A quick guide to Amazon’s 45-plus NAACL papers

The breadth and originality of Amazon’s natural-language-processing research are on display at the annual meeting of the North American chapter of the Association for Computational Linguistics.

Amazon’s 45-plus papers at the annual meeting of the North American chapter of the Association for Computational Linguistics, which begins next week, sorted by research area.

Continual learning

Lifelong pretraining: Continually adapting language models to emerging corpora
Xisen Jin, Dejiao Zhang, Henghui Zhu, Wei Xiao, Shang-Wen Li, Xiaokai Wei, Andrew O. Arnold, Xiang Ren

Local-to-global learning for iterative training of production SLU models on new features
Yulia Grishina, Daniil Sorokin

Overcoming catastrophic forgetting during domain adaptation of seq2seq language generation
Dingcheng Li, Zheng Chen, Eunah Cho, Jie Hao, Xiaohu Liu, Xing Fan, Chenlei (Edward) Guo, Yang Liu

Overcoming catastrophic forgetting.png
In "Overcoming catastrophic forgetting during domain adaptation of seq2seq language generation", Amazon researchers propose a method for estimating how much data representations shift when an existing model is trained on a new task (right).

Temporal generalization for spoken language understanding
Judith Gaspers, Anoop Kumar, Greg Ver Steeg, Aram Galstyan

Data augmentation

Constraining word alignments with posterior regularization for label transfer
Kevin Martin Jose, Thomas Gueudré

Word alignments.png
An example of the difficulty in using word alignment to transfer textual labels from one language to another. In English, the article "the" is assigned the label "o", for "other"; in French, the abbreviated article is combined with its noun, and both receive the same label ("type"). From "Constraining word alignments with posterior regularization for label transfer".

Controlled data generation via insertion operations for NLU
Manoj Kumar, Haidar Khan, Yuval Merhav, Wael Hamza, Anna Rumshisky, Rahul Gupta

Efficient semi supervised consistency training for natural language understanding
George Leung, Joshua Tan

Learning to generate examples for semantic processing tasks
Danilo Croce, Simone Filice, Giuseppe Castellucci, Roberto Basili

Dialogue

Learning dialogue representations from consecutive utterances
Zhihan Zhou, Dejiao Zhang, Wei Xiao, Nicholas Dingwall, Xiaofei Ma, Andrew O. Arnold, Bing Xiang

Massive-scale decoding for text generation using lattices
Jiacheng Xu, Siddhartha Reddy Jonnalagadda, Greg Durrett

Entity linking, resolution, and typing

Contrastive representation learning for cross-document coreference resolution of events and entities
Benjamin Hsu, Graham Horwood

Improving entity disambiguation by reasoning over a knowledge base
Tom Ayoola, Joseph Fisher, Andrea Pierleoni

ReFinED: An efficient zero-shot-capable approach to end-to-end entity linking
Tom Ayoola, Shubhi Tyagi, Joseph Fisher, Christos Christodoulopoulos, Andrea Pierleoni

Instilling type knowledge in language models via multi-task QA
Shuyang Li, Mukund Sridhar, Chandana Satya Prakash, Jin Cao, Wael Hamza, Julian McAuley

Explainable AI

Entailment trees.png
In "Entailment tree explanations via iterative retrieval-generation reasoner", Amazon researchers propose a method for explaining the outputs of large language models by logically recombining premises extracted from supporting textual evidence.

Entailment tree explanations via iterative retrieval-generation reasoner
Danilo Neves Ribeiro, Shen Wang, Xiaofei Ma, Rui Dong, Xiaokai Wei, Henry Zhu, Xinchi Chen, Zhiheng Huang, Peng Xu, Andrew O. Arnold, Dan Roth

Locally aggregated feature attribution on natural language model understanding
Sheng Zhang, Jin Wang, Haitao Jiang, Rui Song

Extreme multilabel classification

Augmenting training data for massive semantic matching models in low-traffic e-commerce stores
Ashutosh Joshi, Shankar Vishwanath, Choon Hui Teo, Vaclav Petricek, Vishy Vishwanathan, Rahul Bhagat, Jonathan May

Extreme zero shot learning for extreme text classification
Yuanhao Xiong, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Inderjit S. Dhillon

Federated learning

Federated learning with noisy user feedback
Rahul Sharma, Anil Ramakrishna, Ansel MacLaughlin, Anna Rumshisky, Jimit Majmudar, Clement Chung, Salman Avestimehr, Rahul Gupta

Keyword spotting

AB/BA analysis: A framework for estimating keyword spotting recall improvement while maintaining audio privacy
Raphael Petegrosso, Vasistakrishna Baderdinni, Thibaud Senechal, Benjamin L. Bullough

Machine translation

CoCoA-MT: A dataset and benchmark for contrastive controlled MT with application to formality
Maria Nadejde, Anna Currey, Benjamin Hsu, Xing Niu, Marcello Federico, Georgiana Dinu

Dynamic pulling.png
In federated learning, distributed copies of a neural network are trained locally, and only their updates (red) are sent to a central model. "Training mixed-domain translation models via federated learning" introduces a technique called dynamic pulling, in which distributed models with large shifts in parameter values between training rounds (lower left) see their parameters pulled into the central model separately from those of models with smaller shifts.

The devil is in the details: On the pitfalls of vocabulary selection in neural machine translation
Tobias Domhan, Eva Hasler, Ke Tran, Sony Trenous, Bill Byrne, Felix Hieber

Training mixed-domain translation models via federated learning
Peyman Passban, Tanya G. Roosta, Rahul Gupta, Ankit Chadha, Clement Chung

Multitask learning

Asynchronous convergence in multi-task learning via knowledge distillation from converged tasks
Weiyi Lu, Sunny Rajagopalan, Priyanka Nigam, Jaspreet Singh, Xiaodi Sun, Yi Xu, Belinda Zeng, Trishul Chilimbi

Exploring the role of task transferability in large-scale multi-task learning
Vishakh Padmakumar, Leonard Lausen, Miguel Ballesteros, Sheng Zha, He He, George Karypis

Named-entity recognition

Dynamic gazetteer integration in multilingual models for cross-lingual and cross-domain named entity recognition
Besnik Fetahu, Anjie Fang, Oleg Rokhlenko, Shervin Malmasi

NER-MQMRC: Formulating named entity recognition as multi question machine reading comprehension
Anubhav Shrimal, Avi Jain, Kartik Mehta, Promod Yenigalla

Question answering

Answer consolidation: Formulation and benchmarking
Wenxuan Zhou, Qiang Ning, Heba Elfardy, Kevin Small, Muhao Chen

Paragraph-based transformer pre-training for multi-sentence inference
Luca Di Liello, Siddhant Garg, Luca Soldaini, Alessandro Moschitti

PerKGQA: Question answering over personalized knowledge graphs
Ritam Dutt, Kasturi Bhattacharjee, Rashmi Gangadharaiah, Dan Roth, Carolyn Penstein Rosé

Product answer generation from heterogeneous sources: A new benchmark and best practices
Xiaoyu Shen, Gianni Barlacchi, Marco Del Tredici, Weiwei Cheng, Adria de Gispert, Bill Byrne

Recommender systems

CERES: Pretraining of graph-conditioned transformer for semi-structured session data
Rui Feng, Chen Luo, Qingyu Yin, Bing Yin, Tuo Zhao, Chao Zhang

Self-learning

Failure point isolation.png
In "FPI: Failure point isolation in large-scale conversational assistants", Amazon researchers propose a method for deducing where in a conversational agent's processing pipeline an error has occurred.

FPI: Failure point isolation in large-scale conversational assistants
Rinat Khaziev, Usman Shahid, Tobias Röding, Rakesh Chada, Emir Kapanci, Pradeep Natarajan

Scalable and robust self-learning for skill routing in large-scale conversational AI systems
Mohammad Kachuee, Jinseok Nam, Sarthak Ahuja, Jin-Myung Won, Sungjin Lee

Self-aware feedback-based self-learning in large-scale conversational AI
Pragaash Ponnusamy, Clint Solomon Mathialagan, Gustavo Aguilar, Chengyuan Ma, Chenlei (Edward) Guo

Task-oriented parsing.png
An example of task-oriented semantic parsing, which converts natural language into a formal representation that an AI agent can act on. From "Compositional task-oriented parsing as abstractive question answering".

Semantic parsing

Compositional task oriented parsing as abstractive question answering
Wenting Zhao, Konstantine Arkoudas, Weiqi Sun, Claire Cardie

SeqZero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models
Jingfeng Yang, Haoming Jiang, Qingyu Yin, Danqing Zhang, Bing Yin, Diyi Yang

Task adaptation

Attention fusion: A light yet efficient late fusion mechanism for task adaptation in NLU
Jin Cao, Chandana Satya Prakash, Wael Hamza

Empowering parameter-efficient transfer learning by recognizing the kernel structure in attention
Yifan Chen, Devamanyu Hazarika, Mahdi Namazifar, Yang Liu, Di Jin, Dilek Hakkani-Tür

Text mining

Distantly supervised aspect clustering and naming for e-commerce reviews
Prateek Sircar, Aniket Chakrabarti, Deepak Gupta, Anirban Majumdar

Efficient few-shot fine-tuning for opinion summarization
Arthur Bražinskas, Ramesh Nallapati, Mohit Bansal, Markus Dreyer

FactGraph: Evaluating factuality in summarization with semantic graph representations
Leonardo F. R. Ribeiro, Mengwen Liu, Iryna Gurevych, Markus Dreyer, Mohit Bansal

Knowledge selection.png
An example of how a conversational agent might incorporate facts gleaned form online sources (white boxes) into its conversational replies (blue boxes). From "Enhanced knowledge selection for grounded dialogues via document semantic graphs".

Enhanced knowledge selection for grounded dialogues via document semantic graphs
Sha Li, Madhi Namazifar, Di Jin, Mohit Bansal, Heng Ji, Yang Liu, Dilek Hakkani-Tür

Retrieval-augmented multilingual keyphrase generation with retriever-generator iterative training
Yifan Gao, Qingyu Yin, Zheng Li, Rui Meng, Tong Zhao, Bing Yin, Irwin King, Michael R. Lyu

What do users care about? Detecting actionable insights from user feedback
Kasturi Bhattacharjee, Rashmi Gangadharaiah, Kathleen McKeown, Dan Roth

Text-to-speech

Empathic machines: using intermediate features as levers to emulate emotions in text-to-speech systems
Saiteja Kosgi, Sarath Sivaprasad, Niranjan Pedanekar, Anil Nelakanti, Vineet Gandhi

Research areas

Related content

US, WA, Bellevue
Who are we? Do you want to build Amazon's next $100B business? We're not just joining the shipping industry—we're transforming how billions of packages move across the world every year. Through evolving Amazon's controlled, predictable fulfillment network into a dynamic, adaptive shipping powerhouse we are building an intelligent system that optimizes in real-time to deliver on the promises businesses make to their customers. Our mission goes beyond moving boxes—we're spinning a flywheel where every new package makes our network stronger, faster, and more efficient. As we increase density and scale, we're revolutionizing shipping for businesses while simultaneously strengthening Amazon's own delivery capabilities, driving down costs and increasing speed for our entire ecosystem. What will you do? Amazon shipping is seeking a Senior Data Scientist with strong pricing and machine learning skills to work in an embedded team, partnering closely with commercial, product and tech. This person will be responsible for developing demand prediction models for Amazon shipping’s spot pricing system. As a Senior Data Scientist, you will be part of a science team responsible for improving price discovery across Amazon shipping, measuring the impact of model implementation, and defining a roadmap for improvements and expansion of the models into new unique use cases. This person will be collaborating closely with business and software teams to research, innovate, and solve high impact economics problems facing the worldwide Amazon shipping business. Who are you? The ideal candidate is analytical, resourceful, curious and team oriented, with clear communication skills and the ability to build strong relationships with key stakeholders. You should be a strong owner, are right a lot, and have a proven track record of taking on end-to-end ownership of and successfully delivering complex projects in a fast-paced and dynamic business environment. As this position involves regular interaction with senior leadership (director+), you need to be comfortable communicating at that level while also working directly with various functional teams. Key job responsibilities * Combine ML methodologies with fundamental economics principles to create new pricing algorithms. * Automate price exploration through automated experimentation methodologies, for example using multi-armed bandit strategies. * Partner with other scientists to dynamically predict prices to maximize capacity utilization. * Collaborate with product managers, data scientists, and software developers to incorporate models into production processes and influence senior leaders. * Educate non-technical business leaders on complex modeling concepts, and explain modeling results, implications, and performance in an accessible manner. * Independently identify and pursue new opportunities to leverage economic insights * Opportunity to expand into other domains such as causal analytics, optimization and simulation. About the team Amazon Shipping's pricing team empowers our global business to find strategic harmony between growth and profit tradeoffs, while seeking long term customer value and financial viability. Our people and systems help identify and drive synergy between demand, operational, and economic planning. The breadth of our problems range from CEO-level strategic support to in-depth mathematical experimentation and optimization. Excited by the intersection of data and large scale strategic decision-making? This is the team for you!
US, NY, New York
Principal Applied Scientists in AWS Science of Security are dedicated to making AWS the best computing service in the world for customers who require advanced and rigorous solutions for security, privacy, and sovereignty. Key job responsibilities The successful candidate will: *Solve large or significantly complex problems that require deep knowledge and understanding of your domain and scientific innovation. *Own strategic problem solving, and take the lead on the design, implementation, and delivery for solutions that have a long-term quantifiable impact. *Povide cross-organizational technical influence, increasing productivity and effectiveness by sharing your deep knowledge and experience. * Develop strategic plans to identify fundamentally new solutions for business problems. * Assist in the career development of others, actively mentoring individuals and the community on advanced technical issues. A day in the life This is a unique and rare opportunity to get in early on a fast-growing segment of AWS and help shape the technology, product and the business. You will have a chance to utilize your deep technical experience within a fast moving, start-up environment and make a large business and customer impact.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models.  As a Principal Scientist, you will lead the research and development of complex sensing systems that help our robots perceive the world around them. You will explore and guide the exploration of novel sensing modalities, refining the existing ones, and imagine the future of robot–based perception, safety, and navigation. You will formulate a robust sensing architecture, lead the experimentation and prototyping, and take part in creating future robots that are fully aware of their surroundings. Key job responsibilities - Build and lead teams focused on hardware, firmware, and embedded systems - Drive technical roadmaps for next-generation robotics platforms - Drive architecture decisions for complex robotics perception systems - Bring the latest trends and scientific developments in robotic perception to the technical team - Create technical standards for robotics sensing platforms - Drive innovation in real-time perception and control systems
US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, CA, San Francisco
The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team PXTCS is a multidisciplinary science team that develops innovative solutions to make Amazon Earth's Best Employer
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, CA, Sunnyvale
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like Echo, Fire Tablets, Fire TV, and other consumer devices. We are looking for exceptional scientists to join our Applied Science team to help build industry-leading technology with multimodal language models for various edge applications. This role is for a Sr. Applied Scientist to lead science efforts for on-device inference pipelines and orchestration, working closely with cross-functional product and engineering teams to invent, design, develop, and validate new AI features for our devices. Key job responsibilities * Lead cross-functional efforts to invent, design, develop, and validate new AI features for our devices * Invent, build, and evaluate model inference and orchestrations to enable new customer experiences * Drive partnerships with product and engineering teams to implement algorithms and models in production * Train and optimize state-of-the-art multimodal models for resource-efficient deployment * Work closely with compiler engineers, hardware architects, data collection, and product teams A day in the life As an Applied Scientist with the Silicon and Solutions Group Edge AI team, you'll contribute to science solution design, conduct experiments, explore new algorithms, develop embedded inference pipelines, and discover ways to enrich our customer experiences. You'll have opportunities to collaborate across teams of engineers and scientists to bring algorithms and models to production. About the team Our Devices team specializes in inventing new-to-world, category creating products using advanced machine learning technologies. This role is on a new cross-functional team, whose cadence and structure resembles an efficient and fast-paced startup, with rapid growth and development opportunities.
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLE Employer: AMAZON.COM SERVICES LLC Offered Position: Data Scientist III Job Location: Seattle, Washington Job Number: AMZ9674365 Position Responsibilities: Own the data science elements of various products to help with data-based decision making, product performance optimization, and product performance tracking. Work directly with product managers to help drive the design of the product. Work with Technical Product Managers to help drive the build planning. Translate business problems and products into data requirements and metrics. Initiate the design, development, and implementation of scientific analysis projects or deliverables. Own the analysis, modelling, system design, and development of data science solutions for products. Write documents and make presentations that explain model/analysis results to the business. Bridge the degree of uncertainty in both problem definition and data scientific solution approaches. Build consensus on data, metrics, and analysis to drive business and system strategy. Position Requirements: Master's degree or foreign equivalent degree in Statistics, Applied Mathematics, Economics, Engineering, Computer Science or a related field and two years of experience in the job offered or a related occupation. Employer will accept a Bachelor's degree or foreign equivalent degree in Statistics, Applied Mathematics, Economics, Engineering, Computer Science, or a related field and five years of progressive post-baccalaureate experience in the job offered or a related occupation as equivalent to the Master's degree and two years of experience. Must have one year of experience in the following skills: (1) building statistical models and machine learning models using large datasets from multiple resources; (2) building complex data analyses by leveraging scripting languages including Python, Java, or related scripting language; and (3) communicating with users, technical teams, and management to collect requirements, evaluate alternatives, and develop processes and tools to support the organization. Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation. 40 hours / week, 8:00am-5:00pm, Salary Range $162,752/year to $215,300/year. Amazon is a total compensation company. Dependent on the position offered, equity, sign-on payments, and other forms of compensation may be provided as part of a total compensation package, in addition to a full range of medical, financial, and/or other benefits. For more information, visit: https://www.aboutamazon.com/workplace/employee-benefits.#0000
US, WA, Seattle
Are you passionate about applying machine learning and advanced statistical techniques to protect one of the world's largest online marketplaces? Do you want to be at the forefront of developing innovative solutions that safeguard Amazon's customers and legitimate sellers while ensuring a fair and trusted shopping experience? Do you thrive in a collaborative environment where diverse perspectives drive breakthrough solutions? If yes, we invite you to join the Amazon Global Risk Intelligence Science Team. We're seeking an exceptional scientist who can revolutionize how we protect our stores. As a key member of our team, you'll develop and deploy machine learning systems that analyze millions of seller interactions daily, ensuring the integrity and trustworthiness of Amazon's marketplace while scaling our operations to new heights. Your work will directly impact the shopping experience for hundreds of millions of customers worldwide, while supporting the growth of our selling partners. Key job responsibilities • Use machine learning and statistical techniques to create scalable abuse detection solutions that identify fraudulent seller behavior, rings of accounts, identity change, holistic seller risk and marketplace manipulation schemes • Innovate with the latest GenAI technology to build highly automated solutions for efficient transaction monitoring, and risk assessment • Design, develop and deploy end-to-end machine learning solutions in the Amazon production environment to prevent and detect sophisticated abuse patterns across the marketplace • Learn, explore and experiment with the latest machine learning advancements to protect customer trust and maintain marketplace integrity while supporting legitimate selling partners • Collaborate with cross-functional teams to develop comprehensive risk models that can adapt to evolving abuse patterns and emerging threats About the team You'll be working closely with business partners, science and engineering teams to create end-to-end scalable machine learning solutions that address real-world problems. You will build scalable, efficient, and automated processes for large-scale data analyses, model development, model validation, and model implementation. You will also be providing clear and compelling reports for your solutions and contributing to the ongoing innovation and knowledge-sharing that are central to the team's success.
US, WA, Seattle
About Sponsored Products and Brands: The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About Our Team: The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. About This Role: As an Applied Scientist on our team, you will: * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build monetization and optimization systems that leverage generative models to value and improve campaign performance. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses. * Effectively communicate technical and non-technical ideas with teammates and stakeholders; * Stay up-to-date with advancements and the latest modeling techniques in the field. * Think big about the arc of development of Gen AI over a multi-year horizon and identify new opportunities to apply these technologies to solve real-world problems. #GenAI