Vancouver, Canada

3 important themes from Amazon's 2019 NeurIPS papers

Time series forecasting, bandit problems, and optimization are integral to Amazon's efforts to deliver better value for its customers.

Last year, the first 2,000-2,500 publicly released tickets to the Conference on Neural Information Processing Systems, or NeurIPS, sold out in 12 minutes.

This year, the conference organizers moved to a lottery system, allowing aspiring attendees to register in advance and randomly selecting invitees from the pool of registrants. But they also bumped the number of public-release tickets up from around 2,000 to 3,500, testifying to the conference’s continued popularity.

At NeurIPS this year, there are 26 papers with Amazon coauthors. They cover a wide range of topics, but surveying their titles, Alex Smola, a vice president and distinguished scientist in the Amazon Web Services organization, discerns three prominent themes, all tied to Amazon’s efforts to deliver better value for its customers.

Those three themes are time series forecasting (and causality), bandit problems, and optimization.

1. Time series forecasting

Time series forecasting involves measuring some quantity over time — such as the number of deliveries in a particular region in the past six months, or the number of cloud servers required to support a particular site over the past two years — and attempting to project that quantity into the future.

“That’s something that is very dear to Amazon’s heart,” Smola says. “For anything that Amazon does, it’s really beneficial to have a good estimate of what our customers will expect from us ahead of time. Only by being able to do that will we be able to satisfy customers’ demands, be it for products or services.”

A sequence of basis time series, forecast into the near future and summed together to approximate a new time series.
The paper “Think Globally, Act Locally” examines data sets with many correlated time series, such as the demand curves for millions of products sold online. The researchers describe a method for constructing a much smaller set of “basis time series”; the time series for any given product can be approximated by a weighted sum of the bases.
Courtesy of the researchers

The basic mathematical framework for time series forecasting is a century old, but the scale of modern forecasting problems calls for new analytic techniques, Smola says.

“Problems are nowadays highly multivariate,” Smola says. “If you look at the many millions of products that we offer, you want to be able to predict fairly well what will sell, where and to whom.

“You need to make reasonable assumptions on how this very large problem can be decomposed into smaller, more tractable pieces. You make structural approximations, and sometimes those structural approximations are what leads to very different algorithms.

“So you might, for instance, have a global model, and then you have local models that address the specific items or address the specific sales. If you look at ‘Think Globally, Act Locally’” — a NeurIPS paper whose first author is Rajat Sen, an applied scientist in the Amazon Search group — “it’s already in the title. Or look at ‘High-Dimensional Multivariate Forecasting with Low-Rank Gaussian Copula Processes’. In this case, you have a global structure, but it’s only in a small subspace where interesting things happen.”

Side-by-side images depict correlations between taxi traffic at different points in Manhattan at different times of day
The paper "High-Dimensional Multivariate Forecasting with Low-Rank Gaussian Copula Processes" describes a method for predicting correlations among many parallel time series. In one example, the researchers forecast correlations between the taxi traffic at different points in New York City at different times of day. Red lines indicate strong correlations; blue lines indicate strong negative correlations. Weekend midday traffic patterns (left) show negative correlations between locations near the Empire State Building, suggesting that taxis tend to prefer different routes depending on traffic conditions. Weekend evening traffic patterns show positive correlations between the vicinity of the Empire State Building and areas with high concentrations of hotels.
Courtesy of the researchers

An aspect of forecasting that has recently been drawing more attention, Smola says, is causality. Where traditional machine learning models merely infer statistical correlations between data points, “it is ultimately the causal relationship that matters,” Smola says.

“I think that causality is one of the most interesting conceptual developments affecting modern machine learning,” says Bernhard Schölkopf, like Smola a vice president and distinguished scientist in Amazon Web Services. “This is the main topic that I have been interested in for the last decade.”

Two of Schölkopf’s NeurIPS papers — “Perceiving the Arrow of Time in Autoregressive Motion” and “Selecting Causal Brain Features with a Single Conditional Independence Test per Feature” — address questions of causality, as does “Causal Regularization”, a paper by Dominik Janzing, a senior research scientist in Smola’s group.

“Normal machine learning builds on correlations of other statistical dependences,” Schölkopf explains. “This is fine as long as the source of the data doesn't change. For example, if in the training set of an image recognition system, all cows are standing on green pasture, then it is fine for an ML system to use the green as a useful feature in recognizing cows, as long as the test set looks the same. If in the test set, the cows are standing on the beach, then such a purely statistical system can fail.

“More generally: causal learning and inference attempts to understand how systems respond to interventions and other changes, and not just how to predict data that looks more or less the same as the training data.”

2. Bandit problems

The second major theme that Smola discerns in Amazon scientists’ NeurIPS papers is a concern with bandit problems, a phrase that shows up in the titles of Amazon papers such as “MaxGap Bandit: Adaptive Algorithms for Approximate Ranking” and “Low-Rank Bandit Methods for High-Dimensional Dynamic Pricing”. Bandit problems take their name from one-armed bandits, or slot machines.

“It used to be that those bandits were all mechanical, so there would be slight variations between them, and some would have maybe a slightly a higher return than others,” Smola explains. “I walk into a den of iniquity, and I want to find the one-armed bandit where I will lose the least money or maybe make some money. And the only feedback I have is that I pull arms, and I get money or lose money. These are very unreliable, noisy events.”

Bandit problems present what’s known as an explore-exploit trade-off. The gambler must simultaneously explore the environment — determine which machines pay out the most — and exploit the resulting knowledge — concentrate as much money as possible on the high-return machines. Early work on bandit problems concerned identifying the high-return machines with minimal outlays.

“That problem was solved about 20 years ago,” Smola says. “What hasn’t been solved — and this is where things get a lot more interesting — is once you start adding context. Imagine that I get to show you various results as you’re searching for your next ugly Christmas sweater. The unfortunate thing is that the creativity of sweater designers is larger than what you can fit on a page. Now the context is essentially, what time, where from, which user, all those things. We want to find and recommend the ugly Christmas sweater that works specifically for you. This is an example where context is immediately relevant.”

It’s really beneficial to have a good estimate of what our customers will expect from us ahead of time. Only by being able to do that will we be able to satisfy customers’ demands.
Alex Smola, VP and distinguished scientist, Amazon

In the bandit-problem framework, in other words, the high-payout machines change with every new interaction. But there may be external signals that indicate how they’re changing.

Distributed computing, which is inescapable for today’s large websites, changes the structure of the bandit problem, too.

“Say you go to a restaurant, and the cook wants to improve the menu,” Smola says. “You can try out lots of new menu items, and that’s a good way to improve the menu overall. But if you start offering a lot of undercooked dishes because you’re experimenting, then at some point your loyal customers will stay away.

“Now imagine you have 100 restaurants, and they all do the same thing at the same time. They can’t necessarily communicate at the per-second level; maybe every day or every week they chat with each other. Now this entire exploration problem becomes a little more challenging, because if two restaurants try out the same undercooked dish, you make the customer less happy than you could have.

“So how does this map back into Amazon land? Well, if you have many servers doing this recommendation, the explore-exploit trade-off might be too aggressive if every one of them works on their own.”

3. Optimization

Finally, Smola says, “There is a third category of results that has to do with making algorithms faster. If you look at ‘Primal-Dual Block Frank-Wolfe’, ‘Communication-Efficient Distributed SGD with Sketching’, ‘Qsparse-Local-SGD’ — those are the workhorses that run underneath all of this. Making them more efficient is obviously something that we care about, so we can respond to customer requests faster, train algorithms faster.”

Bird’s-eye view

NeurIPS is a huge conference, with more than 1,400 accepted papers that cover a bewildering variety of topics. Beyond the Amazon papers, Caltech professor and Amazon fellow Pietro Perona identifies three research areas as growing in popularity.

“One is understanding how deep networks work, so that we can better design architectures and optimization algorithms to train models,” Perona says. “Another is low-shot learning. Machines are still much less efficient than humans at learning, in that they need more training examples to achieve the same performance. And finally, AI and society — identifying opportunities for social good, sustainable development, and the like.”

NeurIPS is being held this year at the Vancouver Convention Center, and the main conference runs from Dec. 8 to Dec. 12. The Women in Machine Learning Workshop, for which Amazon is a gold-level sponsor, takes place on Dec. 9; the Third Conversational AI workshop, whose organizers include Alexa AI principal scientist Dilek Hakkani-Tür, will be held on Dec. 14.

Amazon's involvement at NeurIPS

Paper and presentation schedule

Tuesday, 12/10 | 10:45-12:45pm | East Exhibition Hall B&C

A Meta-MDP Approach to Exploration for Lifelong Reinforcement Learning | #192
Francisco Garcia (UMass Amherst/Amazon) · Philip Thomas (UMass Amherst)

Blocking Bandits | #17
Soumya Basu (UT Austin) · Rajat Sen (UT Austin/Amazon) · Sujay Sanghavi (UT Austin/Amazon) · Sanjay Shakkottai (UT Austin)

Causal Regularization | #180
Dominik Janzing (Amazon)

Communication-Efficient Distributed SGD with Sketching | #81
Nikita Ivkin (Amazon) · Daniel Rothchild (University of California, Berkeley) · Md Enayat Ullah (Johns Hopkins University) · Vladimir Braverman (Johns Hopkins University) · Ion Stoica (UC Berkeley) · Raman Arora (Johns Hopkins University)

Learning Distributions Generated by One-Layer ReLU Networks | #49
Shanshan Wu (UT Austin) ·Alexandros G. Dimakis (UT Austin) · Sujay Sanghavi (UT Austin/Amazon)

Tuesday, 12/10 | 5:30-7:30pm | East Exhibition Hall B&C

Efficient Communication in Multi-Agent Reinforcement Learning via Variance Based Control | #195
Sai Qian Zhang (Harvard University) · Qi Zhang (Amazon) · Jieyu Lin (University of Toronto)

Extreme Classification in Log Memory using Count-Min Sketch: A Case Study of Amazon Search with 50M Products | #37
Tharun Kumar Reddy Medini (Rice University) · Qixuan Huang (Rice University) · Yiqiu Wang (Massachusetts Institute of Technology) · Vijai Mohan (Amazon) · Anshumali Shrivastava (Rice University/Amazon)

Iterative Least Trimmed Squares for Mixed Linear Regression | #50
Yanyao Shen (UT Austin) · Sujay Sanghavi (UT Austin/Amazon)

Meta-Surrogate Benchmarking for Hyperparameter Optimization | #6
Aaron Klein (Amazon) · Zhenwen Dai (Spotify) · Frank Hutter (University of Freiburg) · Neil Lawrence (University of Cambridge) · Javier Gonzalez (Amazon)

Qsparse-local-SGD: Distributed SGD with Quantization, Sparsification and Local Computations | #32
Debraj Basu (Adobe) · Deepesh Data (UCLA) · Can Karakus (Amazon) · Suhas Diggavi (UCLA)

Selecting Causal Brain Features with a Single Conditional Independence Test per Feature | #139
Atalanti Mastakouri (Max Planck Institute for Intelligent Systems) · Bernhard Schölkopf (MPI for Intelligent Systems/Amazon) · Dominik Janzing (Amazon)

Wednesday, 12/11 | 10:45-12:45pm | East Exhibition Hall B&C

On Single Source Robustness in Deep Fusion Models | #93
Taewan Kim (Amazon) · Joydeep Ghosh (UT Austin)

Perceiving the Arrow of Time in Autoregressive Motion | #155
Kristof Meding (University Tübingen) · Dominik Janzing (Amazon) · Bernhard Schölkopf (MPI for Intelligent Systems/Amazon) · Felix A. Wichmann (University of Tübingen)

Wednesday, 12/11 | 5:00-7:00pm | East Exhibition Hall B&C

Compositional De-Attention Networks | #127
Yi Tay (Nanyang Technological University) · Anh Tuan Luu (MIT) · Aston Zhang (Amazon) · Shuohang Wang (Singapore Management University) · Siu Cheung Hui (Nanyang Technological University)

Low-Rank Bandit Methods for High-Dimensional Dynamic Pricing | #3
Jonas Mueller (Amazon) · Vasilis Syrgkanis (Microsoft Research) · Matt Taddy (Amazon)

MaxGap Bandit: Adaptive Algorithms for Approximate Ranking | #4
Sumeet Katariya (Amazon/University of Wisconsin-Madison) · Ardhendu Tripathy (UW Madison) · Robert Nowak (UW Madison)

Primal-Dual Block Generalized Frank-Wolfe | #165
Qi Lei (UT Austin) · Jiacheng Zhuo (UT Austin) · Constantine Caramanis (UT Austin) · Inderjit S Dhillon (Amazon/UT Austin) · Alexandros Dimakis (UT Austin)

Towards Optimal Off-Policy Evaluation for Reinforcement Learning with Marginalized Importance Sampling | #208
Tengyang Xie (University of Illinois at Urbana-Champaign) · Yifei Ma (Amazon) · Yu-Xiang Wang (UC Santa Barbara)

Thursday, 12/12 | 10:45-12:45pm | East Exhibition Hall B&C

AutoAssist: A Framework to Accelerate Training of Deep Neural Networks | #155
Jiong Zhang (UT Austin) · Hsiang-Fu Yu (Amazon) · Inderjit S Dhillon (UT Austin/Amazon)

Exponentially Convergent Stochastic k-PCA without Variance Reduction | #200 (oral, 10:05-10:20 W Ballroom C)
Cheng Tang (Amazon)

Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift | #54
Stephan Rabanser (Technical University of Munich/Amazon) · Stephan Günnemann (Technical University of Munich) · Zachary Lipton (Carnegie Mellon University/Amazon)

High-Dimensional Multivariate Forecasting with Low-Rank Gaussian Copula Processes | #107
David Salinas (Naverlabs) · Michael Bohlke-Schneider (Amazon) · Laurent Callot (Amazon) · Jan Gasthaus (Amazon) · Roberto Medico (Ghent University)

Learning Search Spaces for Bayesian Optimization: Another View of Hyperparameter Transfer Learning | #30
Valerio Perrone (Amazon) · Huibin Shen (Amazon) · Matthias Seeger (Amazon) · Cedric Archambeau (Amazon) · Rodolphe Jenatton (Amazon)

Mo’States Mo’Problems: Emergency Stop Mechanisms from Observation | #227
Samuel Ainsworth (University of Washington) · Matt Barnes (University of Washington) · Siddhartha Srinivasa (University of Washington/Amazon)

Think Globally, Act Locally: A Deep Neural Network Approach to High-Dimensional Time Series Forecasting | #113
Rajat Sen (Amazon) · Hsiang-Fu Yu (Amazon) · Inderjit S Dhillon (UT Austin/Amazon)

Thursday, 12/12 | 5:00-7:00pm | East Exhibition Hall B&C

Dynamic Local Regret for Non-Convex Online Forecasting | #20
Sergul Aydore (Stevens Institute of Technology) · Tianhao Zhu (Stevens Institute of Technology) · Dean Foster (Amazon)

Interaction Hard Thresholding: Consistent Sparse Quadratic Regression in Sub-quadratic Time and Space | #47
Suo Yang (UT Austin), Yanyao Shen (UT Austin), Sujay Sanghavi (UT Austin/Amazon)

Inverting Deep Generative Models, One Layer at a Time |#48
Qi Lei (University of Texas at Austin) · Ajil Jalal (UT Austin) · Inderjit S Dhillon (UT Austin/Amazon) · Alexandros Dimakis (UT Austin)

Provable Non-linear Inductive Matrix Completion| #215
Kai Zhong (Amazon) · Zhao Song (UT Austin) · Prateek Jain (Microsoft Research) · Inderjit S Dhillon (UT Austin/Amazon)

Amazon researchers on NeurIPS committees and boards

  • Bernhard Schölkopf – Advisory Board
  • Michael I. Jordan – Advisory Board
  • Thorsten Joachims – senior area chair
  • Anshumali Shrivastava – area chair
  • Cedric Archambeau – area chair
  • Peter Gehler – area chair
  • Sujay Sanghavi – committee member

Workshops

Learning with Rich Experience: Integration of Learning Paradigms

Paper: "Meta-Q-Learning" | Rasool Fakoor, Pratik Chaudhari, Stefano Soatto, Alexander J. Smola

Human-Centric Machine Learning

Paper: "Learning Fair and Transferable Representations" | Luco Oneto, Michele Donini, Andreas Maurer, Massimiliano Pontil

Bayesian Deep Learning

Paper: "Online Bayesian Learning for E-Commerce Query Reformulation" | Gaurush Hiranandani, Sumeet Katariya, Nikhil Rao, Karthik Subbian

Meta-Learning

Paper: "Constrained Bayesian Optimization with Max-Value Entropy Search" | Valerio Perrone, Iaroslav Shcherbatyi, Rodolphe Jenatton, Cedric Archambeau, Matthias Seeger

Paper: "A Quantile-Based Approach to Hyperparameter Transfer Learning" | David Salinas, Huibin Shen, Valerio Perrone

Paper: "A Baseline for Few-Shot Image Classification" | Guneet Singh Dhillon, Pratik Chaudhari, Avinash Ravichandran, Stefano Soatto

Conversational AI

Organizer: Dilek Hakkani-Tür

Paper: "The Eighth Dialog System Technology Challenge" | Seokhwan Kim, Michel Galley, Chulaka Gunasekara, Sungjin Lee, Adam Atkinson, Baolin Peng, Hannes Schulz, Jianfeng Gao, Jinchao Li, Mahmoud Adada, Minlie Huang, Luis Lastras, Jonathan K. Kummerfeld, Walter S. Lasecki, Chiori Hori, Anoop Cherian, Tim K. Marks, Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta

Paper: “Just Ask: An Interactive Learning Framework for Vision and Language Navigation” | Ta-Chung Chi, Minmin Shen, Mihail Eric, Seokhwan Kim, Dilek Hakkani-Tur

Paper: “MA-DST: Multi-Attention-Based Scalable Dialog State Tracking” | Adarsh Kumar, Peter Ku, Anuj Kumar Goyal, Angeliki Metallinou, Dilek Hakkani-Tür

Paper: “Investigation of Error Simulation Techniques for Learning Dialog Policies for Conversational Error Recovery” | Maryam Fazel-Zarandi, Longshaokan Wang, Aditya Tiwari, Spyros Matsoukas

Paper: “Towards Personalized Dialog Policies for Conversational Skill Discovery”| Maryam Fazel-Zarandi, Sampat Biswas, Ryan Summers, Ahmed Elmalt, Andy McCraw, Michael McPhillips, John Peach

Paper: “Conversation Quality Evaluation via User Satisfaction Estimation” | Praveen Kumar Bodigutla, Spyros Matsoukas, Lazaros Polymenakos

Paper: “Multi-domain Dialogue State Tracking as Dynamic Knowledge Graph Enhanced Question Answering” | Li Zhou, Kevin Small

Science Meets Engineering of Deep Learning

Paper: "X-BERT: eXtreme Multi-label Text Classification using Bidirectional Encoder from Transformers" Wei-Cheng Chang, Hsiang-Fu Yu, Kai Zhong, Yiming Yang, Inderjit S. Dhillon

Machine Learning with Guarantees

Organizers: Ben London, Thorsten Joachims
Program Committee: Kevin Small, Shiva Kasiviswanathan, Ted Sandler

MLSys: Workshop on Systems for ML

Paper: "Block-Distributed Gradient Boosted Trees" | Theodore Vasiloudis, Hyunsu Cho, Henrik Boström

Women in Machine Learning

Gold sponsor: Amazon

Research areas

Related content

US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for an experienced Data Scientist to support our central analytics and finance disciplines at Twitch. Bringing to bear a mixture of data analysis, dashboarding, and SQL query skills, you will use data-driven methods to answer business questions, and deliver insights that deepen understanding of our viewer behavior and monetization performance. Reporting to the VP of Finance, Analytics, and Business Operations, your team will be located in San Francisco. Our team is based in San Francisco, CA. You Will - Create actionable insights from data related to Twitch viewers, creators, advertising revenue, commerce revenue, and content deals. - Develop dashboards and visualizations to communicate points of view that inform business decision-making. - Create and maintain complex queries and data pipelines for ad-hoc analyses. - Author narratives and documentation that support conclusions. - Collaborate effectively with business partners, product managers, and data team members to align data science efforts with strategic goals. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
IL, Tel Aviv
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Sr Applied Scientist, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), reading, healthcare, and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software/data engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the research frontier of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep training in one area of econometrics. For example, many applications on the team motivate the use of structural econometrics and machine-learning. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members.