are responsible for building the software and machine learning models to surface high quality and relevant content to the Amazon customers worldwide across the site. The team, mainly located in Madrid Technical Hub, London and Luxembourg, comprises Software Developer and ML Engineers, Applied Scientists, Product Managers, Technical Product Managers and UX Designers who are experts on several areas of ranking, computer vision, recommendations systems, Search as well as CX. Are you interested on how the experiences that fuel Catalog and Search are built to scale to customers WW? Are interesting on how we use state of the art AI to generate and provide the most relevant content? Key job responsibilities We are looking for Applied Scientists who are passionate to solve highly ambiguous and challenging problems at global scale. You will be responsible for major science challenges for our team, including working with text to image and image to text state of the art models to scale to enable new Customer Experiences WW. You will design, develop, deliver and support a variety of models in collaboration with a variety of roles and partner teams around the world. You will influence scientific direction and best practices and maintain quality on team deliverables. We are open to hiring candidates to work out of one of the following locations: Madrid, M, ESP
US, NY, New York
Amazon Advertising exists at the intersection of marketing and e-commerce and offers advertisers a rich array of innovative advertising solutions across Amazon-owned and third party properties. We believe that advertising, when done well, can greatly enhance the value of the customer experience and generate a positive return on investment for our advertising partners. We are currently looking for a highly skilled and motivated Data Scientist to help scale our growing advertising business. The Data Scientist is a key member of the Global Marketing Insights team at Amazon Ads, working with marketing, product, retail and other Amazon business partners to analyze and improve advertisers’ performance on Amazon, in support of their marketing objectives. You will work with Amazon's unique data and translate it into high-quality and actionable insights and recommendations to improve the effectiveness of advertiser campaigns and unlock business opportunities. Day to day activities include analyzing advertiser behaviors to develop data-driven insights on what tactics and strategies lead to success. You will also build automated solutions to generate science driven insights at scale, that are distributed to our advertisers across channels. Basic qualifications - Bachelor's or Master's degree in Engineering, Statistics, Economics, or a related technical field - Proven experience in data analytics or data science roles - Proficiency with SQL and Python - Strong understanding of basic statistical techniques and methodologies such as distributions, hypothesis testing, regressions, experimentation, A/B Testing etc. - Excellent organizational, interpersonal, and communication skills (both written and verbal) - Ability to work cross-functionally and with technical and non-technical stakeholders Preferred qualifications - Understanding of advanced statistical techniques and methodologies such as causal inference, propensity score matching, machine learning etc. - Experience with developing and deploying production machine learning models, especially on cloud platforms - Experience building and managing data pipelines - Experience with digital advertising products, performance analytics , marketing and advertising campaigns - MBA, Master’s, or Doctoral degree in Economics, Engineering, Marketing, Statistics, Advertising, or related fields - Publication track record/writing experience (ex. published a paper in a technical journal or trade publication) About the team The Marketing Insights team is responsible for delivering science backed insights to millions of advertisers via our marketing messages. Our team is distributed across the globe and is building cutting edge data science to identify and communicate the impact of various advertising strategies for our products. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA
US, WA, Bellevue
We are designing the future. If you are in quest of an iterative fast-paced environment, where you can drive innovation through scientific inquiry, and provide tangible benefit to hundreds of thousands of our associates worldwide, this is your opportunity. Come work on the Amazon Worldwide Fulfillment Design & Engineering Team! We are looking for an experienced and Research Scientist with background in Ergonomics and Industrial Human Factors, someone that is excited to work on complex real-world challenges for which a comprehensive scientific approach is necessary to drive solutions. Your investigations will define human factor / ergonomic thresholds resulting in design and implementation of safe and efficient workspaces and processes for our associates. Your role will entail assessment and design of manual material handling tasks throughout the entire Amazon network. You will identify fundamental questions pertaining to the human capabilities and tolerances in a myriad of work environments, and will initiate and lead studies that will drive decision making on an extreme scale. .You will provide definitive human factors/ ergonomics input and participate in design with every single design group in our network, including Amazon Robotics, Engineering R&D, and Operations Engineering. You will work closely with our Worldwide Health and Safety organization to gain feedback on designs and work tenaciously to continuously improve our associate’s experience. Key job responsibilities - Collaborating and designing work processes and workspaces that adhere to human factors / ergonomics standards worldwide. - Producing comprehensive and assessments of workstations and processes covering biomechanical, physiological, and psychophysical demands. - Effectively communicate your design rationale to multiple engineering and operations entities. - Identifying gaps in current human factors standards and guidelines, and lead comprehensive studies to redefine “industry best practices” based on solid scientific foundations. - Continuously strive to gain in-depth knowledge of your profession, as well as branch out to learn about intersecting fields, such as robotics and mechatronics. - Travelling to our various sites to perform thorough assessments and gain in-depth operational feedback, approximately 25%-50% of the time. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Bellevue
Imagine being part of an agile team where your ideas have the potential to reach millions of customers. Picture working on cutting-edge, customer-facing solutions, where every team member is a critical voice in the decision making process. Envision being able to leverage the resources of a Fortune 500 company within the atmosphere of a start-up. Welcome to Amazon’s NCRC team. We solve complex problems in an ambiguous space, focusing on reducing return costs and improving the customer experience. We build solutions that are distributed on a large scale, positively impacting experiences for our customers and sellers. Come innovate with the NCRC team! The Net Cost of Refunds and Concessions (NCRC) team is looking for a Senior Manager Data Science to lead a team of economists, business intelligence engineers and business analysts who investigate business problems, develop insights and build models & algorithms that predict and quantify new opportunity. The team instigates and productionalizes nascent solutions around four pillars: outbound defects, inbound defects, yield optimization and returns reduction. These four pillars interact, resulting in impacts to our overall return rate, associated costs, and customer satisfaction. You may have seen some downstream impacts of our work including Amazon.com customer satisfaction badges on the website and app, new returns drop off optionality, and faster refunds for low cost items. In this role, you will set the science vision and direction for the team, collaborating with internal stakeholders across our returns and re-commerce teams to scale and advance science solutions. This role is based in Bellevue, WA Key job responsibilities * Single threaded leader responsible for setting and driving science strategy for the organization. * Lead and provide coaching to a team of Scientists, Economists, Business Intelligence Engineers and Business Analysts. * Partner with Engineering, Product and Machine Learning leaders to deliver insights and recommendations across NCRC initiatives. * Lead research and development of models and science products powering return cost reduction. * Educate and evangelize across internal teams on analytics, insights and measurement by writing whitepapers, knowledge documentation and delivering learning sessions. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Seattle
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and Scala would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Chicago, IL, USA | Seattle, WA, USA | Washington, DC, USA
US, WA, Seattle
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and Scala would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Chicago, IL, USA | Seattle, WA, USA | Washington, DC, USA
US, WA, Seattle
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and Scala would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Chicago, IL, USA | Seattle, WA, USA | Washington, DC, USA
US, CA, Santa Clara
Amazon AI is looking for world class scientists and engineers to join its AWS AI. This group is entrusted with developing core natural language processing, generative AI, deep learning and machine learning algorithms for AWS. You will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually new solutions. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. A day in the life Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. About the team The Amazon Web Services (AWS) Next Gen DevX (NGDE) team uses generative AI and foundation models to reimagine the experience of all builders on AWS. From the IDE to web-based tools and services, AI will help engineers work on large and small applications. We explore new technologies and find creative solutions. Curiosity and an explorative mindset can find a place here to impact the life of engineers around the world. If you are excited about this space and want to enlighten your peers with new capabilities, this is the team for you. We are open to hiring candidates to work out of one of the following locations: Santa Clara, CA, USA
US, CA, Santa Clara
Amazon AI is looking for world class scientists and engineers to join its AWS AI. This group is entrusted with developing core natural language processing, generative AI, deep learning and machine learning algorithms for AWS. You will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually new solutions. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. A day in the life Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. About the team The Amazon Web Services (AWS) Next Gen DevX (NGDE) team uses generative AI and foundation models to reimagine the experience of all builders on AWS. From the IDE to web-based tools and services, AI will help engineers work on large and small applications. We explore new technologies and find creative solutions. Curiosity and an explorative mindset can find a place here to impact the life of engineers around the world. If you are excited about this space and want to enlighten your peers with new capabilities, this is the team for you. We are open to hiring candidates to work out of one of the following locations: Santa Clara, CA, USA
US, CA, Santa Clara
We are looking for an Applied Scientist who is passionate about building services and tools for developers that leverage artificial intelligence and machine learning. You will be part of a team building Large Language Model (LLM)-based services with the focus on enhancing the developer experience in the Cloud. The team works in close collaboration with other AWS services such as AWS Cloud9, the AWS IDE Toolkit and AWS Bedrock. If you are excited about working in cloud computing and building new AWS services, then we'd love to talk to you. As an Applied Scientist, you are recognized for your expertise, advise team members on a range of machine learning topics, and work closely with software engineers to drive the delivery of end-to-end modeling solutions. Your work focuses on ambiguous problem areas where the business problem or opportunity may not yet be defined. The problems that you take on require scientific breakthroughs. You take a long-term view of the business objectives, product roadmaps, technologies, and how they should evolve. You drive mindful discussions with customers, engineers, and scientist peers. You bring perspective and provide context for current technology choices, and make recommendations on the right modeling and component design approach to achieve the desired customer experience and business outcome. Key job responsibilities - Understand the challenges that developers face when building software today, and develop generalizable solutions. - Collaborate with developers and pave the way towards bringing your solution into production systems. Lead cross team projects and ensure technical blockers are resolved - Communicate and document your research via publishing papers in external scientific venues. A day in the life Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. About the team The Amazon Web Services (AWS) Next Gen DevX (NGDE) team uses generative AI and foundation models to reimagine the experience of all builders on AWS. From the IDE to web-based tools and services, AI will help engineers work on large and small applications. We explore new technologies and find creative solutions. Curiosity and an explorative mindset can find a place here to impact the life of engineers around the world. If you are excited about this space and want to enlighten your peers with new capabilities, this is the team for you. We are open to hiring candidates to work out of one of the following locations: Santa Clara, CA, USA