AmazonScience_EchoBuds_01.jpg
In the second-generation Echo Buds, Amazon engineers were able to produce a device that is 21 percent smaller than the first version, while maintaining costs, through a multitude of innovations and integration of components.

How the second-gen Echo Buds got smaller and better

Take a behind-the-scenes look at the unique challenges the engineering teams faced, and how they used scientific research to drive fundamental innovation.

Notebook computers, tablets, and smartphones get the tech headlines, but these are largely mature products at this point. Smaller, more personal devices are going through a torrent of iteration and innovation.

Bluetooth wireless headphones are a highly competitive category, with products with bare-bones features available for less than $50, and feature-packed devices available at prices ranging all the way up to $400.

The first Amazon Echo Buds appeared in 2019, and, the follow-up second-gen Echo Buds in April 2021. The team at Amazon improved the second-gen earbuds in almost every way. This is a behind-the-scenes look at the unique challenges the engineering teams faced in creating the latest generation Echo Buds, and how they used scientific research to drive fundamental innovation to overcome those challenges.

Ultimately, Amazon’s team was able to a deliver feature-rich product that competes with products at the high end of the price range for $120.

Atif Noori was the principal product manager for both generations of Echo Buds. Reflecting Amazon’s customer focus, he said the process of designing the latest Echo Buds began with understanding the desires of the customer.

“We work backwards from the customers and build out a set of product requirements. From there we work across multiple talented teams to deliver a lovable product,” he said.

What customers want is great audio, a comfortable fit, long battery life, and excellent connectivity with their smartphones. Of course, many of these are in tension with one another. At the high end of the hearables category, customers also want advanced features like noise cancellation and cloud-based voice services like Alexa.

Echo Buds, Glacier White, Outside.jpg
For the second-generation Echo Buds, engineers worked to redesign the main Bluetooth chip and the audio co-processor in such a way that those two components could perform the tasks of five different components in the first-generation device.

Given this catalog of customer expectations, the nugget-sized wireless earbuds are giants of engineering challenges.

Reducing size to improve comfort and fit, while still maintaining connectivity performance, staying under comfortable temperatures limits, and meeting the customer’s battery life expectations with more features, was a challenge, but one the engineering team said they were excited to tackle.   

Milos Jorgovanovic, principal system architect at Amazon Lab 126, says size and cost are the constant constraints. The Amazon engineers were able to produce a device that is 21 percent smaller than the first version Echo Buds, while maintaining costs, through a multitude of innovations and integration of components.

This began with the processors, or, to use the engineers’ lingo, the silicon, which are the heart of the device. To make the device smaller, the engineers needed to reduce the size of the battery. Easily enough done on its own, except the team also needed to do this without reducing the device's battery life.

"And really for that, the key piece is the power consumption of the silicon platform itself," Jorgovanovic said. "At the same time, we are basically trying to offer high-end features at a much lower power consumption and lower cost."

For the second-generation Echo Buds, team worked with manufacturers to redesign the main Bluetooth chip and the audio co-processor in such a way that those two components could perform the tasks of five different components found in the first-generation device.

"We basically cut the power consumption for audio and Alexa processing by at least a factor of two from what it was before," Jorgovanovic said.

We basically cut the power consumption for audio and Alexa processing by at least a factor of two from what it was before.
Milos Jorgovanovic

This was done while simultaneously improving the Alexa’s ability to hear customers speak.

Amazon started the voice category with the original Echo and Alexa launch in November 2014, so it makes sense that the latest Echo Buds would offer seamless Alexa functionality. With Alexa, a user can not only play music and make phone calls, but also set reminders, request information, and in certain cities, plan public transportation routes and get information on the train or bus they're hoping to catch, all while leaving their phone in their pocket.

"If a customer wants to take Alexa on the go, they can do that and have the same experience as they do with an Echo in their home," Noori said. "It's even more than that though. The responses are tailored for when you're on the go. For example, you can ask Alexa to remind you to buy tahini when you arrive at Whole Foods. And in some stores, you can then ask Alexa if tahini is in stock, or ask which aisle the tahini is on, which is pretty awesome.”

Achieving all of that requires not only integration with the cloud, but also a good bit of on-device processing. Jorgovanovic said improvements in the new processor allowed this to be done with less power consumption.

"We put a better digital signal processor in there, but the second, and more important piece, is that this chip was designed so that it allows very aggressive frequency and voltage scaling," he said. "What it means is that if the device is basically sitting in the air, doing very little processing, we are able to lower both the frequency and the voltage on that chip and have the chip consume much less energy."

If the user speaks and, for example, asks a friend, "Hey, Jason, how are you doing?" the device will run a small amount of processing to determine if the user said "Alexa." If the user did say "Alexa," the digital signal processor (DSP) is boosted even further, increasing the voltage, boosting the frequency, and engaging in more complex compute. At that point the device is processing the Alexa event — the information is sent to the cloud and then the response is played when it is received.

"We basically have these levels of processing, and we set the frequency and the voltage on the processor to the adequate level for the amount of processing we need. This is one of the two main things that we've done in gen two to scale down the power consumption,” Jorgovanovic explained. “The second big thing was integrating more functionality into the main Bluetooth SoC [system on a chip] by innovating on the Bluetooth protocol between the two earbuds, which reduced the number of components and power spent on interconnect. Overall, we reduced total device power by more than 35 percent relative to the first Echo Buds, and specific to that DSP processing for audio and Alexa, by at least a factor of two, if not more. And that's just, wow."

Reducing the power of the processors brought another benefit: reduced heat. "Because we pack in so much, we have to factor in heat dissipation," Noori said.  "It was not like you can add on cooling fins or a big heat sink. It required careful simulation and design."

Beyond the silicon, another major constraint in size and cost are the antennas.

Connectivity is a hurdle in wireless Bluetooth headphones because they are partially hidden in the ear. And while ears can block frequencies, the human body is also effective at blocking signals. The user's smartphone needs to connect with one of the earbuds, and then the two earbuds need to send packets to each other, with as little latency as possible.

"That's really important — the synchronization of the two ear buds — because our hearing is very sensitive to this," Jorgovanovic said. "Something like a hundred microseconds of delta between left and right can easily be felt. And, the effect is the user will sense that the audio is not coming from straight ahead, but instead coming from one side or the other."

Balamurugan Shanmugam, senior antenna design engineer, says the connectivity issues are a challenge for all wearable devices.

"This is an inherent physics problem, right? I mean, this is not unique to Amazon. Anyone working on body-worn devices or even looking just at medical devices such as wireless-enabled pacemakers will encounter the same problem," he said.

Shanmugam's challenge was to improve connectivity in a smaller package. His team's first go at the problem developed a solution, but the manufacturing costs were too high. It was time to develop a novel solution.

Just as the engineers were able to reduce the number of processors in the device, they also were able to integrate functions to accommodate a new antenna. The best location for the antenna is in the front center of the device, but that is also where a user expects to tap or use gestures. On the first-generation Echo Bud, the touch sensor and electrostatic discharge (ESD) circuits were utilizing the location an antenna needs to maximize wireless performance. To address that, the engineers invented an integrated antenna design that combines the antenna, touch, and ESD subsystems.

"The newest Echo Bud has integrated antenna, touch, and electrostatic discharge to optimize wireless performance," Shanmugam said.

Noori said that connectivity is among the features that stand out in the latest Echo Buds. "Connectivity is very solid on these devices; I'm definitely proud of the connectivity performance. I think we nailed that."

And there’s more to come.

"I think there's a lot of interesting things that can be done with earbuds that are outside of basic music playback," Noori said. "We’re continuing to innovate on behalf of our customers, and pushing out software updates. Echo Buds will continue to get better and smarter over time."

Get them in black or white with a wired charing case for $119.99 or with a wireless charging case for $139.99.

Research areas

Related content

US, MA, North Reading
We are looking for experienced scientists and engineers to explore new ideas, invent new approaches, and develop new solutions in the areas of Controls, Dynamic modeling and System identification. Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Key job responsibilities Applied Scientists take on big unanswered questions and guide development team to state-of-the-art solutions. We want to hear from you if you have deep industry experience in the Mechatronics domain and : * the ability to think big and conceive of new ideas and novel solutions; * the insight to correctly identify those worth exploring; * the hands-on skills to quickly develop proofs-of-concept; * the rigor to conduct careful experimental evaluations; * the discipline to fast-fail when data refutes theory; * and the fortitude to continue exploring until your solution is found We are open to hiring candidates to work out of one of the following locations: North Reading, MA, USA | Westborough, MA, USA
GB, London
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python or R is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: London, GBR
IN, KA, Bengaluru
Job Description ATE (Analytics, Technology and Engineering) is a multi-disciplinary team of scientists, engineers, and technicians, all working to innovate in operations for the benefit of our customers. Our team is responsible for creating core analytics, science capabilities, platforms development and data engineering. We develop scalable analytics applications and research modeling to optimize operation processes.. You will work with professional software development managers, data engineers, data scientists, applied scientists, business intelligence engineers and product managers using rigorous quantitative approaches to ensure high quality data tech products for our customers around the world, including India, Australia, Brazil, Mexico, Singapore and Middle East. We are on the lookout for an enthusiastic and highly analytical individual to be a part of our journey. Amazon is growing rapidly and because we are driven by faster delivery to customers, a more efficient supply chain network, and lower cost of operations, our main focus is in the development of strategic models and automation tools fed by our massive amounts of available data. You will be responsible for building these models/tools that improve the economics of Amazon’s worldwide fulfillment networks in emerging countries as Amazon increases the speed and decreases the cost to deliver products to customers. You will identify and evaluate opportunities to reduce variable costs by improving fulfillment center processes, transportation operations and scheduling, and the execution to operational plans. You will also improve the efficiency of capital investment by helping the fulfillment centers to improve storage utilization and the effective use of automation. Finally, you will help create the metrics to quantify improvements to the fulfillment costs (e.g., transportation and labor costs) resulting from the application of these optimization models and tools. Major responsibilities include: · In this role, you will be responsible for developing and implementing innovative, scalable models and tools aimed at tackling novel challenges within Amazon’s global fulfillment network. Collaborating with fellow scientists from various teams, you will work on integrated solutions to enhance fulfillment speed, reduce costs. Your in-depth comprehension of business challenges will enable you to provide scientific analyses that underpin critical business decisions, utilizing a diverse range of methodologies. You’ll have the opportunity to design scientific tool platforms, deploy models, create efficient data pipelines, and streamline existing processes. Join us in shaping the future of Amazon’s global retail business by optimizing delivery speed at scale and making a lasting impact on the world of e-commerce. If you’re passionate about solving complex problems and driving innovation, we encourage you to apply. About the team This team is responsible for applying science based algo and techniques to solve the problems in operation and supply chain. Some of these problems include, volume forecasting, capacity planning, fraud detection, scenario simulation and using LLM/GenAI for process efficiency We are open to hiring candidates to work out of one of the following locations: Bengaluru, KA, IND
IL, Tel Aviv
Are you passionate about pushing the boundaries of computer vision, generative AI, deep learning, and machine learning? Ready to tackle challenges in document understanding at scale? We’re looking for innovative minds to join our world-class team at AWS, where you’ll collaborate with leading researchers, academics, and engineers on Amazon Textract. Why AWS? Be part of the leading cloud service provider powering innovation and positive impact. Work on real-world problems alongside tech and business giants. Access to unlimited data and computational resources. Collaborate with world-class researchers and developers. Deploy solutions at AWS scale and publish your work at top conferences. Focus Areas: - LLMs, document understanding, scene text recognition. - Visual question answering, NLP+vision, layout understanding. Locations: Tel Aviv and Haifa Think you’re a fit? Dive into the world of AWS Computer Vision and help us innovate at the forefront of technology. Key job responsibilities - Design cutting-edge neural network architectures. - Create document understanding solutions for complex scenarios and large visual datasets. - Set benchmarks and success criteria for model performance. - Collaborate across AWS and Amazon to bring scientific breakthroughs to our customers. - Add your unique creativity to our multidisciplinary team. - Mentor junior scientists and interns/PhD students. We are open to hiring candidates to work out of one of the following locations: Haifa, ISR | Tel Aviv, ISR
LU, Luxembourg
Have you ever wished to build high standard Operations Research and Machine Learning algorithms to optimize one of the most complex logistics network? Have you ever ordered a product on Amazon websites and wondered how it got delivered to you so fast, and what kinds of algorithms & processes are running behind the scenes to power the whole operation? If so, this role is for you. The team: Global transportation services, Research and applied science - Operations is at the heart of the Amazon customer experience. Each action we undertake is on behalf of our customers, as surpassing their expectations is our passion. We improve customer experience through continuously optimizing the complex movements of goods from vendors to customers throughout Europe. - Global transportation analytical teams are transversal centers of expertise, composed of engineers, analysts, scientists, technical program managers and developers. We are focused on Amazon most complex problems, processes and decisions. We work with fulfillment centers, transportation, software developers, finance and retail teams across the world, to improve our logistic infrastructure and algorithms. - GTS RAS is one of those Global transportation scientific team. We are obsessed by delivering state of the art OR and ML tools to support the rethinking of our advanced end-to-end supply chain. Our overall mission is simple: we want to implement the best logistics network, so Amazon can be the place where our customers can be delivered the next-day. The role: Applied scientist, speed and long term network design The person in this role will have end-to-end ownership on augmenting RAS Operation Research and Machine Learning modeling tools. They will help understand where are the constraints in our transportation network, and how we can remove them to make faster deliveries at a lower cost. You will be responsible for designing and implementing state-of-the-art algorithmic in transportation planning and network design, to expand the scope of our Operations Research and Machine Learning tools, to reflect the constantly evolving constraints in our network. You will enable the creation of a product that drives ever-greater automation, scalability and optimization of every aspect of transportation, planning the best network and modeling the constraints that prevent us from offering more speed to our customer, to maximize the utilization of the associated resources. The impact of your work will be in the Amazon EU global network. The product you will build will span across multiple organizations that play a role in Amazon’s operations and transportation and the shopping experience we deliver to customer. Those stakeholders include fulfilment operations and transportation teams; scientists and developers, and product managers. You will understand those teams constraints, to include them in your product; you will discuss with technical teams across the organization to understand the existing tools and assess the opportunity to integrate them in your product.You will engage with fellow scientists across the globe, to discuss the solutions they have implemented and share your peculiar expertise with them. This is a critical role and will require an aptitude for independent initiative and the ability to drive innovation in transportation planning and network design. Successful candidates should be able to design and implement high quality algorithm solutions, using state-of-the art Operations Research and Machine Learning techniques. Key job responsibilities - Engage with stakeholders to understand what prevents them to build a better transportation network for Amazon - Review literature to identify similar problems, or new solving techniques - Build the mathematical model representing your problem - Implement light version of the model, to gather early feed-back from your stakeholders and fellow scientists - Implement the final product, leveraging the highest development standards - Share your work in internal and external conferences - Train on the newest techniques available in your field, to ensure the team stays at the highest bar About the team GTS Research and Applied Science is a team of scientists and engineers whom mission is to build the best decision support tools for strategic decisions. We model and optimize Amazon end-to-end operations. The team is composed of enthusiastic members, that love to discuss any scientific problem, foster new ideas and think out of the box. We are eager to support each others and share our unique knowledge to our colleagues. We are open to hiring candidates to work out of one of the following locations: Luxembourg, LUX
US, CA, Santa Clara
Amazon AI is looking for world class scientists and engineers to join its AWS AI Labs. This group is entrusted with developing core data mining, natural language processing, deep learning, and machine learning algorithms for AWS. You will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually new solutions. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA | Santa Clara, CA, USA | Seattle, WA, USA
DE, BE, Berlin
Are you excited about developing state-of-the-art computer vision models that revolutionize Amazon’s Fulfillment network? Are you looking for opportunities to apply AI on real-world problems at truly vast scale? At Amazon Fulfillment Technologies and Robotics, we are on a mission to build high-performance autonomous systems that perceive and act to further improve our world-class customer experience — at Amazon scale. To this end, we are looking for an Applied Scientist who will build and deploy models that make smarter decisions on a wide array of multi-modal signals. Together, we will be pushing beyond the state of the art in optimizing one of the most complex systems in the world: Amazon's Fulfillment Network. Key job responsibilities In this role, you will build computer vision and multi-modal deep learning models that understand the state of products and packages flowing through Amazon’s fulfillment network. You will build models that solve challenging problems like product identification and damage detection on Amazon's entire retail catalog (billions of different items, thousands of new items every day). You will primarily work with very large real-world vision datasets, as well as a diverse set of multi-modal datasets, including natural language and structured data. You will face a high level of research ambiguity and problems that require creative, ambitious, and inventive solutions. A day in the life AFT AI delivers the AI solutions that empower Amazon’s fulfillment network to make smarter decisions. You will work on an interdisciplinary team of scientists and engineers with deep expertise in developing cutting-edge AI solutions at scale. You will work with images, videos, natural language, and sequences of events from existing or new hardware. You will adapt state-of-the-art machine learning and computer vision techniques to develop solutions for business problems in the Amazon Fulfillment Network. About the team Amazon Fulfillment Technologies (AFT) powers Amazon’s global fulfillment network. We invent and deliver software, hardware, and science solutions that orchestrate processes, robots, machines, and people. We harmonize the physical and virtual world so Amazon customers can get what they want, when they want it. AFT AI is spread across multiple locations in NA (Bellevue WA and Nashville, TN) and Europe (Berlin, Germany). We are hiring candidates to work out of the Berlin location. Publicly available articles showcasing some of our work: - Damage Detection: https://www.amazon.science/latest-news/the-surprisingly-subtle-challenge-of-automating-damage-detection - Product ID: https://www.amazon.science/latest-news/how-amazon-robotics-is-working-on-new-ways-to-eliminate-the-need-for-barcodes We are open to hiring candidates to work out of one of the following locations: Berlin, BE, DEU
US, WA, Redmond
Project Kuiper is an initiative to launch a constellation of Low Earth Orbit satellites that will provide low-latency, high-speed broadband connectivity to unserved and underserved communities around the world. We are searching for talented candidates with experience in spaceflight trajectory modeling and simulation, orbit mechanics, and launch vehicle mission planning. Key job responsibilities This position requires experience in simulation and analysis of astrodynamics models and spaceflight trajectories. Strong analysis skills are required to develop engineering studies of complex large-scale dynamical systems. This position requires demonstrated expertise in computational analysis automation and tool development. Working with the Kuiper engineering team, you will: - Develop modeling techniques for analysis and simulation of deployment dynamics of multiple satellites - Support Project Kuiper’s Launch Vehicle Mission Management team with technical expertise in Launch Vehicle trajectory requirements specification - Develop tools to support Mission Management planning for over 80 launches! - Work collaboratively with launch vehicle system technical teams Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. We are open to hiring candidates to work out of one of the following locations: Redmond, WA, USA
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. As a Applied Scientist at the intersection of machine learning and the life sciences, you will participate in developing exciting products for customers. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the cutting edge of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with others teams. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA