Automatically generating text from structured data

Technique that lets devices convey information in natural language improves on state of the art.

Data-to-text generation converts information from a structured format such as a table into natural language. This allows structured information to be read or listened to, as when a device displays a weather forecast or a voice assistant answers a question.

Language models trained on billions of sentences learn common linguistic patterns and can generate natural-sounding sentences by predicting likely sequences of words. However, in data-to-text generation we want to generate language that not only is fluent but also conveys content accurately. 

Some approaches to data-to-text generation use a pipeline of machine learning models to turn the data into text, but this can be labor intensive to create, and pipelining poses the risk that errors in one step will compound in later steps.

In the Alexa AI organization, we’ve developed a neural, end-to-end, data-to-text generation system called DataTuner, which can be used for a variety of data types and topics to generate fluent and accurate texts. We've released the DataTuner code on GitHub under a noncommercial license.

DataTuner.png
Alexa AI's new DataTuner software can convert structured information, such as the relationships encoded by knowledge graphs, into texts that are both semantically faithful and fluent.
Credit: Glynis Condon

At last year’s International Conference on Computational Linguistics (COLING), we presented a paper in which we compared our approach to its best-performing predecessors, using four data-to-text data sets. On automated metrics, DataTuner pushes the state of the art by significant margins, from 1.2 to 5.9 points according to the BLEU algorithm for evaluating text quality.

Human annotators also graded our responses as both more natural-sounding and more accurate. In fact, on two of the four data sets, our texts were judged to be more natural-sounding, on average, than human-written texts.

Annotator evaluations showed that DataTuner improved the semantic accuracy of generated texts, with margins ranging from 5.3% to 40%. Our paper also introduces a model-based approach for measuring the accuracy of generated texts, an approach that is 4.2% to 14.2% more accurate at detecting errors than previous hand-crafted approaches. 

Semantic fidelity vs. fluency

To get a sense of the problem we address, consider an example in which we have some structured information about Michelle Obama that we want to convey to our readers or listeners. That information is organized in the entity-relation-entity format typical of knowledge graphs.

Michelle Obama | author of | Becoming 
Michelle Obama | birthplace | Chicago, Illinois, USA
Princeton University | alma mater of | Michelle Obama
Harvard University | alma mater of | Michelle Obama

We could imagine a text that conveys the meaning accurately but doesn’t sound very natural:

Michelle Obama is the author of Becoming. Michelle Obama was born in Chicago, Illinois, USA. Michelle Obama was educated at Princeton University. Michelle Obama was educated at Harvard University.

This text has high semantic fidelity but low fluency.

Alternatively, we could imagine a text that sounds very fluent but doesn’t accurately convey the information: 

Born in Chicago, Illinois, and educated at Harvard, Michelle Obama is the author of A Promised Land

This text has added some information and missed some out, so it has low semantic fidelity even though it has high fluency.

Pipeline-based approaches to data-to-text generation typically consist of steps such as (1) ordering the content; (2) dividing the content into sentences; (3) finding the right words and phrases to express the data (lexicalization and referring-expression generation), and (4) joining it all together to produce the final text (realization). These approaches usually generalize well to new concepts because of the separate lexicalization step, but they can be difficult to maintain and require training data for each step that can be labor intensive to acquire. 

End-to-end approaches are trained on [data, text] pairs that can be gathered more easily, but it’s difficult to guarantee the semantic fidelity of the results. This is the problem we address with DataTuner.

The DataTuner model

DataTuner’s approach has two steps, generation and reranking. 

First, our language model generates texts from data. In our experiments, we started with a pretrained language model that could generate text, the GPT-2 model. To adapt it to the data-to-text task, we trained it on concatenated data and text, using the special tokens <data> and <text> to indicate which was which. When we use the trained model to generate text, the only input is the data.

DataTuner architecture.png
During training, the inputs to DataTuner's data-to-text model are data and text, separated by the special tokens <data> and <text>. At runtime, the only input is the data.
Credit: Hamza Harkous

Inside the model, we concatenate several types of embeddings, or vector representations whose spatial relationships indicate relationships between data (see figure above). The first type is token embeddings, which encode semantic information about individual input words. The other is an embedding that represents words’ positions in the text. 

We also introduce what we call fine-grained state embeddings. To produce these, we use special tokens that indicate structural relationships between data items.

For example, we would convert the data triple Michelle Obama | author of | Becoming into the string <subject> Michelle Obama <predicate> author of <object> Becoming, with <subject>, <object>, and <predicate> as special tokens. The state embedding for any token is that of the special token that most recently precedes it; for example, the token Becoming will get the state embedding of <object>. 

Secondly, we train a semantic-fidelity classifier. This takes the input data and a generated text and identifies whether the text accurately conveys the data or whether it adds, repeats, omits, or changes any of the content. We use this to rerank the generated texts according to accuracy. 

The classifier is trained using the same data we used to train our language model. Our original [data, text] pairs give us the examples that are to be classified as accurate. To get inaccurate examples, we use rule-based corruptions of the accurate [data, text] pairs. For example, we could take the training pair (Michelle Obama | author of | Becoming) and “Michelle Obama wrote Becoming and swap the entities to create the inaccurate [data, text] pair (Michelle Obama | author of | the Gruffalo) and “Michelle Obama wrote Becoming”.

For this classifier we use the RoBERTA language model with an additional classification layer, an approach that has been successful in other tasks, such as natural-language inference. For each input token (either data or text), we take the token embeddings, positional embeddings, and segment embeddings (embeddings of the tokens that distinguish text and data) and sum these element-wise to provide the input to RoBERTa’s first layer. A final single-layer neural network produces a classification label. 

Evaluation

We experimented with four different data sets in different formats, including news texts, restaurant reviews, and chats about video games. We evaluated the texts we generated both with automated metrics and by asking human annotators to rate fluency and accuracy via Amazon Mechanical Turk. 

In our experiments, we saw that a model trained without the fine-grained state embeddings is less accurate than a model with them and that adding the semantic-fidelity classifier boosts accuracy further.

We also examined the cases in which our generated texts were assessed as better than human-written texts, and we suspect that the reason is that our model learned to produce standard formulations, whereas humans sometimes write in non-standard or informal ways that other people might find less fluent.

We also investigated the use of our semantic-fidelity classifier as a method for automatically evaluating the accuracy of texts generated by different models and found that, for two datasets, it was a significantly better predictor of annotators’ evaluations than existing heuristic approaches.

Related content

US, WA, Seattle
Are you excited about building high-performance robotic systems that can perceive, learn, and act intelligently alongside humans? The Robotics AI team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.The Amazon Robotics team is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. Come join us!
US, VA, Arlington
The Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. As Director for PXT Central Science Technology, you will be responsible for leading multiple teams through rapidly evolving complex demands and define, develop, deliver and execute on our science roadmap and vision. You will provide thought leadership to scientists and engineers to invent and implement scalable machine learning recommendations and data driven algorithms supporting flexible UI frameworks. You will manage and be responsible for delivering some of our most strategic technical initiatives. You will design, develop and operate new, highly scalable software systems that support Amazon’s efforts to be Earth’s Best Employer and have a significant impact on Amazon’s commitment to our employees and communities where we both serve and employ 1.3 million Amazonians. As Director of Applied Science, you will be part of the larger technical leadership community at Amazon. This community forms the backbone of the company, plays a critical role in the broad business planning, works closely with senior executives to develop business targets and resource requirements, influences our long-term technical and business strategy, helps hire and develop engineering leaders and developers, and ultimately enables us to deliver engineering innovations.This role is posted for Arlington, VA, but we are flexible on location at many of our offices in the US and Canada.
US, VA, Arlington
Employer: Amazon.com Services LLCPosition: Data Scientist IILocation: Arlington, VAMultiple Positions Available1. Manage and execute entire projects or components of large projects from start to finish including data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights and recommendations.2. Oversee the development and implementation of data integration and analytic strategies to support population health initiatives.3. Leverage big data to explore and introduce areas of analytics and technologies.4. Analyze data to identify opportunities to impact populations.5. Perform advanced integrated comprehensive reporting, consultative, and analytical expertise to provide healthcare cost and utilization data and translate findings into actionable information for internal and external stakeholders.6. Oversee the collection of data, ensuring timelines are met, data is accurate and within established format.7. Act as a data and technical resource and escalation point for data issues, ensuring they are brought to resolution.8. Serve as the subject matter expert on health care benefits data modeling, system architecture, data governance, and business intelligence tools. #0000
US, TX, Dallas
Employer: Amazon.com Services LLCPosition: Data Scientist II (multiple positions available)Location: Dallas, TX Multiple Positions Available:1. Assist customers to deliver Machine Learning (ML) and Deep Learning (DL) projects from beginning to end, by aggregating data, exploring data, building and validating predictive models, and deploying completed models to deliver business impact to the organization;2. Apply understanding of the customer’s business need and guide them to a solution using AWS AI Services, AWS AI Platforms, AWS AI Frameworks, and AWS AI EC2 Instances;3. Use Deep Learning frameworks like MXNet, PyTorch, Caffe 2, Tensorflow, Theano, CNTK, and Keras to help our customers build DL models;4. Research, design, implement and evaluate novel computer vision algorithms and ML/DL algorithms;5. Work with data architects and engineers to analyze, extract, normalize, and label relevant data;6. Work with DevOps engineers to help customers operationalize models after they are built;7. Assist customers with identifying model drift and retraining models;8. Research and implement novel ML and DL approaches, including using FPGA;9. Develop computer vision and machine learning methods and algorithms to address real-world customer use-cases; and10. Design and run experiments, research new algorithms, and work closely with engineers to put algorithms and models into practice to help solve customers' most challenging problems.11. Approximately 15% domestic and international travel required.12. Telecommuting benefits are available.#0000
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Manager III, Data ScienceLocation: Bellevue, WashingtonPosition Responsibilities:Manage a team of data scientists working to build large-scale, technical solutions to increase effectiveness of Amazon Fulfillment systems. Define key business goals and map them to the success of technical solutions. Aggregate, analyze and model data from multiple sources to inform business decisions. Manage and quantify improvement in the customer experience resulting from research outcomes. Develop and manage a long-term research vision and portfolio of research initiatives, with algorithms and models that to be integrated in production systems. Hire and mentor junior scientists.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Arlington, VirginiaPosition Responsibilities:Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing Oracle, RedShift, and Spark storage systems. Build relationships with stakeholders and counterparts. Analyze data for trends and input validity by inspecting univariate distributions, exploring bivariate relationships, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build models using statistical modeling, mathematical modeling, econometric modeling, network modeling, social network modeling, natural language processing, machine learning algorithms, genetic algorithms, and neural networks. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, IL, Chicago
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist ILocation: Chicago, IllinoisPosition Responsibilities:Build the core intelligence, insights, and algorithms that support the real estate acquisition strategies for Amazon physical stores. Tackle cutting-edge, complex problems such as predicting the optimal location for new Amazon stores by bringing together numerous data assets, and using best-in-class modeling solutions to extract the most information out of them. Work with business stakeholders, software development engineers, and other data scientists across multiple teams to develop innovative solutions at massive scale.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, WA, Bellevue
How do you design and provide right incentives for millions of sellers that inbound and ship billions of customer orders? How do you measure sellers' response to /causal impacts of capacity control policies we implemented at Amazon using the state-of-the-art econometric techniques? How do you optimize Amazon’s third-party supply chain using new ideas never implemented at this scale to benefit millions of customers worldwide? How do you design and evaluate seller assistance to drive their success? If these type of questions get your mind racing, we want to hear from you.Supply Chain Optimization Technologies (SCOT) optimizes Amazon’s global supply chain end to end and build systems to deliver billions of products to our customers’ doorsteps faster every year while saving hundreds of millions of dollars using economics, operational research, machine learning, and scalable distributed software on the Cloud. Fulfillment by Amazon (FBA) is an Amazon service for our marketplace third party sellers, where our sellers leverage our world-class facilities and provide customers Prime delivery promise on all their goods.We are looking for the next outstanding economist to join our interdisciplinary team of data scientists, research scientists, applied scientists, economists. The ideal candidate combines econometric acumen with strong business judgment. You have versatile modeling skills and are comfortable extracting insights from observational and experimental data. You translate insights into action through proofs-of-concept and partnerships with engineers and data scientists to productionize. You are excited to learn from and alongside seasoned analysts, scientists, engineers, and business leaders. You are an excellent communicator and effectively translate business ideas and technical findings into business action (and customer delight).Key job responsibilitiesProvide data-driven guidance and recommendations on strategic questions facing the FBA leadershipDesign and implement V0 models and experiments to kickstart new initiatives, thinking, and drive system-level changes across AmazonHelp build a long-term research agenda to understand, break down, and tackle the most stubborn and ambiguous business challengesInfluence business leaders and work closely with other scientists at Amazon to deliver measurable progress and change
US, WA, Seattle
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve the employee and manager experience at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science!The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.We are seeking a senior Applied Scientist with expertise in more than one or more of the following areas: machine learning, natural language processing, computational linguistics, algorithmic fairness, statistical inference, causal modeling, reinforcement learning, Bayesian methods, predictive analytics, decision theory, recommender systems, deep learning, time series modeling. In this role, you will lead and support research efforts within all aspects of the employee lifecycle: from candidate identification to recruiting, to onboarding and talent management, to leadership and development, to finally retention and brand advocacy upon exit.The ideal candidate should have strong problem-solving skills, excellent business acumen, the ability to work independently and collaboratively, and have an expertise in both science and engineering. The ideal candidate is not methods-driven, but driven by the research question at hand; in other words, they will select the appropriate method for the problem, rather than searching for questions to answer with a preferred method. The candidate will need to navigate complex and ambiguous business challenges by asking the right questions, understanding what methodologies to employ, and communicating results to multiple audiences (e.g., technical peers, functional teams, business leaders).About the teamWe are a collegial and multidisciplinary team of researchers in People eXperience and Technology (PXT) that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We leverage data and rigorous analysis to help Amazon attract, retain, and develop one of the world’s largest and most talented workforces.
US, WA, Bellevue
Job summaryThe Global Supply Chain-ACES organization aims to raise the bar on Amazon’s customer experience by delivering holistic solutions for Global Customer Fulfillment that facilitate the effective and efficient movement of product through our supply chain. We develop strategies, processes, material handling and technology solutions, reporting and other mechanisms, which are simple, technology enabled, globally scalable, and locally relevant. We achieve this through cross-functional partnerships, listening to the needs of our customers and prioritizing initiatives to deliver maximum impact across the value chain. Within the organization, our Quality team balances tactical operation with operations partners with global engagement on programs to deliver improved inventory accuracy in our network. The organization is looking for an experienced Principal Research Scientist to partner with senior leadership to develop long term strategic solutions. As a Principal Scientist, they will lead critical initiatives for Global Supply Chain, leveraging complex data analysis and visualization to:a. Collaborate with business teams to define data requirements and processes;b. Automate data pipelines;c. Design, develop, and maintain scalable (automated) reports and dashboards that track progress towards plans;d. Define, track and report program success metrics.e. Serve as a technical science lead on our most demanding, cross-functional projects.