Vancouver, Canada

3 important themes from Amazon's 2019 NeurIPS papers

Time series forecasting, bandit problems, and optimization are integral to Amazon's efforts to deliver better value for its customers.

Last year, the first 2,000-2,500 publicly released tickets to the Conference on Neural Information Processing Systems, or NeurIPS, sold out in 12 minutes.

This year, the conference organizers moved to a lottery system, allowing aspiring attendees to register in advance and randomly selecting invitees from the pool of registrants. But they also bumped the number of public-release tickets up from around 2,000 to 3,500, testifying to the conference’s continued popularity.

At NeurIPS this year, there are 26 papers with Amazon coauthors. They cover a wide range of topics, but surveying their titles, Alex Smola, a vice president and distinguished scientist in the Amazon Web Services organization, discerns three prominent themes, all tied to Amazon’s efforts to deliver better value for its customers.

Those three themes are time series forecasting (and causality), bandit problems, and optimization.

1. Time series forecasting

Time series forecasting involves measuring some quantity over time — such as the number of deliveries in a particular region in the past six months, or the number of cloud servers required to support a particular site over the past two years — and attempting to project that quantity into the future.

“That’s something that is very dear to Amazon’s heart,” Smola says. “For anything that Amazon does, it’s really beneficial to have a good estimate of what our customers will expect from us ahead of time. Only by being able to do that will we be able to satisfy customers’ demands, be it for products or services.”

A sequence of basis time series, forecast into the near future and summed together to approximate a new time series.
The paper “Think Globally, Act Locally” examines data sets with many correlated time series, such as the demand curves for millions of products sold online. The researchers describe a method for constructing a much smaller set of “basis time series”; the time series for any given product can be approximated by a weighted sum of the bases.
Courtesy of the researchers

The basic mathematical framework for time series forecasting is a century old, but the scale of modern forecasting problems calls for new analytic techniques, Smola says.

“Problems are nowadays highly multivariate,” Smola says. “If you look at the many millions of products that we offer, you want to be able to predict fairly well what will sell, where and to whom.

“You need to make reasonable assumptions on how this very large problem can be decomposed into smaller, more tractable pieces. You make structural approximations, and sometimes those structural approximations are what leads to very different algorithms.

“So you might, for instance, have a global model, and then you have local models that address the specific items or address the specific sales. If you look at ‘Think Globally, Act Locally’” — a NeurIPS paper whose first author is Rajat Sen, an applied scientist in the Amazon Search group — “it’s already in the title. Or look at ‘High-Dimensional Multivariate Forecasting with Low-Rank Gaussian Copula Processes’. In this case, you have a global structure, but it’s only in a small subspace where interesting things happen.”

Side-by-side images depict correlations between taxi traffic at different points in Manhattan at different times of day
The paper "High-Dimensional Multivariate Forecasting with Low-Rank Gaussian Copula Processes" describes a method for predicting correlations among many parallel time series. In one example, the researchers forecast correlations between the taxi traffic at different points in New York City at different times of day. Red lines indicate strong correlations; blue lines indicate strong negative correlations. Weekend midday traffic patterns (left) show negative correlations between locations near the Empire State Building, suggesting that taxis tend to prefer different routes depending on traffic conditions. Weekend evening traffic patterns show positive correlations between the vicinity of the Empire State Building and areas with high concentrations of hotels.
Courtesy of the researchers

An aspect of forecasting that has recently been drawing more attention, Smola says, is causality. Where traditional machine learning models merely infer statistical correlations between data points, “it is ultimately the causal relationship that matters,” Smola says.

“I think that causality is one of the most interesting conceptual developments affecting modern machine learning,” says Bernhard Schölkopf, like Smola a vice president and distinguished scientist in Amazon Web Services. “This is the main topic that I have been interested in for the last decade.”

Two of Schölkopf’s NeurIPS papers — “Perceiving the Arrow of Time in Autoregressive Motion” and “Selecting Causal Brain Features with a Single Conditional Independence Test per Feature” — address questions of causality, as does “Causal Regularization”, a paper by Dominik Janzing, a senior research scientist in Smola’s group.

“Normal machine learning builds on correlations of other statistical dependences,” Schölkopf explains. “This is fine as long as the source of the data doesn't change. For example, if in the training set of an image recognition system, all cows are standing on green pasture, then it is fine for an ML system to use the green as a useful feature in recognizing cows, as long as the test set looks the same. If in the test set, the cows are standing on the beach, then such a purely statistical system can fail.

“More generally: causal learning and inference attempts to understand how systems respond to interventions and other changes, and not just how to predict data that looks more or less the same as the training data.”

2. Bandit problems

The second major theme that Smola discerns in Amazon scientists’ NeurIPS papers is a concern with bandit problems, a phrase that shows up in the titles of Amazon papers such as “MaxGap Bandit: Adaptive Algorithms for Approximate Ranking” and “Low-Rank Bandit Methods for High-Dimensional Dynamic Pricing”. Bandit problems take their name from one-armed bandits, or slot machines.

“It used to be that those bandits were all mechanical, so there would be slight variations between them, and some would have maybe a slightly a higher return than others,” Smola explains. “I walk into a den of iniquity, and I want to find the one-armed bandit where I will lose the least money or maybe make some money. And the only feedback I have is that I pull arms, and I get money or lose money. These are very unreliable, noisy events.”

Bandit problems present what’s known as an explore-exploit trade-off. The gambler must simultaneously explore the environment — determine which machines pay out the most — and exploit the resulting knowledge — concentrate as much money as possible on the high-return machines. Early work on bandit problems concerned identifying the high-return machines with minimal outlays.

“That problem was solved about 20 years ago,” Smola says. “What hasn’t been solved — and this is where things get a lot more interesting — is once you start adding context. Imagine that I get to show you various results as you’re searching for your next ugly Christmas sweater. The unfortunate thing is that the creativity of sweater designers is larger than what you can fit on a page. Now the context is essentially, what time, where from, which user, all those things. We want to find and recommend the ugly Christmas sweater that works specifically for you. This is an example where context is immediately relevant.”

It’s really beneficial to have a good estimate of what our customers will expect from us ahead of time. Only by being able to do that will we be able to satisfy customers’ demands.
Alex Smola, VP and distinguished scientist, Amazon

In the bandit-problem framework, in other words, the high-payout machines change with every new interaction. But there may be external signals that indicate how they’re changing.

Distributed computing, which is inescapable for today’s large websites, changes the structure of the bandit problem, too.

“Say you go to a restaurant, and the cook wants to improve the menu,” Smola says. “You can try out lots of new menu items, and that’s a good way to improve the menu overall. But if you start offering a lot of undercooked dishes because you’re experimenting, then at some point your loyal customers will stay away.

“Now imagine you have 100 restaurants, and they all do the same thing at the same time. They can’t necessarily communicate at the per-second level; maybe every day or every week they chat with each other. Now this entire exploration problem becomes a little more challenging, because if two restaurants try out the same undercooked dish, you make the customer less happy than you could have.

“So how does this map back into Amazon land? Well, if you have many servers doing this recommendation, the explore-exploit trade-off might be too aggressive if every one of them works on their own.”

3. Optimization

Finally, Smola says, “There is a third category of results that has to do with making algorithms faster. If you look at ‘Primal-Dual Block Frank-Wolfe’, ‘Communication-Efficient Distributed SGD with Sketching’, ‘Qsparse-Local-SGD’ — those are the workhorses that run underneath all of this. Making them more efficient is obviously something that we care about, so we can respond to customer requests faster, train algorithms faster.”

Bird’s-eye view

NeurIPS is a huge conference, with more than 1,400 accepted papers that cover a bewildering variety of topics. Beyond the Amazon papers, Caltech professor and Amazon fellow Pietro Perona identifies three research areas as growing in popularity.

“One is understanding how deep networks work, so that we can better design architectures and optimization algorithms to train models,” Perona says. “Another is low-shot learning. Machines are still much less efficient than humans at learning, in that they need more training examples to achieve the same performance. And finally, AI and society — identifying opportunities for social good, sustainable development, and the like.”

NeurIPS is being held this year at the Vancouver Convention Center, and the main conference runs from Dec. 8 to Dec. 12. The Women in Machine Learning Workshop, for which Amazon is a gold-level sponsor, takes place on Dec. 9; the Third Conversational AI workshop, whose organizers include Alexa AI principal scientist Dilek Hakkani-Tür, will be held on Dec. 14.

Amazon's involvement at NeurIPS

Paper and presentation schedule

Tuesday, 12/10 | 10:45-12:45pm | East Exhibition Hall B&C

A Meta-MDP Approach to Exploration for Lifelong Reinforcement Learning | #192
Francisco Garcia (UMass Amherst/Amazon) · Philip Thomas (UMass Amherst)

Blocking Bandits | #17
Soumya Basu (UT Austin) · Rajat Sen (UT Austin/Amazon) · Sujay Sanghavi (UT Austin/Amazon) · Sanjay Shakkottai (UT Austin)

Causal Regularization | #180
Dominik Janzing (Amazon)

Communication-Efficient Distributed SGD with Sketching | #81
Nikita Ivkin (Amazon) · Daniel Rothchild (University of California, Berkeley) · Md Enayat Ullah (Johns Hopkins University) · Vladimir Braverman (Johns Hopkins University) · Ion Stoica (UC Berkeley) · Raman Arora (Johns Hopkins University)

Learning Distributions Generated by One-Layer ReLU Networks | #49
Shanshan Wu (UT Austin) ·Alexandros G. Dimakis (UT Austin) · Sujay Sanghavi (UT Austin/Amazon)

Tuesday, 12/10 | 5:30-7:30pm | East Exhibition Hall B&C

Efficient Communication in Multi-Agent Reinforcement Learning via Variance Based Control | #195
Sai Qian Zhang (Harvard University) · Qi Zhang (Amazon) · Jieyu Lin (University of Toronto)

Extreme Classification in Log Memory using Count-Min Sketch: A Case Study of Amazon Search with 50M Products | #37
Tharun Kumar Reddy Medini (Rice University) · Qixuan Huang (Rice University) · Yiqiu Wang (Massachusetts Institute of Technology) · Vijai Mohan (Amazon) · Anshumali Shrivastava (Rice University/Amazon)

Iterative Least Trimmed Squares for Mixed Linear Regression | #50
Yanyao Shen (UT Austin) · Sujay Sanghavi (UT Austin/Amazon)

Meta-Surrogate Benchmarking for Hyperparameter Optimization | #6
Aaron Klein (Amazon) · Zhenwen Dai (Spotify) · Frank Hutter (University of Freiburg) · Neil Lawrence (University of Cambridge) · Javier Gonzalez (Amazon)

Qsparse-local-SGD: Distributed SGD with Quantization, Sparsification and Local Computations | #32
Debraj Basu (Adobe) · Deepesh Data (UCLA) · Can Karakus (Amazon) · Suhas Diggavi (UCLA)

Selecting Causal Brain Features with a Single Conditional Independence Test per Feature | #139
Atalanti Mastakouri (Max Planck Institute for Intelligent Systems) · Bernhard Schölkopf (MPI for Intelligent Systems/Amazon) · Dominik Janzing (Amazon)

Wednesday, 12/11 | 10:45-12:45pm | East Exhibition Hall B&C

On Single Source Robustness in Deep Fusion Models | #93
Taewan Kim (Amazon) · Joydeep Ghosh (UT Austin)

Perceiving the Arrow of Time in Autoregressive Motion | #155
Kristof Meding (University Tübingen) · Dominik Janzing (Amazon) · Bernhard Schölkopf (MPI for Intelligent Systems/Amazon) · Felix A. Wichmann (University of Tübingen)

Wednesday, 12/11 | 5:00-7:00pm | East Exhibition Hall B&C

Compositional De-Attention Networks | #127
Yi Tay (Nanyang Technological University) · Anh Tuan Luu (MIT) · Aston Zhang (Amazon) · Shuohang Wang (Singapore Management University) · Siu Cheung Hui (Nanyang Technological University)

Low-Rank Bandit Methods for High-Dimensional Dynamic Pricing | #3
Jonas Mueller (Amazon) · Vasilis Syrgkanis (Microsoft Research) · Matt Taddy (Amazon)

MaxGap Bandit: Adaptive Algorithms for Approximate Ranking | #4
Sumeet Katariya (Amazon/University of Wisconsin-Madison) · Ardhendu Tripathy (UW Madison) · Robert Nowak (UW Madison)

Primal-Dual Block Generalized Frank-Wolfe | #165
Qi Lei (UT Austin) · Jiacheng Zhuo (UT Austin) · Constantine Caramanis (UT Austin) · Inderjit S Dhillon (Amazon/UT Austin) · Alexandros Dimakis (UT Austin)

Towards Optimal Off-Policy Evaluation for Reinforcement Learning with Marginalized Importance Sampling | #208
Tengyang Xie (University of Illinois at Urbana-Champaign) · Yifei Ma (Amazon) · Yu-Xiang Wang (UC Santa Barbara)

Thursday, 12/12 | 10:45-12:45pm | East Exhibition Hall B&C

AutoAssist: A Framework to Accelerate Training of Deep Neural Networks | #155
Jiong Zhang (UT Austin) · Hsiang-Fu Yu (Amazon) · Inderjit S Dhillon (UT Austin/Amazon)

Exponentially Convergent Stochastic k-PCA without Variance Reduction | #200 (oral, 10:05-10:20 W Ballroom C)
Cheng Tang (Amazon)

Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift | #54
Stephan Rabanser (Technical University of Munich/Amazon) · Stephan Günnemann (Technical University of Munich) · Zachary Lipton (Carnegie Mellon University/Amazon)

High-Dimensional Multivariate Forecasting with Low-Rank Gaussian Copula Processes | #107
David Salinas (Naverlabs) · Michael Bohlke-Schneider (Amazon) · Laurent Callot (Amazon) · Jan Gasthaus (Amazon) · Roberto Medico (Ghent University)

Learning Search Spaces for Bayesian Optimization: Another View of Hyperparameter Transfer Learning | #30
Valerio Perrone (Amazon) · Huibin Shen (Amazon) · Matthias Seeger (Amazon) · Cedric Archambeau (Amazon) · Rodolphe Jenatton (Amazon)

Mo’States Mo’Problems: Emergency Stop Mechanisms from Observation | #227
Samuel Ainsworth (University of Washington) · Matt Barnes (University of Washington) · Siddhartha Srinivasa (University of Washington/Amazon)

Think Globally, Act Locally: A Deep Neural Network Approach to High-Dimensional Time Series Forecasting | #113
Rajat Sen (Amazon) · Hsiang-Fu Yu (Amazon) · Inderjit S Dhillon (UT Austin/Amazon)

Thursday, 12/12 | 5:00-7:00pm | East Exhibition Hall B&C

Dynamic Local Regret for Non-Convex Online Forecasting | #20
Sergul Aydore (Stevens Institute of Technology) · Tianhao Zhu (Stevens Institute of Technology) · Dean Foster (Amazon)

Interaction Hard Thresholding: Consistent Sparse Quadratic Regression in Sub-quadratic Time and Space | #47
Suo Yang (UT Austin), Yanyao Shen (UT Austin), Sujay Sanghavi (UT Austin/Amazon)

Inverting Deep Generative Models, One Layer at a Time |#48
Qi Lei (University of Texas at Austin) · Ajil Jalal (UT Austin) · Inderjit S Dhillon (UT Austin/Amazon) · Alexandros Dimakis (UT Austin)

Provable Non-linear Inductive Matrix Completion| #215
Kai Zhong (Amazon) · Zhao Song (UT Austin) · Prateek Jain (Microsoft Research) · Inderjit S Dhillon (UT Austin/Amazon)

Amazon researchers on NeurIPS committees and boards

  • Bernhard Schölkopf – Advisory Board
  • Michael I. Jordan – Advisory Board
  • Thorsten Joachims – senior area chair
  • Anshumali Shrivastava – area chair
  • Cedric Archambeau – area chair
  • Peter Gehler – area chair
  • Sujay Sanghavi – committee member

Workshops

Learning with Rich Experience: Integration of Learning Paradigms

Paper: "Meta-Q-Learning" | Rasool Fakoor, Pratik Chaudhari, Stefano Soatto, Alexander J. Smola

Human-Centric Machine Learning

Paper: "Learning Fair and Transferable Representations" | Luco Oneto, Michele Donini, Andreas Maurer, Massimiliano Pontil

Bayesian Deep Learning

Paper: "Online Bayesian Learning for E-Commerce Query Reformulation" | Gaurush Hiranandani, Sumeet Katariya, Nikhil Rao, Karthik Subbian

Meta-Learning

Paper: "Constrained Bayesian Optimization with Max-Value Entropy Search" | Valerio Perrone, Iaroslav Shcherbatyi, Rodolphe Jenatton, Cedric Archambeau, Matthias Seeger

Paper: "A Quantile-Based Approach to Hyperparameter Transfer Learning" | David Salinas, Huibin Shen, Valerio Perrone

Paper: "A Baseline for Few-Shot Image Classification" | Guneet Singh Dhillon, Pratik Chaudhari, Avinash Ravichandran, Stefano Soatto

Conversational AI

Organizer: Dilek Hakkani-Tür

Paper: "The Eighth Dialog System Technology Challenge" | Seokhwan Kim, Michel Galley, Chulaka Gunasekara, Sungjin Lee, Adam Atkinson, Baolin Peng, Hannes Schulz, Jianfeng Gao, Jinchao Li, Mahmoud Adada, Minlie Huang, Luis Lastras, Jonathan K. Kummerfeld, Walter S. Lasecki, Chiori Hori, Anoop Cherian, Tim K. Marks, Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta

Paper: “Just Ask: An Interactive Learning Framework for Vision and Language Navigation” | Ta-Chung Chi, Minmin Shen, Mihail Eric, Seokhwan Kim, Dilek Hakkani-Tur

Paper: “MA-DST: Multi-Attention-Based Scalable Dialog State Tracking” | Adarsh Kumar, Peter Ku, Anuj Kumar Goyal, Angeliki Metallinou, Dilek Hakkani-Tür

Paper: “Investigation of Error Simulation Techniques for Learning Dialog Policies for Conversational Error Recovery” | Maryam Fazel-Zarandi, Longshaokan Wang, Aditya Tiwari, Spyros Matsoukas

Paper: “Towards Personalized Dialog Policies for Conversational Skill Discovery”| Maryam Fazel-Zarandi, Sampat Biswas, Ryan Summers, Ahmed Elmalt, Andy McCraw, Michael McPhillips, John Peach

Paper: “Conversation Quality Evaluation via User Satisfaction Estimation” | Praveen Kumar Bodigutla, Spyros Matsoukas, Lazaros Polymenakos

Paper: “Multi-domain Dialogue State Tracking as Dynamic Knowledge Graph Enhanced Question Answering” | Li Zhou, Kevin Small

Science Meets Engineering of Deep Learning

Paper: "X-BERT: eXtreme Multi-label Text Classification using Bidirectional Encoder from Transformers" Wei-Cheng Chang, Hsiang-Fu Yu, Kai Zhong, Yiming Yang, Inderjit S. Dhillon

Machine Learning with Guarantees

Organizers: Ben London, Thorsten Joachims
Program Committee: Kevin Small, Shiva Kasiviswanathan, Ted Sandler

MLSys: Workshop on Systems for ML

Paper: "Block-Distributed Gradient Boosted Trees" | Theodore Vasiloudis, Hyunsu Cho, Henrik Boström

Women in Machine Learning

Gold sponsor: Amazon

Research areas

Related content

US, WA, Redmond
Amazon Leo is Amazon’s low Earth orbit satellite network. Our mission is to deliver fast, reliable internet connectivity to customers beyond the reach of existing networks. From individual households to schools, hospitals, businesses, and government agencies, Amazon Leo will serve people and organizations operating in locations without reliable connectivity. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. This position is part of the Satellite Attitude Determination and Control team. You will design and analyze the control system and algorithms, support development of our flight hardware and software, help integrate the satellite in our labs, participate in flight operations, and see a constellation of satellites flow through the production line in the building next door. Key job responsibilities - Design and analyze algorithms for estimation, flight control, and precise pointing using linear methods and simulation. - Develop and apply models and simulations, with various levels of fidelity, of the satellite and our constellation. - Component level environmental testing, functional and performance checkout, subsystem integration, satellite integration, and in space operations. - Manage the spacecraft constellation as it grows and evolves. - Continuously improve our ability to serve customers by maximizing payload operations time. - Develop autonomy for Fault Detection and Isolation on board the spacecraft. A day in the life This is an opportunity to play a significant role in the design of an entirely new satellite system with challenging performance requirements. The large, integrated constellation brings opportunities for advanced capabilities that need investigation and development. The constellation size also puts emphasis on engineering excellence so our tools and methods, from conceptualization through manufacturing and all phases of test, will be state of the art as will the satellite and supporting infrastructure on the ground. You will find that Amazon Leo's mission is compelling, so our program is staffed with some of the top engineers in the industry. Our daily collaboration with other teams on the program brings constant opportunity for discovery, learning, and growth. About the team Our team has lots of experience with various satellite systems and many other flight vehicles. We have bench strength in both our mission and core GNC disciplines. We design, prototype, test, iterate and learn together. Because GNC is central to safe flight, we tend to drive Concepts of Operation and many system level analyses.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for applied scientists to solve challenging and open-ended problems in the domain of user and content safety. As an applied scientist on Twitch's Community team, you will use machine learning to develop data products tackling problems such as harassment, spam, and illegal content. You will use a wide toolbox of ML tools to handle multiple types of data, including user behavior, metadata, and user generated content such as text and video. You will collaborate with a team of passionate scientists and engineers to develop these models and put them into production, where they can help Twitch's creators and viewers succeed and build communities. You will report to our Senior Applied Science Manager in San Francisco, CA. You can work from San Francisco, CA or Seattle, WA. You Will - Build machine learning products to protect Twitch and its users from abusive behavior such as harassment, spam, and violent or illegal content. - Work backwards from customer problems to develop the right solution for the job, whether a classical ML model or a state-of-the-art one. - Collaborate with Community Health's engineering and product management team to productionize your models into flexible data pipelines and ML-based services. - Continue to learn and experiment with new techniques in ML, software engineering, or safety so that we can better help communities on Twitch grow and stay safe. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
US, WA, Redmond
As a Guidance, Navigation & Control Hardware Engineer, you will directly contribute to the planning, selection, development, and acceptance of Guidance, Navigation & Control hardware for Amazon Leo's constellation of satellites. Specializing in critical satellite hardware components including reaction wheels, star trackers, magnetometers, sun sensors, and other spacecraft sensors and actuators, you will play a crucial role in the integration and support of these precision systems. You will work closely with internal Amazon Leo hardware teams who develop these components, as well as Guidance, Navigation & Control engineers, software teams, systems engineering, configuration & data management, and Assembly, Integration & Test teams. A key aspect of your role will be actively resolving hardware issues discovered during both factory testing phases and operational space missions, working hand-in-hand with internal Amazon Leo hardware development teams to implement solutions and ensure optimal satellite performance. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. Key job responsibilities * Planning and coordination of resources necessary to successfully accept and integrate satellite Guidance, Navigation & Control components including reaction wheels, star trackers, magnetometers, and sun sensors provided by internal Amazon Leo teams * Partner with internal Amazon Leo hardware teams to develop and refine spacecraft actuator and sensor solutions, ensuring they meet requirements and providing technical guidance for future satellite designs * Collaborate with internal Amazon Leo hardware development teams to resolve issues discovered during both factory test phases and operational space missions, implementing corrective actions and design improvements * Work with internal Amazon Leo teams to ensure state-of-the-art satellite hardware technologies including precision pointing systems, attitude determination sensors, and spacecraft actuators meet mission requirements * Lead verification and testing activities, ensuring satellite Guidance, Navigation & Control hardware components meet stringent space-qualified requirements * Drive implementation of hardware-in-the-loop testing for satellite systems, coordinating with internal Amazon Leo hardware engineers to validate component performance in simulated space environments * Troubleshoot and resolve complex hardware integration issues working directly with internal Amazon Leo hardware development teams
US, CA, San Francisco
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! We are the AGI Autonomy organization, and we are looking for a driven and talented Member of Technical Staff to join us to build state-of-the art agents. As an MTS on our team, you will design, build, and maintain a Spark-based infrastructure to process and manage large datasets critical for machine learning research. You’ll work closely with our researchers to develop data workflows and tools that streamline the preparation and analysis of massive multimodal datasets, ensuring efficiency and scalability. We operate at Amazon's large scale with the energy of a nimble start-up. If you have a learner's mindset, enjoy solving challenging problems and value an inclusive and collaborative team culture, you will thrive in this role, and we hope to hear from you. Key job responsibilities * Develop and maintain reliable infrastructure to enable large-scale data extraction and transformation. * Work closely with researchers to create tooling for emerging data-related needs. * Manage project prioritization, deliverables, timelines, and stakeholder communication. * Illuminate trade-offs, educate the team on best practices, and influence technical strategy. * Operate in a dynamic environment to deliver high quality software.
US, WA, Seattle
PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.
US, CA, San Francisco
The Amazon General Intelligence “AGI” organization is looking for an Executive Assistant to support leaders of our Autonomy Team in our growing AI Lab space located in San Francisco. This role is ideal for exceptionally talented, dependable, customer-obsessed, and self-motivated individuals eager to work in a fast paced, exciting and growing team. This role serves as a strategic business partner, managing complex executive operations across the AGI organization. The position requires superior attention to detail, ability to meet tight deadlines, excellent organizational skills, and juggling multiple critical requests while proactively anticipating needs and driving improvements. High integrity, discretion with confidential information, and professionalism are essential. The successful candidate will complete complex tasks and projects quickly with minimal guidance, react with appropriate urgency, and take effective action while navigating ambiguity. Flexibility to change direction at a moment's notice is critical for success in this role. Key job responsibilities - Serve as strategic partner to senior leadership, identifying opportunities to improve organizational effectiveness and drive operational excellence - Manage complex calendars and scheduling for multiple executives - Drive continuous improvement through process optimization and new mechanisms - Coordinate team activities including staff meetings, offsites, and events - Schedule and manage cost-effective travel - Attend key meetings, track deliverables, and ensure timely follow-up - Create expense reports and manage budget tracking - Serve as liaison between executives and internal/external stakeholders - Build collaborative relationships with Executive Assistants across the company and with critical external partners - Help us build a great team culture in the SF Lab!
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack, optimizing and scaling models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models and full-stack robotics systems that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives across the robotics stack, driving breakthrough approaches through hands-on research and development in areas including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Guide technical direction for full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack - Influence technical decisions and implementation strategies within your area of focus A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Guide fellow scientists in solving complex technical challenges across the full robotics stack - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster and extensive robotics infrastructure - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, NY, New York
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in the Sponsored Products organization builds GenAI-based shopper understanding and audience targeting systems, along with advanced deep-learning models for Click-through Rate (CTR) and Conversion Rate (CVR) predictions. We develop large-scale machine-learning (ML) pipelines and real-time serving infrastructure to match shoppers' intent with relevant ads across all devices, contexts, and marketplaces. Through precise estimation of shoppers' interactions with ads and their long-term value, we aim to drive optimal ad allocation and pricing, helping to deliver a relevant, engaging, and delightful advertising experience to Amazon shoppers. As our business grows and we undertake increasingly complex initiatives, we are looking for entrepreneurial, and self-driven science leaders to join our team. Key job responsibilities As a Principal Applied Scientist in the team, you will: * Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business via principled ML solutions. * Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in ML. * Design and lead organization wide ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our sellers. * Work with our engineering partners and draw upon your experience to meet latency and other system constraints. * Identify untapped, high-risk technical and scientific directions, and simulate new research directions that you will drive to completion and deliver. * Be responsible for communicating our ML innovations to the broader internal & external scientific community.
IN, KA, Bangalore
Have you ever ordered a product on Amazon and when that box with the smile arrived you wondered how it got to you so fast? Have you wondered where it came from and how much it cost Amazon to deliver it to you? If so, the WW Amazon Logistics, Business Analytics team is for you. We manage the delivery of tens of millions of products every week to Amazon’s customers, achieving on-time delivery in a cost-effective manner. We are looking for an enthusiastic, customer obsessed, Applied Scientist with good analytical skills to help manage projects and operations, implement scheduling solutions, improve metrics, and develop scalable processes and tools. The primary role of an Operations Research Scientist within Amazon is to address business challenges through building a compelling case, and using data to influence change across the organization. This individual will be given responsibility on their first day to own those business challenges and the autonomy to think strategically and make data driven decisions. Decisions and tools made in this role will have significant impact to the customer experience, as it will have a major impact on how the final phase of delivery is done at Amazon. Candidates will be a high potential, strategic and analytic graduate with a PhD in (Operations Research, Statistics, Engineering, and Supply Chain) ready for challenging opportunities in the core of our world class operations space. Great candidates have a history of operations research, and the ability to use data and research to make changes. This role requires robust program management skills and research science skills in order to act on research outcomes. This individual will need to be able to work with a team, but also be comfortable making decisions independently, in what is often times an ambiguous environment. Responsibilities may include: - Develop input and assumptions based preexisting models to estimate the costs and savings opportunities associated with varying levels of network growth and operations - Creating metrics to measure business performance, identify root causes and trends, and prescribe action plans - Managing multiple projects simultaneously - Working with technology teams and product managers to develop new tools and systems to support the growth of the business - Communicating with and supporting various internal stakeholders and external audiences