In the second-generation Echo Buds, Amazon engineers were able to produce a device that is 21 percent smaller than the first version, while maintaining costs, through a multitude of innovations and integration of components.

How the second-gen Echo Buds got smaller and better

Take a behind-the-scenes look at the unique challenges the engineering teams faced, and how they used scientific research to drive fundamental innovation.

Notebook computers, tablets, and smartphones get the tech headlines, but these are largely mature products at this point. Smaller, more personal devices are going through a torrent of iteration and innovation.

Bluetooth wireless headphones are a highly competitive category, with products with bare-bones features available for less than $50, and feature-packed devices available at prices ranging all the way up to $400.

The first Amazon Echo Buds appeared in 2019, and, the follow-up second-gen Echo Buds in April 2021. The team at Amazon improved the second-gen earbuds in almost every way. This is a behind-the-scenes look at the unique challenges the engineering teams faced in creating the latest generation Echo Buds, and how they used scientific research to drive fundamental innovation to overcome those challenges.

Ultimately, Amazon’s team was able to a deliver feature-rich product that competes with products at the high end of the price range for $120.

Atif Noori was the principal product manager for both generations of Echo Buds. Reflecting Amazon’s customer focus, he said the process of designing the latest Echo Buds began with understanding the desires of the customer.

“We work backwards from the customers and build out a set of product requirements. From there we work across multiple talented teams to deliver a lovable product,” he said.

What customers want is great audio, a comfortable fit, long battery life, and excellent connectivity with their smartphones. Of course, many of these are in tension with one another. At the high end of the hearables category, customers also want advanced features like noise cancellation and cloud-based voice services like Alexa.

Echo Buds, Glacier White, Outside.jpg
For the second-generation Echo Buds, engineers worked to redesign the main Bluetooth chip and the audio co-processor in such a way that those two components could perform the tasks of five different components in the first-generation device.

Given this catalog of customer expectations, the nugget-sized wireless earbuds are giants of engineering challenges.

Reducing size to improve comfort and fit, while still maintaining connectivity performance, staying under comfortable temperatures limits, and meeting the customer’s battery life expectations with more features, was a challenge, but one the engineering team said they were excited to tackle.   

Milos Jorgovanovic, principal system architect at Amazon Lab 126, says size and cost are the constant constraints. The Amazon engineers were able to produce a device that is 21 percent smaller than the first version Echo Buds, while maintaining costs, through a multitude of innovations and integration of components.

This began with the processors, or, to use the engineers’ lingo, the silicon, which are the heart of the device. To make the device smaller, the engineers needed to reduce the size of the battery. Easily enough done on its own, except the team also needed to do this without reducing the device's battery life.

"And really for that, the key piece is the power consumption of the silicon platform itself," Jorgovanovic said. "At the same time, we are basically trying to offer high-end features at a much lower power consumption and lower cost."

For the second-generation Echo Buds, team worked with manufacturers to redesign the main Bluetooth chip and the audio co-processor in such a way that those two components could perform the tasks of five different components found in the first-generation device.

"We basically cut the power consumption for audio and Alexa processing by at least a factor of two from what it was before," Jorgovanovic said.

We basically cut the power consumption for audio and Alexa processing by at least a factor of two from what it was before.
Milos Jorgovanovic

This was done while simultaneously improving the Alexa’s ability to hear customers speak.

Amazon started the voice category with the original Echo and Alexa launch in November 2014, so it makes sense that the latest Echo Buds would offer seamless Alexa functionality. With Alexa, a user can not only play music and make phone calls, but also set reminders, request information, and in certain cities, plan public transportation routes and get information on the train or bus they're hoping to catch, all while leaving their phone in their pocket.

"If a customer wants to take Alexa on the go, they can do that and have the same experience as they do with an Echo in their home," Noori said. "It's even more than that though. The responses are tailored for when you're on the go. For example, you can ask Alexa to remind you to buy tahini when you arrive at Whole Foods. And in some stores, you can then ask Alexa if tahini is in stock, or ask which aisle the tahini is on, which is pretty awesome.”

Achieving all of that requires not only integration with the cloud, but also a good bit of on-device processing. Jorgovanovic said improvements in the new processor allowed this to be done with less power consumption.

"We put a better digital signal processor in there, but the second, and more important piece, is that this chip was designed so that it allows very aggressive frequency and voltage scaling," he said. "What it means is that if the device is basically sitting in the air, doing very little processing, we are able to lower both the frequency and the voltage on that chip and have the chip consume much less energy."

If the user speaks and, for example, asks a friend, "Hey, Jason, how are you doing?" the device will run a small amount of processing to determine if the user said "Alexa." If the user did say "Alexa," the digital signal processor (DSP) is boosted even further, increasing the voltage, boosting the frequency, and engaging in more complex compute. At that point the device is processing the Alexa event — the information is sent to the cloud and then the response is played when it is received.

"We basically have these levels of processing, and we set the frequency and the voltage on the processor to the adequate level for the amount of processing we need. This is one of the two main things that we've done in gen two to scale down the power consumption,” Jorgovanovic explained. “The second big thing was integrating more functionality into the main Bluetooth SoC [system on a chip] by innovating on the Bluetooth protocol between the two earbuds, which reduced the number of components and power spent on interconnect. Overall, we reduced total device power by more than 35 percent relative to the first Echo Buds, and specific to that DSP processing for audio and Alexa, by at least a factor of two, if not more. And that's just, wow."

Reducing the power of the processors brought another benefit: reduced heat. "Because we pack in so much, we have to factor in heat dissipation," Noori said.  "It was not like you can add on cooling fins or a big heat sink. It required careful simulation and design."

Beyond the silicon, another major constraint in size and cost are the antennas.

Connectivity is a hurdle in wireless Bluetooth headphones because they are partially hidden in the ear. And while ears can block frequencies, the human body is also effective at blocking signals. The user's smartphone needs to connect with one of the earbuds, and then the two earbuds need to send packets to each other, with as little latency as possible.

"That's really important — the synchronization of the two ear buds — because our hearing is very sensitive to this," Jorgovanovic said. "Something like a hundred microseconds of delta between left and right can easily be felt. And, the effect is the user will sense that the audio is not coming from straight ahead, but instead coming from one side or the other."

Balamurugan Shanmugam, senior antenna design engineer, says the connectivity issues are a challenge for all wearable devices.

"This is an inherent physics problem, right? I mean, this is not unique to Amazon. Anyone working on body-worn devices or even looking just at medical devices such as wireless-enabled pacemakers will encounter the same problem," he said.

Shanmugam's challenge was to improve connectivity in a smaller package. His team's first go at the problem developed a solution, but the manufacturing costs were too high. It was time to develop a novel solution.

Just as the engineers were able to reduce the number of processors in the device, they also were able to integrate functions to accommodate a new antenna. The best location for the antenna is in the front center of the device, but that is also where a user expects to tap or use gestures. On the first-generation Echo Bud, the touch sensor and electrostatic discharge (ESD) circuits were utilizing the location an antenna needs to maximize wireless performance. To address that, the engineers invented an integrated antenna design that combines the antenna, touch, and ESD subsystems.

"The newest Echo Bud has integrated antenna, touch, and electrostatic discharge to optimize wireless performance," Shanmugam said.

Noori said that connectivity is among the features that stand out in the latest Echo Buds. "Connectivity is very solid on these devices; I'm definitely proud of the connectivity performance. I think we nailed that."

And there’s more to come.

"I think there's a lot of interesting things that can be done with earbuds that are outside of basic music playback," Noori said. "We’re continuing to innovate on behalf of our customers, and pushing out software updates. Echo Buds will continue to get better and smarter over time."

Get them in black or white with a wired charing case for $119.99 or with a wireless charging case for $139.99.

Related content

US, WA, Seattle
Are you excited about building high-performance robotic systems that can perceive, learn, and act intelligently alongside humans? The Robotics AI team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.The Amazon Robotics team is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. Come join us!
US, VA, Arlington
The Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. As Director for PXT Central Science Technology, you will be responsible for leading multiple teams through rapidly evolving complex demands and define, develop, deliver and execute on our science roadmap and vision. You will provide thought leadership to scientists and engineers to invent and implement scalable machine learning recommendations and data driven algorithms supporting flexible UI frameworks. You will manage and be responsible for delivering some of our most strategic technical initiatives. You will design, develop and operate new, highly scalable software systems that support Amazon’s efforts to be Earth’s Best Employer and have a significant impact on Amazon’s commitment to our employees and communities where we both serve and employ 1.3 million Amazonians. As Director of Applied Science, you will be part of the larger technical leadership community at Amazon. This community forms the backbone of the company, plays a critical role in the broad business planning, works closely with senior executives to develop business targets and resource requirements, influences our long-term technical and business strategy, helps hire and develop engineering leaders and developers, and ultimately enables us to deliver engineering innovations.This role is posted for Arlington, VA, but we are flexible on location at many of our offices in the US and Canada.
US, VA, Arlington
Employer: Services LLCPosition: Data Scientist IILocation: Arlington, VAMultiple Positions Available1. Manage and execute entire projects or components of large projects from start to finish including data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights and recommendations.2. Oversee the development and implementation of data integration and analytic strategies to support population health initiatives.3. Leverage big data to explore and introduce areas of analytics and technologies.4. Analyze data to identify opportunities to impact populations.5. Perform advanced integrated comprehensive reporting, consultative, and analytical expertise to provide healthcare cost and utilization data and translate findings into actionable information for internal and external stakeholders.6. Oversee the collection of data, ensuring timelines are met, data is accurate and within established format.7. Act as a data and technical resource and escalation point for data issues, ensuring they are brought to resolution.8. Serve as the subject matter expert on health care benefits data modeling, system architecture, data governance, and business intelligence tools. #0000
US, TX, Dallas
Employer: Services LLCPosition: Data Scientist II (multiple positions available)Location: Dallas, TX Multiple Positions Available:1. Assist customers to deliver Machine Learning (ML) and Deep Learning (DL) projects from beginning to end, by aggregating data, exploring data, building and validating predictive models, and deploying completed models to deliver business impact to the organization;2. Apply understanding of the customer’s business need and guide them to a solution using AWS AI Services, AWS AI Platforms, AWS AI Frameworks, and AWS AI EC2 Instances;3. Use Deep Learning frameworks like MXNet, PyTorch, Caffe 2, Tensorflow, Theano, CNTK, and Keras to help our customers build DL models;4. Research, design, implement and evaluate novel computer vision algorithms and ML/DL algorithms;5. Work with data architects and engineers to analyze, extract, normalize, and label relevant data;6. Work with DevOps engineers to help customers operationalize models after they are built;7. Assist customers with identifying model drift and retraining models;8. Research and implement novel ML and DL approaches, including using FPGA;9. Develop computer vision and machine learning methods and algorithms to address real-world customer use-cases; and10. Design and run experiments, research new algorithms, and work closely with engineers to put algorithms and models into practice to help solve customers' most challenging problems.11. Approximately 15% domestic and international travel required.12. Telecommuting benefits are available.#0000
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Manager III, Data ScienceLocation: Bellevue, WashingtonPosition Responsibilities:Manage a team of data scientists working to build large-scale, technical solutions to increase effectiveness of Amazon Fulfillment systems. Define key business goals and map them to the success of technical solutions. Aggregate, analyze and model data from multiple sources to inform business decisions. Manage and quantify improvement in the customer experience resulting from research outcomes. Develop and manage a long-term research vision and portfolio of research initiatives, with algorithms and models that to be integrated in production systems. Hire and mentor junior is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Arlington, VirginiaPosition Responsibilities:Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing Oracle, RedShift, and Spark storage systems. Build relationships with stakeholders and counterparts. Analyze data for trends and input validity by inspecting univariate distributions, exploring bivariate relationships, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build models using statistical modeling, mathematical modeling, econometric modeling, network modeling, social network modeling, natural language processing, machine learning algorithms, genetic algorithms, and neural networks. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, IL, Chicago
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist ILocation: Chicago, IllinoisPosition Responsibilities:Build the core intelligence, insights, and algorithms that support the real estate acquisition strategies for Amazon physical stores. Tackle cutting-edge, complex problems such as predicting the optimal location for new Amazon stores by bringing together numerous data assets, and using best-in-class modeling solutions to extract the most information out of them. Work with business stakeholders, software development engineers, and other data scientists across multiple teams to develop innovative solutions at massive is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, WA, Bellevue
How do you design and provide right incentives for millions of sellers that inbound and ship billions of customer orders? How do you measure sellers' response to /causal impacts of capacity control policies we implemented at Amazon using the state-of-the-art econometric techniques? How do you optimize Amazon’s third-party supply chain using new ideas never implemented at this scale to benefit millions of customers worldwide? How do you design and evaluate seller assistance to drive their success? If these type of questions get your mind racing, we want to hear from you.Supply Chain Optimization Technologies (SCOT) optimizes Amazon’s global supply chain end to end and build systems to deliver billions of products to our customers’ doorsteps faster every year while saving hundreds of millions of dollars using economics, operational research, machine learning, and scalable distributed software on the Cloud. Fulfillment by Amazon (FBA) is an Amazon service for our marketplace third party sellers, where our sellers leverage our world-class facilities and provide customers Prime delivery promise on all their goods.We are looking for the next outstanding economist to join our interdisciplinary team of data scientists, research scientists, applied scientists, economists. The ideal candidate combines econometric acumen with strong business judgment. You have versatile modeling skills and are comfortable extracting insights from observational and experimental data. You translate insights into action through proofs-of-concept and partnerships with engineers and data scientists to productionize. You are excited to learn from and alongside seasoned analysts, scientists, engineers, and business leaders. You are an excellent communicator and effectively translate business ideas and technical findings into business action (and customer delight).Key job responsibilitiesProvide data-driven guidance and recommendations on strategic questions facing the FBA leadershipDesign and implement V0 models and experiments to kickstart new initiatives, thinking, and drive system-level changes across AmazonHelp build a long-term research agenda to understand, break down, and tackle the most stubborn and ambiguous business challengesInfluence business leaders and work closely with other scientists at Amazon to deliver measurable progress and change
US, WA, Seattle
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve the employee and manager experience at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science!The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.We are seeking a senior Applied Scientist with expertise in more than one or more of the following areas: machine learning, natural language processing, computational linguistics, algorithmic fairness, statistical inference, causal modeling, reinforcement learning, Bayesian methods, predictive analytics, decision theory, recommender systems, deep learning, time series modeling. In this role, you will lead and support research efforts within all aspects of the employee lifecycle: from candidate identification to recruiting, to onboarding and talent management, to leadership and development, to finally retention and brand advocacy upon exit.The ideal candidate should have strong problem-solving skills, excellent business acumen, the ability to work independently and collaboratively, and have an expertise in both science and engineering. The ideal candidate is not methods-driven, but driven by the research question at hand; in other words, they will select the appropriate method for the problem, rather than searching for questions to answer with a preferred method. The candidate will need to navigate complex and ambiguous business challenges by asking the right questions, understanding what methodologies to employ, and communicating results to multiple audiences (e.g., technical peers, functional teams, business leaders).About the teamWe are a collegial and multidisciplinary team of researchers in People eXperience and Technology (PXT) that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We leverage data and rigorous analysis to help Amazon attract, retain, and develop one of the world’s largest and most talented workforces.
US, WA, Bellevue
Job summaryThe Global Supply Chain-ACES organization aims to raise the bar on Amazon’s customer experience by delivering holistic solutions for Global Customer Fulfillment that facilitate the effective and efficient movement of product through our supply chain. We develop strategies, processes, material handling and technology solutions, reporting and other mechanisms, which are simple, technology enabled, globally scalable, and locally relevant. We achieve this through cross-functional partnerships, listening to the needs of our customers and prioritizing initiatives to deliver maximum impact across the value chain. Within the organization, our Quality team balances tactical operation with operations partners with global engagement on programs to deliver improved inventory accuracy in our network. The organization is looking for an experienced Principal Research Scientist to partner with senior leadership to develop long term strategic solutions. As a Principal Scientist, they will lead critical initiatives for Global Supply Chain, leveraging complex data analysis and visualization to:a. Collaborate with business teams to define data requirements and processes;b. Automate data pipelines;c. Design, develop, and maintain scalable (automated) reports and dashboards that track progress towards plans;d. Define, track and report program success metrics.e. Serve as a technical science lead on our most demanding, cross-functional projects.