Search results

16,887 results found
  • Emory University
    Meet the EmersonBot team from Emory University, a private research university in Atlanta, Georgia, US.
  • University of California, Berkeley
    The UC Berkeley team consists of William, Phillip, Piyush, and James, and is the only fully undergraduate team in the competition.
  • Carnegie Mellon University
    This team, consisting of PhD and Masters students from Carnegie Mellon University, brings together experience in chatbot interaction strategies, question answering, neural modeling and machine learning.
  • University of Edinburgh
    We are Edina, from the University of Edinburgh, a world-leading institution in Artificial Intelligence.
  • Czech Technical University in Prague
    We are the Alquist team from CTU, Prague, Czech Republic.
  • Our international team of 6 PhD students and faculty advisors has a wide range of experience from both academic and industrial research.
  • We are five graduate and undergraduate students of cognitive science, computer science, and applied physics from Rensselaer Polytechnic Institute.
  • Seoul National University
    Our team has been developed from a deep learning study group at SNU.
  • Brandeis University
    The DeisBot team is comprised of seven graduate students in the Computational Linguistics department at Brandeis University.
  • Vishaal Kapoor, Indu Thangakrishnan, Piyush Ghai, Frank Liu, Vandana Kannan, Jake Lee, Qing Lan, Suraj Kota, Anirudh Subramanian, Manu Seth, Andrew Ayres, Roshani Nagmote, Chaitanya Prakash Bapat, Anton Chernov, Dhanasekar Karuppasamy, Hao Jin, Rohit Srivastava, Sandeep Krishnamurthy, Amol Lele, Henri Yandell
    2016
    This repository contains scripts that compares the scalability of deep learning frameworks. The scripts train Inception v3 and AlexNet using synchronous stochastic gradient descent (SGD). To run the comparison in reasonable time, we run few tens of iterations of SGD and compute the throughput as images processed per second. Comparisons can be done on clusters created with AWS CloudFormation using the Amazon
  • George Tucker, Minhua Wu, Ming Sun, Sankaran Panchapagesan, Gengshen Fu, Shiv Vitaladevuni
    Interspeech 2016
    2016
    Several consumer speech devices feature voice interfaces that perform on-device keyword spotting to initiate user interactions. Accurate on-device keyword spotting within a tight CPU budget is crucial for such devices. Motivated by this, we investigated two ways to improve deep neural network (DNN) acoustic models for keyword spotting without increasing CPU usage. First, we used low-rank weight matrices
  • SLT 2016
    2016
    We propose a max-pooling based loss function for training Long Short-Term Memory (LSTM) networks for small-footprint keyword spotting (KWS), with low CPU, memory, and latency requirements. The max-pooling loss training can be further guided by initializing with a cross-entropy loss trained network. A posterior smoothing based evaluation approach is employed to measure keyword spotting performance. Our experimental
  • Sankaran Panchapagesan, Ming Sun, Aparna Khare, Spyros Matsoukas, Arindam Mandal, Björn Hoffmeister, Shiv Vitaladevuni
    Interspeech 2016
    2016
    We propose improved Deep Neural Network (DNN) training loss functions for more accurate single keyword spotting on resource-constrained embedded devices. The loss function modifications consist of a combination of multi-task training and weighted cross entropy. In the multi-task architecture, the keyword DNN acoustic model is trained with two tasks in parallel - the main task of predicting the keyword-specific
  • Janne Pylkkonen, Thomas Drugman, Max Bisani
    Interspeech 2016
    2016
    Producing large enough quantities of high-quality transcriptions for accurate and reliable evaluation of an automatic speech recognition (ASR) system can be costly. It is therefore desirable to minimize the manual transcription work for producing metrics with an agreed precision. In this paper we demonstrate how to improve ASR evaluation precision using stratified sampling. We show that by altering the
  • Francois Mairesse, Paul Raccuglia, Shiv Vitaladevuni
    SIGIR 2016
    2016
    Voice search applications are typically evaluated by comparing the predicted query to a reference human transcript, regardless of the search results returned by the query. While we find that an exact transcript match is highly indicative of user satisfaction, a transcript which does not match the reference still produces satisfactory search results a significant fraction of the time. This paper therefore
  • ACM 2016
    2016
    We exhibit a foldable Extended Kalman Filter that internally integrates non-linear equations of motion with a nested fold of generic integrators over lazy streams in constant memory. Functional form allows us to switch integrators easily and to diagnose filter divergence accurately, achieving orders of magnitude better speed than the source example from the literature. As with all Kalman folds, we can move
  • Thomas Drugman, Janne Pylkkonen, Reinhard Kneser
    Interspeech 2016
    2016
    The goal of this paper is to simulate the benefits of jointly applying active learning (AL) and semi-supervised training (SST) in a new speech recognition application. Our data selection approach relies on confidence filtering, and its impact on both the acoustic and language models (AM and LM) is studied. While AL is known to be beneficial to AM training, we show that it also carries out substantial improvements
  • Faisal Ladhak, Ankur Gandhe, Markus Dreyer, Lambert Mathias, Ariya Rastrow, Björn Hoffmeister
    Interspeech 2016
    2016
    We present a new model called LATTICERNN, which generalizes recurrent neural networks (RNNs) to process weighted lattices as input, instead of sequences. A LATTICERNN can encode the complete structure of a lattice into a dense representation, which makes it suitable to a variety of problems, including rescoring, classifying, parsing, or translating lattices using deep neural networks (DNNs). In this paper
  • Roland Maas, Sree Hari Krishnan Parthasarathi, Brian King, Ruitong Huang, Björn Hoffmeister
    Interspeech 2016
    2016
    We propose two new methods of speech detection in the context of voice-controlled far-field appliances. While conventional detection methods are designed to differentiate between speech and nonspeech, we aim at distinguishing desired speech, which we define as speech originating from the person interacting with the device, from background noise and interfering talkers. Our two proposed methods use the first
  • Search queries are appropriate when users have explicit intent, but they perform poorly when the intent is difficult to express or if the user is simply looking to be inspired. Visual browsing systems allow e-commerce platforms to address these scenarios while offering the user an engaging shopping experience. Here we explore extensions in the direction of adaptive personalization and item diversification
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, NJ, Newark
At Audible, we believe stories have the power to transform lives. It’s why we work with some of the world’s leading creators to produce and share audio storytelling with our millions of global listeners. We are dreamers and inventors who come from a wide range of backgrounds and experiences to empower and inspire each other. Imagine your future with us. ABOUT THIS ROLE As an Applied Scientist II, you will work on complex problems where neither the problem nor solution is well defined. You'll define and crisply frame research problems while developing novel scientific techniques in domains including machine learning, artificial intelligence (AI), natural language processing (NLP), large language models (LLMs), reinforcement learning (RL), and audio processing. Your primary focus will be on applying and extending existing scientific techniques, as well as inventing new approaches to address specific customer needs and business problems at the project level. You will contribute to internal or external peer-reviewed publications that validate the novelty of your work, while documenting and sharing findings in line with scientific best practices. You will work on LLM applications to enhance Audible's customer experience We work in a highly collaborative environment where you'll primarily influence your team, begin mentoring more junior scientists, and partner with engineers and product managers to implement scalable, efficient approaches for difficult problems. You will operate with some autonomy while knowing when to seek direction to deliver high-quality scientific artifacts. As an Applied Scientist II, you will... - Define and implement scalable, efficient approaches for difficult problems related to audio storytelling and content experiences - Apply and extend state-of-the-art LLM techniques to address specific customer or business needs at the project level - Work on portions of systems, large components, applications, or services supporting machine learning and AI use cases - Apply and extend state-of-the-art techniques in areas like NLP and deep learning to address specific customer or business needs - Execute on team-level goals while creating intellectual property through your work - Apply best practices in software development at the component level, ensuring solutions are testable, reproducible, and efficient - Document and share findings that contribute to the internal and external scientific community - Begin mentoring and developing teammates while gaining experience in tactical work and learning to be strategic - Collaborate with tech and product teams to implement solutions that consider relevant tradeoffs at the component level ABOUT AUDIBLE Audible is the leading producer and provider of audio storytelling. We spark listeners’ imaginations, offering immersive, cinematic experiences full of inspiration and insight to enrich our customers daily lives. We are a global company with an entrepreneurial spirit. We are dreamers and inventors who are passionate about the positive impact Audible can make for our customers and our neighbors. This spirit courses throughout Audible, supporting a culture of creativity and inclusion built on our People Principles and our mission to build more equitable communities in the cities we call home.