Advice for young scientists — and curious people in general

The Nobel Prize-winning biologist Peter Medawar published "Advice to a Young Scientist" in 1979. Here are some of Medawar’s key insights from the book.

Editor's note: This article, which is a selection of quotes from "Advice to a Young Scientist" coupled with commentary from Farnam Street staff, originally ran in May 2021 on the Farnam Street blog. It is reprinted here in its entirety with the gracious permission of Farnam Street.

The Nobel Prize-winning biologist Peter Medawar (1915–1987) is best known for work that made the first organ transplants and skin grafts possible. Medawar was also a lively, witty writer who penned numerous books on science and philosophy.

In 1979, he published Advice to a Young Scientist, a book brimming with both practical advice and philosophical guidance for anyone “engaged in exploratory activities.” Here, we summarize some of Medawar’s key insights from the book.

Application, diligence, a sense of purpose

“There is no certain way of telling in advance if the daydreams of a life dedicated to the pursuit of truth will carry a novice through the frustration of seeing experiments fail and of making the dismaying discovery that some of one’s favourite ideas are groundless.”

If you want to make progress in any area, you need to be willing to give up your best ideas from time to time. 

A black and white profile shot of the Nobel Prize-winning biologist Peter Medawar
The Nobel Prize-winning biologist Peter Medawar (1915–1987) is best known for work that made the first organ transplants and skin grafts possible.
By Digitised for CODEBREAKERS, MAKERS OF MODERN GENETICS

Science proceeds because researchers do all they can to disprove their hypotheses rather than prove them right. Medawar notes that he twice spent two whole years trying to corroborate groundless hypotheses. The key to being a good scientist is the capacity to take no for an answer— when necessary. Additionally:

“…one does not need to be terrifically brainy to be a good scientist…there is nothing in experimental science that calls for great feats of ratiocination or a preternatural gift for deductive reasoning. Common sense one cannot do without, and one would be the better for owning some of those old-fashioned virtues which have fallen into disrepute. I mean application, diligence, a sense of purpose, the power to concentrate, to persevere and not be cast down by adversity—by finding out after long and weary inquiry, for example, that a dearly loved hypothesis is in large measure mistaken.”

The truth is, any measure of risk-taking comes with the possibility of failure. Learning from failure to continue exploring the unknown is a broadly useful mindset.

How to make important discoveries

“It can be said with marked confidence that any scientist of any age who wants to make important discoveries must study important problems. Dull or piffling problems yield dull or piffling answers.”

A common piece of advice for people early on in their careers is to pursue what they find most interesting. Medawar disagrees, explaining that “almost any problem is interesting if it is studied in sufficient depth.” He advises scientists to look for important problems, meaning ones with answers that matter to humankind.

When choosing an area of research, Medawar cautions against mistaking a fashion (“some new histochemical procedure or technical gimmick”) for a movement (“such as molecular genetics or cellular immunology”). Movements lead somewhere; fashions generally don’t.

Getting started

Whenever we begin some new endeavor, it can be tempting to think we need to know everything there is to know about it before we even begin. Often, this becomes a form of procrastination. Only once we try something and our plans make contact with reality can we know what we need to know. Medawar believes it’s unnecessary for scientists to spend an enormous amount of time learning techniques and supporting disciplines before beginning research:

“As there is no knowing in advance where a research enterprise may lead and what kind of skills it will require as it unfolds, this process of ‘equipping oneself’ has no predeterminable limits and is bad psychological policy….The great incentive to learning a new skill or supporting discipline is needing to use it.”

The best way to learn what we need to know is by getting started, then picking up new knowledge as it proves itself necessary. When there’s an urgent need, we learn faster and avoid unnecessary learning. The same can be true for too much reading:

“Too much book learning may crab and confine the imagination, and endless poring over the research of others is sometimes psychologically a research substitute, much as reading romantic fiction may be a substitute for real-life romance….The beginner must read, but intently and choosily and not too much.”

We don’t talk about this much at Farnam Street, but it is entirely possible to read too much. Reading becomes counterproductive when it serves as a substitute for doing the real thing, if that’s what someone is reading for. Medawar explains that it is “psychologically most important to get results, even if they are not original.” It’s important to build confidence by doing something concrete and seeing a visible manifestation of our labors. For Medawar, the best scientists begin with the understanding that they can never know anything and, besides, learning needs to be a lifelong process.

The secrets to effective collaboration

“Scientific collaboration is not at all like cooks elbowing each other from the pot of broth; nor is it like artists working on the same canvas, or engineers working out how to start a tunnel simultaneously from both sides of a mountain in such a way that the contractors do not miss each other in the middle and emerge independently at opposite ends.”

Instead, scientific collaboration is about researchers creating the right environment to develop and expand upon each other’s ideas. A good collaboration is greater than the sum of its parts and results in work that isn’t attributable to a single person.

For scientists who find their collaborators infuriating from time to time, Medawar advises being self-aware. We all have faults, and we too are probably almost intolerable to work with sometimes.

When collaboration becomes contentious, Medawar maintains that we should give away our best ideas.

Scientists sometimes face conflict over the matter of credit. If several researchers are working on the same problem, whichever one finds the solution (or a solution) first gets the credit, no matter how close the others were. This is a problem most creative fields don’t face: “The twenty years Wagner spent on composing the first three operas of The Ring were not clouded by the fear that someone else might nip ahead of him with Götterdämmerung.” Once a scientific idea becomes established, it becomes public property. So the only chance of ownership a researcher has comes by being the first.

However, Medawar advocates for being open about ideas and doing away with secrecy because “anyone who shuts his door keeps out more than he lets out.” He goes on to write, “The agreed house rule of the little group of close colleagues I have always worked with has always been ‘Tell everyone everything you know,’ and I don’t know anyone who came to any harm by falling in with it.

How to handle moral dilemmas

A scientist will normally have contractual obligations to his employer and has always a special and unconditionally binding obligation to the truth.

Medawar writes that many scientists, at some point in their career, find themselves grappling with the conflict between a contractual obligation and their own conscience. However, the “time to grapple is before a moral dilemma arises.” If we think an enterprise might lead somewhere damaging, we shouldn’t start on it in the first place.

We should know our values and aim to do work in accordance with them.

The first rule is never to fool yourself

“I cannot give any scientist of any age better advice than this: the intensity of the conviction that a hypothesis is true has no bearing of whether it is true or not.”

Richard Feynman famously said, “The first principle is that you must not fool yourself—and you are the easiest person to fool.” All scientists make mistakes sometimes. Medawar advises, when this happens, to issue a swift correction. To do so is far more respectable and beneficial for the field than trying to cover it up. Echoing the previous advice to always be willing to take no for an answer, Medawar warns about falling in love with a hypothesis and believing it is true without evidence.

“A scientist who habitually deceives himself is well on the way toward deceiving others.”

The best creative environment

“To be creative, scientists need libraries and laboratories and the company of other scientists; certainly a quiet and untroubled life is a help. A scientist’s work is in no way deepened or made more cogent by privation, anxiety, distress, or emotional harassment. To be sure, the private lives of scientists may be strangely and comically mixed up, but not in ways that have any special bearing on the nature and quality of their work.”

Creativity rises from tranquility, not from disarray. Creativity is supported by a safe environment, one in which you can share and question openly and be heard with compassion and a desire to understand.

A final piece of advice

“A scientist who wishes to keep his friends and not add to the number of his enemies must not be forever scoffing and criticizing and so earn a reputation for habitual disbelief; but he owes it to his profession not to acquiesce in or appear to condone folly, superstition, or demonstrably unsound belief. The recognition and castigation of folly will not win him friends, but it may gain him some respect.”

Related content

US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
US, WA, Seattle
The Search Supply & Experiences team, within Sponsored Products, is seeking an Applied Scientist to solve challenging problems in natural language understanding, personalization, and other areas using the latest techniques in machine learning. In our team, you will have the opportunity to create new ads experiences that elevate the shopping experience for our hundreds of millions customers worldwide. As an Applied Scientist, you will partner with other talented scientists and engineers to design, train, test, and deploy machine learning models. You will be responsible for translating business and engineering requirements into deliverables, and performing detailed experiment analysis to determine how shoppers and advertisers are responding to your changes. We are looking for candidates who thrive in an exciting, fast-paced environment and who have a strong personal interest in learning, researching, and creating new technologies with high customer impact. Key job responsibilities As an Applied Scientist on the Search Supply & Experiences team you will: - Perform hands-on analysis and modeling of enormous datasets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end machine learning projects that have a high degree of ambiguity, scale, and complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Design and run experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Stay up to date on the latest advances in machine learning. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to shoppers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. About the team The International Seller Services (ISS) Economics team is a dynamic group at the forefront of shaping Amazon's global seller ecosystem. As part of ISS, we drive innovation and growth through sophisticated economic analysis and data-driven insights. Our mission is critical: we're transforming how Amazon empowers millions of international sellers to succeed in the digital marketplace. Our team stands at the intersection of innovative technology and practical business solutions. We're leading Amazon's transformation in seller services through work with Large Language Models (LLMs) and generative AI, while tackling fundamental questions about seller growth, marketplace dynamics, and operational efficiency. What sets us apart is our unique blend of rigorous economic methodology and practical business impact. We're not just analyzing data – we're building the frameworks and measurement systems that will define the future of Amazon's seller services. Whether we're optimizing the seller journey, evaluating new technologies, or designing innovative service models, our team transforms complex economic challenges into actionable insights that drive real-world results. Join us in shaping how millions of businesses worldwide succeed on Amazon's marketplace, while working on problems that combine economic theory, advanced analytics, and innovative technology.
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.
US, CA, Santa Clara
Amazon Q Business is an AI assistant powered by generative technology. It provides capabilities such as answering queries, summarizing information, generating content, and executing tasks based on enterprise data. We are seeking a Language Data Scientist II to join our data team. Our mission is to engineer high-quality datasets that are essential to the success of Amazon Q Business. From human evaluations and Responsible AI safeguards to Retrieval-Augmented Generation and beyond, our work ensures that Generative AI is enterprise-ready, safe, and effective for users. As part of our diverse team—including language engineers, linguists, data scientists, data engineers, and program managers—you will collaborate closely with science, engineering, and product teams. We are driven by customer obsession and a commitment to excellence. In this role, you will leverage data-centric AI principles to assess the impact of data on model performance and the broader machine learning pipeline. You will apply Generative AI techniques to evaluate how well our data represents human language and conduct experiments to measure downstream interactions. Key job responsibilities * oversee end-to-end evaluation data pipeline and propose evaluation metrics and methods * incorporate your knowledge of linguistic fundamentals, NLU, NLP to the data pipeline * process and analyze diverse media formats including audio recordings, video, images and text * perform statistical analysis of the data * write intuitive data generation & annotation guidelines * write advanced and nuanced prompts to optimize LLM outputs * write python scripts for data wrangling * automate repetitive workflows and improve existing processes * perform background research and vet available public datasets on topics such as long text retrieval, text generation, summarization, question-answering, and reasoning * leverage and integrate AWS services to optimize data collection workflows * collaborate with scientists, engineers, and product managers in defining data quality metrics and guidelines. * lead dive deep sessions with data annotators About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.