Advice for young scientists — and curious people in general

The Nobel Prize-winning biologist Peter Medawar published "Advice to a Young Scientist" in 1979. Here are some of Medawar’s key insights from the book.

Editor's note: This article, which is a selection of quotes from "Advice to a Young Scientist" coupled with commentary from Farnam Street staff, originally ran in May 2021 on the Farnam Street blog. It is reprinted here in its entirety with the gracious permission of Farnam Street.

The Nobel Prize-winning biologist Peter Medawar (1915–1987) is best known for work that made the first organ transplants and skin grafts possible. Medawar was also a lively, witty writer who penned numerous books on science and philosophy.

In 1979, he published Advice to a Young Scientist, a book brimming with both practical advice and philosophical guidance for anyone “engaged in exploratory activities.” Here, we summarize some of Medawar’s key insights from the book.

Application, diligence, a sense of purpose

“There is no certain way of telling in advance if the daydreams of a life dedicated to the pursuit of truth will carry a novice through the frustration of seeing experiments fail and of making the dismaying discovery that some of one’s favourite ideas are groundless.”

If you want to make progress in any area, you need to be willing to give up your best ideas from time to time. 

A black and white profile shot of the Nobel Prize-winning biologist Peter Medawar
The Nobel Prize-winning biologist Peter Medawar (1915–1987) is best known for work that made the first organ transplants and skin grafts possible.
By Digitised for CODEBREAKERS, MAKERS OF MODERN GENETICS

Science proceeds because researchers do all they can to disprove their hypotheses rather than prove them right. Medawar notes that he twice spent two whole years trying to corroborate groundless hypotheses. The key to being a good scientist is the capacity to take no for an answer— when necessary. Additionally:

“…one does not need to be terrifically brainy to be a good scientist…there is nothing in experimental science that calls for great feats of ratiocination or a preternatural gift for deductive reasoning. Common sense one cannot do without, and one would be the better for owning some of those old-fashioned virtues which have fallen into disrepute. I mean application, diligence, a sense of purpose, the power to concentrate, to persevere and not be cast down by adversity—by finding out after long and weary inquiry, for example, that a dearly loved hypothesis is in large measure mistaken.”

The truth is, any measure of risk-taking comes with the possibility of failure. Learning from failure to continue exploring the unknown is a broadly useful mindset.

How to make important discoveries

“It can be said with marked confidence that any scientist of any age who wants to make important discoveries must study important problems. Dull or piffling problems yield dull or piffling answers.”

A common piece of advice for people early on in their careers is to pursue what they find most interesting. Medawar disagrees, explaining that “almost any problem is interesting if it is studied in sufficient depth.” He advises scientists to look for important problems, meaning ones with answers that matter to humankind.

When choosing an area of research, Medawar cautions against mistaking a fashion (“some new histochemical procedure or technical gimmick”) for a movement (“such as molecular genetics or cellular immunology”). Movements lead somewhere; fashions generally don’t.

Getting started

Whenever we begin some new endeavor, it can be tempting to think we need to know everything there is to know about it before we even begin. Often, this becomes a form of procrastination. Only once we try something and our plans make contact with reality can we know what we need to know. Medawar believes it’s unnecessary for scientists to spend an enormous amount of time learning techniques and supporting disciplines before beginning research:

“As there is no knowing in advance where a research enterprise may lead and what kind of skills it will require as it unfolds, this process of ‘equipping oneself’ has no predeterminable limits and is bad psychological policy….The great incentive to learning a new skill or supporting discipline is needing to use it.”

The best way to learn what we need to know is by getting started, then picking up new knowledge as it proves itself necessary. When there’s an urgent need, we learn faster and avoid unnecessary learning. The same can be true for too much reading:

“Too much book learning may crab and confine the imagination, and endless poring over the research of others is sometimes psychologically a research substitute, much as reading romantic fiction may be a substitute for real-life romance….The beginner must read, but intently and choosily and not too much.”

We don’t talk about this much at Farnam Street, but it is entirely possible to read too much. Reading becomes counterproductive when it serves as a substitute for doing the real thing, if that’s what someone is reading for. Medawar explains that it is “psychologically most important to get results, even if they are not original.” It’s important to build confidence by doing something concrete and seeing a visible manifestation of our labors. For Medawar, the best scientists begin with the understanding that they can never know anything and, besides, learning needs to be a lifelong process.

The secrets to effective collaboration

“Scientific collaboration is not at all like cooks elbowing each other from the pot of broth; nor is it like artists working on the same canvas, or engineers working out how to start a tunnel simultaneously from both sides of a mountain in such a way that the contractors do not miss each other in the middle and emerge independently at opposite ends.”

Instead, scientific collaboration is about researchers creating the right environment to develop and expand upon each other’s ideas. A good collaboration is greater than the sum of its parts and results in work that isn’t attributable to a single person.

For scientists who find their collaborators infuriating from time to time, Medawar advises being self-aware. We all have faults, and we too are probably almost intolerable to work with sometimes.

When collaboration becomes contentious, Medawar maintains that we should give away our best ideas.

Scientists sometimes face conflict over the matter of credit. If several researchers are working on the same problem, whichever one finds the solution (or a solution) first gets the credit, no matter how close the others were. This is a problem most creative fields don’t face: “The twenty years Wagner spent on composing the first three operas of The Ring were not clouded by the fear that someone else might nip ahead of him with Götterdämmerung.” Once a scientific idea becomes established, it becomes public property. So the only chance of ownership a researcher has comes by being the first.

However, Medawar advocates for being open about ideas and doing away with secrecy because “anyone who shuts his door keeps out more than he lets out.” He goes on to write, “The agreed house rule of the little group of close colleagues I have always worked with has always been ‘Tell everyone everything you know,’ and I don’t know anyone who came to any harm by falling in with it.

How to handle moral dilemmas

A scientist will normally have contractual obligations to his employer and has always a special and unconditionally binding obligation to the truth.

Medawar writes that many scientists, at some point in their career, find themselves grappling with the conflict between a contractual obligation and their own conscience. However, the “time to grapple is before a moral dilemma arises.” If we think an enterprise might lead somewhere damaging, we shouldn’t start on it in the first place.

We should know our values and aim to do work in accordance with them.

The first rule is never to fool yourself

“I cannot give any scientist of any age better advice than this: the intensity of the conviction that a hypothesis is true has no bearing of whether it is true or not.”

Richard Feynman famously said, “The first principle is that you must not fool yourself—and you are the easiest person to fool.” All scientists make mistakes sometimes. Medawar advises, when this happens, to issue a swift correction. To do so is far more respectable and beneficial for the field than trying to cover it up. Echoing the previous advice to always be willing to take no for an answer, Medawar warns about falling in love with a hypothesis and believing it is true without evidence.

“A scientist who habitually deceives himself is well on the way toward deceiving others.”

The best creative environment

“To be creative, scientists need libraries and laboratories and the company of other scientists; certainly a quiet and untroubled life is a help. A scientist’s work is in no way deepened or made more cogent by privation, anxiety, distress, or emotional harassment. To be sure, the private lives of scientists may be strangely and comically mixed up, but not in ways that have any special bearing on the nature and quality of their work.”

Creativity rises from tranquility, not from disarray. Creativity is supported by a safe environment, one in which you can share and question openly and be heard with compassion and a desire to understand.

A final piece of advice

“A scientist who wishes to keep his friends and not add to the number of his enemies must not be forever scoffing and criticizing and so earn a reputation for habitual disbelief; but he owes it to his profession not to acquiesce in or appear to condone folly, superstition, or demonstrably unsound belief. The recognition and castigation of folly will not win him friends, but it may gain him some respect.”

Related content

US, WA, Seattle
This is a unique opportunity to build technology and science that millions of people will use every day. Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Deep Learning (DL)? We are embarking on a multi-year journey to improve the shopping experience for customers globally. Amazon Search team creates customer-focused search solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. As Amazon expands to new geographies, we are faced with the unique challenge of maintaining the bar on Search Quality due to the diversity in user preferences, multilingual search and data scarcity in new locales. We are looking for an applied researcher to work on improving search on Amazon using NLP, ML, and DL technology. As an Applied Scientist, you will lead our efforts in query understanding, semantic matching (e.g. is a drone the same as quadcopter?), relevance ranking (what is a "funny halloween costume"?), language identification (did the customer just switch to their mother tongue?), machine translation (猫の餌を注文する). This is a highly visible role with a huge impact on Amazon customers and business. As part of this role, you will develop high precision, high recall, and low latency solutions for search. Your solutions should work for all languages that Amazon supports and will be used in all Amazon locales world-wide. You will develop scalable science and engineering solutions that work successfully in production. You will work with leaders to develop a strategic vision and long term plans to improve search globally. We are growing our collaborative group of engineers and applied scientists by expanding into new areas. This is a position on Global Search Quality team in Seattle Washington. We are moving fast to change the way Amazon search works. Together with a multi-disciplinary team you will work on building solutions with NLP/ML/DL at its core. Along the way, you’ll learn a ton, have fun and make a positive impact on millions of people. Come and join us as we invent new ways to delight Amazon customers.
US, WA, Seattle
This is a unique opportunity to build technology and science that millions of people will use every day. Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Deep Learning (DL)? We are embarking on a multi-year journey to improve the shopping experience for customers globally. Amazon Search team creates customer-focused search solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. As Amazon expands to new geographies, we are faced with the unique challenge of maintaining the bar on Search Quality due to the diversity in user preferences, multilingual search and data scarcity in new locales. We are looking for an applied researcher to work on improving search on Amazon using NLP, ML, and DL technology. As an Applied Scientist, you will lead our efforts in query understanding, semantic matching (e.g. is a drone the same as quadcopter?), relevance ranking (what is a "funny halloween costume"?), language identification (did the customer just switch to their mother tongue?), machine translation (猫の餌を注文する). This is a highly visible role with a huge impact on Amazon customers and business. As part of this role, you will develop high precision, high recall, and low latency solutions for search. Your solutions should work for all languages that Amazon supports and will be used in all Amazon locales world-wide. You will develop scalable science and engineering solutions that work successfully in production. You will work with leaders to develop a strategic vision and long term plans to improve search globally. We are growing our collaborative group of engineers and applied scientists by expanding into new areas. This is a position on Global Search Quality team in Seattle Washington. We are moving fast to change the way Amazon search works. Together with a multi-disciplinary team you will work on building solutions with NLP/ML/DL at its core. Along the way, you’ll learn a ton, have fun and make a positive impact on millions of people. Come and join us as we invent new ways to delight Amazon customers.
US, WA, Seattle
The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals. We are seeking an experienced high-energy Economist to help envision, design and build the next generation of retail pricing capabilities. You will work at the intersection of economic theory, statistical inference, and machine learning to design new methods and pricing strategies to deliver game changing value to our customers. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities Amazon’s Pricing Science and Research team is seeking an Economist to help envision, design and build the next generation of pricing capabilities behind Amazon’s on-line retail business. As an economist on our team, you will work at the intersection of economic theory, statistical inference, and machine learning to design new methods and pricing strategies with the potential to deliver game changing value to our customers. This is an opportunity for a high-energy individual to work with our unprecedented retail data to bring cutting edge research into real world applications, and communicate the insights we produce to our leadership. This position is perfect for someone who has a deep and broad analytic background and is passionate about using mathematical modeling and statistical analysis to make a real difference. You should be familiar with modern tools for data science and business analysis. We are particularly interested in candidates with research background in applied microeconomics, econometrics, statistical inference and/or finance. A day in the life Discussions with business partners, as well as product managers and tech leaders to understand the business problem. Brainstorming with other scientists and economists to design the right model for the problem in hand. Present the results and new ideas for existing or forward looking problems to leadership. Deep dive into the data. Modeling and creating working prototypes. Analyze the results and review with partners. Partnering with other scientists for research problems. About the team The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals.
US, CA, San Francisco
The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon's on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon's goods and services are aligned with Amazon's corporate goals. We are seeking an experienced high-energy Economist to help envision, design and build the next generation of retail pricing capabilities. You will work at the intersection of statistical inference, experimentation design, economic theory and machine learning to design new methods and pricing strategies for assessing pricing innovations. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities Amazon's Pricing Science and Research team is seeking an Economist to help envision, design and build the next generation of pricing capabilities behind Amazon's on-line retail business. As an economist on our team, you will will have the opportunity to work with our unprecedented retail data to bring cutting edge research into real world applications, and communicate the insights we produce to our leadership. This position is perfect for someone who has a deep and broad analytic background and is passionate about using mathematical modeling and statistical analysis to make a real difference. You should be familiar with modern tools for data science and business analysis. We are particularly interested in candidates with research background in experimentation design, applied microeconomics, econometrics, statistical inference and/or finance. A day in the life Discussions with business partners, as well as product managers and tech leaders to understand the business problem. Brainstorming with other scientists and economists to design the right model for the problem in hand. Present the results and new ideas for existing or forward looking problems to leadership. Deep dive into the data. Modeling and creating working prototypes. Analyze the results and review with partners. Partnering with other scientists for research problems. About the team The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon's on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon's goods and services are aligned with Amazon's corporate goals.
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US
The Amazon Supply Chain Optimization Technology (SCOT) organization is looking for an Intern in Economics to work on exciting and challenging problems related to Amazon's worldwide inventory planning. SCOT provides unique opportunities to both create and see the direct impact of your work on billions of dollars’ worth of inventory, in one of the world’s most advanced supply chains, and at massive scale. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. We are looking for a PhD candidate with exposure to Program Evaluation/Causal Inference. Knowledge of econometrics and Stata/R/or Python is necessary, and experience with SQL, Hadoop, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
The Selling Partner Fees team owns the end-to-end fees experience for two million active third party sellers. We own the fee strategy, fee seller experience, fee accuracy and integrity, fee science and analytics, and we provide scalable technology to monetize all services available to third-party sellers. We are looking for an Intern Economist with excellent coding skills to design and develop rigorous models to assess the causal impact of fees on third party sellers’ behavior and business performance. As a Science Intern, you will have access to large datasets with billions of transactions and will translate ambiguous fee related business problems into rigorous scientific models. You will work on real world problems which will help to inform strategic direction and have the opportunity to make an impact for both Amazon and our Selling Partners.
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. We are looking for a PhD candidate with exposure to Program Evaluation/Causal Inference. Some knowledge of econometrics, as well as basic familiarity with Stata or R is necessary, and experience with SQL, Hadoop, Spark and Python would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, MA, Westborough
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics is seeking interns and co-ops with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects, including allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, identifying objects and damage, and learning how to grasp all the products Amazon sells. We are seeking internship candidates with backgrounds in computer vision, machine learning, resource allocation, discrete optimization, search, and planning/scheduling. You will be challenged intellectually and have a good time while you are at it! Please note that by applying to this role you would be considered for Applied Scientist summer intern, spring co-op, and fall co-op roles on various Amazon Robotics teams. These teams work on robotics research within areas such as computer vision, machine learning, robotic manipulation, navigation, path planning, perception, artificial intelligence, human-robot interaction, optimization and more.
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.