-
2023 Conference on Digital Experimentation @ MIT (CODE@MIT)2023Randomized Control Trials (RCTs) are widely used across Amazon to causally estimate impacts of proposed feature changes, in order to make data-driven launch decisions. A key element of experimental design is the level of randomization, and the choice often relies on the cross-unit interaction structure. For instance, in the context of advertiser experiments, a treatment may affect the outcome of control
-
2023 Conference on Digital Experimentation @ MIT (CODE@MIT)2023There are many experimental settings that may suffer from cross-unit (customers, seller, advertiser, etc.) spillovers, for instance through network effects. Such effects introduce bias and prevent the experimenter from drawing trustworthy insights on the data. One approach to dealing with such spillovers is to group units into clusters and randomize treatment status at the cluster level. Examples of clusters
-
ESREL 20232023Enabling a circular economy aims to reduce the amount of global waste generated from electrical and electronic equipment, mitigate the associated risk to the ecosystem and human health, and address concerns over limited material resources. Durability is a critical concern because keeping products in use for a longer time should reduce resource consumption and waste. Assessing the durability of products
-
WINE 20232023Due to numerous applications in retail and (online) advertising the problem of assortment selection has been widely studied under many combinations of discrete choice models and feasibility constraints. In many situations, however, an assortment of products has to be constructed gradually and without accurate knowledge of all possible alternatives; in such cases, existing offline approaches become inapplicable
-
KDD 2023 Workshop on Causal Inference and Machine Learning in Practice: Use cases for Product, Brand, Policy and Beyond2023We introduce OpportunityFinder, a code-less framework for performing a variety of causal inference studies with panel data for non-expert users. In its current state, OpportunityFinder only requires users to provide raw observational data and a configuration file. A pipeline is then triggered that inspects/processes data, chooses the suitable algorithm(s) to execute the causal study. It returns the causal
Related content
-
April 26, 2021New method identifies which causal factors contribute most to observed changes in probability distributions.
-
April 13, 2021Their doctoral degrees help these product managers bridge the gap between business and science.
-
February 18, 2021The Amazon research manager was included on a list of individuals 40 and younger who are projected to play a leading role in Africa’s economic future.
-
January 11, 2021Machine learning is helping Amazon improve the grocery shopping experience in both the physical and online channels.
-
January 6, 2021Amazon Scholar David Card on the revolution in economic research that he helped launch and its consequences for industry.
-
November 9, 2020Amazon VP and chief economist for digital streaming and advertising Phil Leslie on economists’ role in industry.