Amazon takes top three spots in Audio Anomaly Detection Challenge

Team from Amazon Web Services also wins the best-paper award at the Workshop on Detection and Classification of Acoustic Scenes and Events.

This week at Amazon Web Services’ re:Invent 2020 conference, Amazon announced Amazon Monitron, an end-to-end machine-monitoring system composed of sensors, a gateway, and a machine learning model that detects anomalies in vibration (structure-borne sound) or temperature and predicts when equipment may require maintenance. 

Machine condition monitoring was also the topic of a challenge at the Workshop on the Detection and Classification of Acoustic Scenes and Events (DCASE 2020), in November, in which Amazon took the top three spots, out of 117 submissions.

The challenge was to determine whether the sounds emitted by a machine — such as a fan, pump, or valve — were normal or anomalous. Forty academic and industry teams submitted entries, an average of almost three submissions per team.

In a pair of papers (paper 1|paper 2) we presented at the workshop, we describe the two different neural-network-based approaches we took in our submissions to the challenge. The first of those papers won the workshop’s best-paper award.

Spectrograms of audio clips recorded from a normal valve and a faulty valve.
Spectrograms of audio clips recorded from a normal valve (top) and a faulty valve (bottom). The magnified details show the difference between the normal signal and the anomalous signal.

Auditory machine condition monitoring has been common in industrial settings for several decades. Seasoned maintenance experts can identify problems in the machines they monitor just by listening to them and realizing that “something doesn’t sound right.” But by the time anomalies are audible to the human ear, the underlying problems may already be well advanced.

With the advent of machine learning and big data, there has been a lot of interest in teaching machines to detect anomalies sooner, to help predict when preventative maintenance might be necessary.

Data, labels, and rare failures

In general, anomaly detection is the problem of identifying abnormal inputs in a stream of inputs. Depending on the available data, there are three different ways to train anomaly detection systems: (i) fully supervised, in which labeled examples of normal and abnormal data are presented; (ii) semi-supervised, in which only normal data is presented; and (iii) unsupervised, in which there are no labels in the data set, and outliers have to be classified automatically. 

Anomalies can manifest themselves in different ways. For instance, you can have slow concept drift or sudden, instantaneous outliers. Typically, the data is also highly imbalanced — a lot more “normal” examples than “abnormal.”

Machines worth monitoring carefully — especially those that are critical or expensive — are usually also well maintained. This means that they rarely fail, and gathering anomalous data from them is challenging and may take many years and lots of effort.

Additionally, machines operate in different modes and under variable load or performance conditions, and their characteristics can change over time as they age and approach steady state. Some industries’ operational profiles have seasonal variations as well. 

All of these factors make anomaly detection challenging in the industrial setting. When implementing an anomaly detection system, one has to depend mostly on “normal” data, gathering additional data over time and eliciting user feedback. 

If accurate physical models of machines are available, it may be possible to simulate failures and generate “abnormal” data that way. One can also generate anomalous data by inducing hardware failures in the lab. But one has to be prepared to work with minimal data when a machine is instrumented for the first time (the so-called cold-start problem).

Anomaly detection and our two neural approaches

The papers we presented at DCASE (paper1|paper2) describe two different neural-network-based approaches to anomaly detection.

The first approach builds on recent advances in autoregressive neural-density estimation, or calculating a data distribution for streaming data by trying to predict each new data item on the basis of those that preceded it. As might be expected, such models are very sensitive to the order in which data arrives.

An earlier model, called the masked autoencoder for density estimation (MADE), makes a separate prediction for each feature — each dimension — of the input. With audio signals, however, the dimensions of the input are the energies in different frequency bands, which produce a composite picture of the signal that individual frequencies won’t capture. 

We introduce a variation of MADE that bases its predictions on groups of input features — in this case, groups of frequency bands — and which we accordingly call Group MADE.

In the second paper, we use a self-supervised approach for representation learning, which has been successful recently in solving problems in vision and speech. We believe that we are the first to apply it to audio anomaly detection. 

In the absence of anomalies in the training data, we trained a network to instead learn to distinguish multiple instances of machines within a given machine type. We found that the features learned by such a network were sensitive enough to detect delicate, previously unseen anomalies in the evaluation set. We used spectral warping and random mixing to simulate new machine instances in addition to the ones provided in the dataset. 

Two-dimensional visualizations of two different representations of the Toy Car sounds in the DCASE data set.
Two-dimensional visualizations of two different representations of the Toy Car sounds in the DCASE data set: the raw spectrograms (left) and the features learned by our self-supervised model (right). The blue samples represent data from a normal machine, the red samples data from an anomalous one. In the raw spectrograms, there is little separation between the normal and anomalous samples, while the learned features can much more clearly separate out the anomalous samples.

The DCASE challenge provided data from six different machines: fan, pump, slide rail, valve, toy car, and toy conveyor. DCASE also provided a development data set and a separate evaluation data set. Scoring was calculated using area under the ROC curve (AUC) and partial area under the ROC curve. The ROC curve maps false-positive rate against false-negative rate, so the area under the curve indicates how well a given system manages that trade-off; partial AUC is the AUC over a small false-positive-rate range, in this case [0, 0.1]. 

The table below shows the accuracies we were able to obtain, both for the challenge and since the challenge. We have developed a third approach that helped improve some of these numbers, which we will detail in a future publication. 

The challenge ranking method involved two steps, to account for the the disparate difficulty levels across various machine types. First, machine-specific rankings were assigned to all submissions, based on AUC and pAUC. The submissions were then ranked by the average of their machine-specific ranks. Please see the full leaderboard here.

While our models won the challenge using the across-all-machine-types scoring described above, fine-tuning them for specific machine types yielded the results in the last row.

DCASE results table

We believe that as more industrial machine data is accumulated and curated over the next few years, machine learning and neural-network-based approaches will start making a huge difference in the monitoring and maintenance of machines, and AWS and its services will be at the forefront of this revolution.

Research areas

Related content

US, CA, Santa Clara
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, NY, New York
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, WA, Seattle
Job summaryHow can we create a rich, data-driven shopping experience on Amazon? How do we build data models that helps us innovate different ways to enhance customer experience? How do we combine the world's greatest online shopping dataset with Amazon's computing power to create models that deeply understand our customers? Recommendations at Amazon is a way to help customers discover products. Our team's stated mission is to "grow each customer’s relationship with Amazon by leveraging our deep understanding of them to provide relevant and timely product, program, and content recommendations". We strive to better understand how customers shop on Amazon (and elsewhere) and build recommendations models to streamline customers' shopping experience by showing the right products at the right time. Understanding the complexities of customers' shopping needs and helping them explore the depth and breadth of Amazon's catalog is a challenge we take on every day. Using Amazon’s large-scale computing resources you will ask research questions about customer behavior, build models to generate recommendations, and run these models directly on the retail website. You will participate in the Amazon ML community and mentor Applied Scientists and software development engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and the retail business and you will measure the impact using scientific tools. We are looking for passionate, hard-working, and talented Applied scientist who have experience building mission critical, high volume applications that customers love. You will have an enormous opportunity to make a large impact on the design, architecture, and implementation of cutting edge products used every day, by people you know.Key job responsibilitiesScaling state of the art techniques to Amazon-scaleWorking independently and collaborating with SDEs to deploy models to productionDeveloping long-term roadmaps for the team's scientific agendaDesigning experiments to measure business impact of the team's effortsMentoring scientists in the departmentContributing back to the machine learning science community
US, NY, New York
Job summaryAmazon Web Services is looking for world class scientists to join the Security Analytics and AI Research team within AWS Security Services. This group is entrusted with researching and developing core data mining and machine learning algorithms for various AWS security services like GuardDuty (https://aws.amazon.com/guardduty/) and Macie (https://aws.amazon.com/macie/). In this group, you will invent and implement innovative solutions for never-before-solved problems. If you have passion for security and experience with large scale machine learning problems, this will be an exciting opportunity.The AWS Security Services team builds technologies that help customers strengthen their security posture and better meet security requirements in the AWS Cloud. The team interacts with security researchers to codify our own learnings and best practices and make them available for customers. We are building massively scalable and globally distributed security systems to power next generation services.Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop and enable them to take on more complex tasks in the future.A day in the lifeAbout the hiring groupJob responsibilities* Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment.* Collaborate with software engineering teams to integrate successful experiments into large scale, highly complex production services.* Report results in a scientifically rigorous way.* Interact with security engineers, product managers and related domain experts to dive deep into the types of challenges that we need innovative solutions for.
US, NY, New York
Job summary**This job is also open for New York and Palo Alto**This position will be part of the Marketplace Intelligence organization within Sponsored Products. Our team focuses on determining operating points of Sponsored Products to provide efficient and customized shopping experience for shoppers and increased discoverability and business growth for selling partners by developing new measurements, economics methodology, and state-of-the art machine learnt optimization technologies. Our systems, algorithms and strategies operates on one of the most sophisticated advertising marketplaces that evolves from impression to impression and changes from one marketplace to another, across segments of traffic and demand. Key job responsibilitiesAs a seasoned leader, you will build and manage an inter-disciplinary team with scientists, economists, and engineers to develop and manage monetization controls for SP marketplace. The leader will set the vision of pricing strategy, build engineering system and large scale machine learning and optimization models. These models will continuously change operating points based on the feedback of marketplace, shopper and advertisers.This is a rare and exciting opportunity to be a trailblazer at the intersection of cutting edge science, economics, game theory and engineering to impact millions of advertisers. As a hands-on leader of this team, you will be responsible for defining long term business strategies, answer key research questions, discover investment opportunities, develop and deploy innovative machine learning solutions and deliver business results. You will also participate in organizational planning, hiring, mentoring and leadership development. You will be technically fearless and build scalable science and engineering solutions.
US, WA, Seattle
Job summaryThe Amazon Product Classification and Inference Services team is seeking a Sr. Applied Science Manager for leading initiatives for understanding, classifying and inferring product information. Our vision is simple: build AI systems that are capable of a deep product understanding, so we can organize and merchandise products across the Amazon e-commerce catalog worldwide. You will lead a team of experienced Applied Scientists (direct reports) and also a Manager of Applied Science to create models and deliver them into the Amazon production ecosystem. Your efforts will build a robust ensemble of ML techniques that can drive classification of products with a high precision and scale to new countries and languages. The leader will drive investments in cutting edge machine learning: natural language processing, computer vision and artificial intelligence techniques to solve real world problems at scale. We develop Deep Neural Networks as our your daily job and use the team's output to affect the product discovery of the biggest e-tailer in the world. The research findings are directly related to Amazon’s Browse experience and impact million of customers. The team builds solutions ranging from automatic detection of misclassified product information in the ever growing Amazon Catalog, applications for inferring and backfilling product attributes (processing images, text and all the unstructured attributes) in the Amazon catalog to drive true understanding of products at scale. We are looking for an entrepreneurial, experienced Sr. Applied Science Manager who can turn a group of Machine Learning Scientists and Managers (PhD's in NLP, CV) to produce best in class solutions. The ideal candidate has deep expertise in one or several of the following fields: Web search, Applied/Theoretical Machine Learning, Deep Neural Networks, Classification Systems, Clustering, Label Propagation, Natural Language Processing, Computer Vision. S/he has a strong publication record at top relevant academic venues and experience in launching products/features in the industry.Key job responsibilitiesIn this team, you will:Manage business and technical requirements, design, be responsible for the overall coordination, quality, productivity and will be the primary point of contact for world-wide stakeholders of programs and goals that you lead.Partner with scientists, economists, and engineers to help deliver scalable ML scaled models, while building mechanisms to help our customers gain and apply insights, and build road maps for the projects you own.Track service levels and schedule adherence, and ensure the individual stakeholder teams meet and exceed their performance targets.Be expected to discover, define, and apply scientific, engineering, and business best practices.Manage and develop Scientists (direct reports and a Science Manager with a respective team).A day in the lifeYou will lead an Amazon team that builds creative solutions to real world problems. Your team will own devising the strategy and execution plans that power initiatives ranging from: classifying all Amazon products, fact extraction, automatic detection of missing product information, active learning mechanisms for scaling human tasks, building applications for understanding what type of information is critical, building mechanisms to analyze product composition, ingest images, text, and unstructured data to drive deep understanding of products at scale. About the teamThe team's mission is to infer knowledge, understand, classify, derive product facts for all Amazon products entering the Catalog. The work is critical to power the Amazon Taxonomy, Search, Navigation and Detail Page experiences, impacting million of customers. This is an already formed team with experience leading programs spanning services and ML initiatives supporting all countries and languages. The leader collaborates closely with Software Managers, Sr. Leaders, and has exposure to multiple peer teams at Amazon who rely on this team's developments.
US, MA, Westborough
Job summaryAre you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers who work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling, and fun.Amazon.com empowers a smarter, faster, more consistent customer experience through automation. Amazon Robotics automates fulfillment center operations using various methods of robotic technology including autonomous mobile robots, sophisticated control software, language perception, power management, computer vision, depth sensing, machine learning, object recognition, and semantic understanding of commands. Amazon Robotics has a dedicated focus on research and development to continuously explore new opportunities to extend its product lines into new areas.This role is a 3-month internship to join AR full-time (40 hours/week) from May 22, 2023 to August 25, 2023. This Amazon Robotics internship opportunities will be Hybrid (2- 3 days onsite) and based out of the Greater Boston Area in Westborough, MA. The campus provides a unique opportunity to have direct access to robotics testing labs and manufacturing facilities.About the teamWe are seeking data scientist interns to help us analyze data, quantify uncertainty, and build machine learning models to make quick prediction.
US, WA, Seattle
Job summaryDo you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day.Major responsibilities Use statistical and machine learning techniques to create scalable risk management systemsLearning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trendsDesign, development and evaluation of highly innovative models for risk managementWorking closely with software engineering teams to drive real-time model implementations and new feature creationsWorking closely with operations staff to optimize risk management operations,Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementationTracking general business activity and providing clear, compelling management reporting on a regular basisResearch and implement novel machine learning and statistical approaches