Endel Deeper Focus
Endel, creator of personalized soundscapes that have attracted more than 2 million users, has partnered with pioneering electronic producer and DJ Plastikman (Richie Hawtin) to release their AI-powered soundscape "Deeper Focus". The new soundscape is now available to Alexa customers.
Credit: Endel

How Endel’s AI-powered Focus soundscapes earned the backing of neuroscience

A new study has found that when compared to curated playlists and silence, personalized AI soundscapes generated by Alexa Fund company Endel are more effective in helping people focus. 

(Editor’s Note: This is the second in a series of articles Amazon Science is publishing related to the science behind products and services from companies in which Amazon has invested. The Amazon Alexa Fund first invested in Endel in 2018, and in 2020 the Alexa Fund participated in Endel’s $5 million Series A financing round.)

Founded in 2018, Endel creates personalized soundscapes to help people focus, relax, and sleep. Built on the back of its patented technology, Endel Pacific, the artificial intelligence (AI)-powered service takes into account the individual conditions of each listener, such as their heartbeat or the amount of light present, to generate customized sounds that help improve their well being, the company says.  

Endel provides three primary soundscapes: Focus, Relax, and Sleep. Using Alexa for instance, each soundscape is able to extract key local data about individuals, such as time of day, weather, and the amount of natural light, to help generate sound environments that improve these key states.

With the aim of helping people sleep better, Endel started collaborating with SleepScore Labs in 2020, to improve the effectiveness and user experience of their sleep soundscapes. The company also made headlines when it collaborated with musician Grimes to create “AI Lullaby”, a custom-made sleep soundscape which was made available through the Endel skill, for Alexa. 

Now, with the recent publication of a new white paper, "Differences In The Effects On Human Focus Of Music Playlists And Personalized Soundscapes, As Measured By Brain Signals", Focus mode is in the scientific spotlight. The white paper examines what properties of sound affect human focus, validating the company’s existing approach, while providing a roadmap for future improvements to its custom soundscapes. 

Focus results

Published by Arctop, a data and AI technology company that has developed a pioneering brain decoding SaaS solution, the white paper used Endel’s personalized Focus soundscapes, alongside focus-themed playlists from popular streaming platforms, to see how they affected a cross-section of users as they performed everyday tasks.

The white paper, which was authored by Arctop's research and development team led by principal investigator Dan Furman, PhD, and first author Aia Haruvi, MSc, was supported by Warner Music, Sony, Endel, and Universal Music, who provided the company with sounds, data, and financial support to help advance the research. The report looked at users at home in their natural environment, recording and interpreting their brain signals to show how they reacted to the music. The aim: examine what, if any, impact the use of Endel soundscapes, popular curated playlists that have been optimized for focus purposes, or just pure silence, had on the ability of listeners to perform tasks.  

“From the very beginning it has been important to us to be rooted in science,” says Endel co-founder and CEO Oleg Stavitsky. Upon launching Endel with renowned composer and sound designer Dmitry Evgrafov, Stavitsky began looking for research papers to inform their work within functional music, especially as it relates to helping people focus. 

“The majority of white papers out there would only reference popular music like Queen, Bach… making straightforward comments like, sad music makes you feel sad,” said Stavitsky.” There was nothing out there for what we were trying to apply here, anything that would help us go deeper and ask, ‘How does your brain react to certain types of sounds?’” 

When Stavitsky and Evgrafov received preliminary results from Arctop, it helped validate how their soundscapes impact brain activity on a second-by-second basis. 

Endel Image 1
The goal of the Arctop study was to determine what properties of sound affect human focus the most. This diagram from the research paper demonstrates the framework for reverse correlation of time-series focus values with audio features. A is an example of a recorded brain signal, B is an audio segment from one of the songs, and C shows the audio features dynamics during 30 minutes of recordings.
Credit: Arctop

“This was gold for us,” Stavitsky says about the results. “It wasn’t just about validating what we had, it was about how it worked specifically. Arctop has this proprietary system that allows you to zoom into a song, and on a second-by-second basis say ‘here’s the progression and here’s the brain activity.’”

Arctop examined participants doing various tasks in their home or work environments. Listening to either Endel soundscapes, curated playlists, or just silence, each volunteer completed four, one-hour sessions, that included a set tasks, and followed by an activity of their own preference. As the participants performed their tasks, they were monitored using state-of-the-art technology to pick up on the brain’s impulses, tracking its responses to the audio in relation to their task. Through this analysis, the team devised a ‘focus coefficient’, based on input from a brain decoded data electroencephalograph headband, and additional survey data from the participants. 

The results demonstrated that participants listening to personalized soundscapes increased their focus significantly when compared to listening to music playlists, or silence.

Endel releases new Deeper Focus soundscape on Alexa

On April 30, Endel made its latest soundscape, Deeper Focus, available on Alexa. Endel partnered with with pioneering electronic producer and DJ Plastikman (Richie Hawtin) to release their collaborative AI-powered soundscape. Read more about the new soundscape here.

“When we set up this experiment we didn’t know what would happen,” Furman explained. “One of our main takeaways is that the personalization of soundscapes is really effective.” 

The approach to the research is also relatively new, Furman explains. 

“One thing we want to highlight is that the method we used is naturalistic neuroscience – outside of the lab, with no technicians present, no wires... It was a uniquely natural capture of data. Here people were able to work at home, and use their own tablet or phone, they wore regular headphones and a light headband only for the brain decoding, which was really novel they were able to experience the content exactly as they would in everyday life. Ultimately, we believe that context, gives more credence to our findings.

How focus works

Endel’s founders believe the study provides new information that the company can use to enhance its soundscapes. Unlike its other modes, Sleep and Relax, Focus is the only Endel soundscape to employ percussion. But it’s more complex than just adding a few beats.

“The tempo is closely tied to your heart rate, and can adjust based on your resting and active heart rate,” explains Evgrafov, who works closely with fellow Endel sound designer, Alexander Vasilenko, to bring its soundscapes to life. “The sounds are more active, have less reverb and are more nuanced. There is a very gentle balance that must be maintained with the rhythm, as the brain starts to block out rhythmic sounds after a time.” 

Endel Image 2
This diagram from the Arctop white paper shows the study's processing pipeline. Data acquisition included at home EEG recordings of four sessions, each with a different background audio stream. EEG processing included filtering the signal, feature extraction, and training machine learning models to map between brain features and reported focus. Obtaining the brain decoded focus dynamics enables comparison of focus levels during different types of audio streams.
Credit: Arctop

Thanks to the way that in which the data was collected, Endel can now assess how sound impacts customers’ responses on a second-by-second basis.

“We got a lot of information about structure, where we realized we had to build it up, and relax things. In those transitions, the curve [for the focus coefficient] goes up drastically,” Evgrafov explains. “It’s not about the amount of instruments, it’s the nature of change that provides the most impact. This isn’t something we could have worked out ourselves.”

Further areas of focus 

From its inception, Endel has taken a scientific approach to programming its technology, applying information and knowledge on psychoacoustics that was readily available online, while at the same time relying on Evgrafov’s musicianship and heuristic knowledge.

“We started getting more neuroscience data, and that was more important for us, but we couldn’t answer simple questions like, ‘What is focus?’, and ‘What makes something relaxing?’ Now, thanks to the report, we see how the entire structure of a song impacts brain functionality,” Evgrafov said. “There are other layers of knowledge as well, such as the acoustical and other sound treatments that are present in the very spectrum of the sound. These parameters can help us program our core technology.”

This is more thorough and goes deeper than anything that has been done before, specifically about how sounds affect your cognitive state when it comes to concentration.
Oleg Stavitsky, Endel CEO

Now, Endel is focused on taking its AI technology to the next level. 

“To me, what is important is how groundbreaking this is,” says Stavitsky. “This is more thorough and goes deeper than anything that has been done before, specifically about how sounds affect your cognitive state when it comes to concentration.”

Both Arctop and Endel see potential in further exploring additional factors that weren’t examined in the report, such as how personalized soundscapes can affect productivity, creativity, and wellbeing — states that can be directly associated with focusing. Using current Arctop technology for headphones, earbuds, AR/VR devices and the ‘focus coefficient,’ for example, Endel soundscapes can adapt in real-time to fit an individual user’s precise needs for focusing in the moment.   

“We believe personalized soundscapes are the new way to experience functional music,” Stavitsky says. “We see it as a new category of music — functional music — and within this field, Endel is a leader.”

 

Research areas

Related content

US, CA, Santa Clara
Join the next science and engineering revolution at Amazon's Delivery Foundation Model team, where you'll work alongside world-class scientists and engineers to pioneer the next frontier of logistics through advanced AI and foundation models. We are seeking an exceptional Senior Applied Scientist to help develop innovative foundation models that enable delivery of billions of packages worldwide. In this role, you'll combine highly technical work with scientific leadership, ensuring the team delivers robust solutions for dynamic real-world environments. Your team will leverage Amazon's vast data and computational resources to tackle ambitious problems across a diverse set of Amazon delivery use cases. Key job responsibilities - Design and implement novel deep learning architectures combining a multitude of modalities, including image, video, and geospatial data. - Solve computational problems to train foundation models on vast amounts of Amazon data and infer at Amazon scale, taking advantage of latest developments in hardware and deep learning libraries. - As a foundation model developer, collaborate with multiple science and engineering teams to help build adaptations that power use cases across Amazon Last Mile deliveries, improving experience and safety of a delivery driver, an Amazon customer, and improving efficiency of Amazon delivery network. - Guide technical direction for specific research initiatives, ensuring robust performance in production environments. - Mentor fellow scientists while maintaining strong individual technical contributions. A day in the life As a member of the Delivery Foundation Model team, you’ll spend your day on the following: - Develop and implement novel foundation model architectures, working hands-on with data and our extensive training and evaluation infrastructure - Guide and support fellow scientists in solving complex technical challenges, from trajectory planning to efficient multi-task learning - Guide and support fellow engineers in building scalable and reusable infra to support model training, evaluation, and inference - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems- Drive technical discussions within the team and and key stakeholders - Conduct experiments and prototype new ideas - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team The Delivery Foundation Model team combines ambitious research vision with real-world impact. Our foundation models provide generative reasoning capabilities required to meet the demands of Amazon's global Last Mile delivery network. We leverage Amazon's unparalleled computational infrastructure and extensive datasets to deploy state-of-the-art foundation models to improve the safety, quality, and efficiency of Amazon deliveries. Our work spans the full spectrum of foundation model development, from multimodal training using images, videos, and sensor data, to sophisticated modeling strategies that can handle diverse real-world scenarios. We build everything end to end, from data preparation to model training and evaluation to inference, along with all the tooling needed to understand and analyze model performance. Join us if you're excited about pushing the boundaries of what's possible in logistics, working with world-class scientists and engineers, and seeing your innovations deployed at unprecedented scale.
US, WA, Bellevue
At Amazon, we're working to be the world’s most customer-centric company. Driving innovation on behalf of customers is core to our mission, and this position supports one of our largest business to deliver on this mission. As member of the Operations Insights, Planning, Analytics and Technology (IPAT) team, this position owns monthly change management, Controllership and Governance, Risk and Compliance (GRC) process for World Wide Operations IPAT team. Key job responsibilities In the midst of our rapidly expanding scope, we are actively seeking a Data Scientist who possesses strategic thinking skills and a knack for creative problem-solving. This Data Scientist will play a pivotal role in supporting hyper-growth projects. Collaborating closely with cross-functional finance and business leaders within the WW Operations organization, this role should be skilled in ML models development, Optimization models, model implementation, hypothesis testing, high quality analysis, database design, be comfortable dealing with large and complex data sets, and using visualization tools. Join us on this captivating journey in an exhilarating domain, and become a part of making history!
US, NY, New York
Join the next science and engineering revolution at Amazon's Delivery Foundation Model team, where you'll work alongside world-class scientists and engineers to pioneer the next frontier of logistics through advanced AI and foundation models. We are seeking an exceptional Senior Applied Scientist to help develop innovative foundation models that enable delivery of billions of packages worldwide. In this role, you'll combine highly technical work with scientific leadership, ensuring the team delivers robust solutions for dynamic real-world environments. Your team will leverage Amazon's vast data and computational resources to tackle ambitious problems across a diverse set of Amazon delivery use cases. Key job responsibilities - Design and implement novel deep learning architectures combining a multitude of modalities, including image, video, and geospatial data. - Solve computational problems to train foundation models on vast amounts of Amazon data and infer at Amazon scale, taking advantage of latest developments in hardware and deep learning libraries. - As a foundation model developer, collaborate with multiple science and engineering teams to help build adaptations that power use cases across Amazon Last Mile deliveries, improving experience and safety of a delivery driver, an Amazon customer, and improving efficiency of Amazon delivery network. - Guide technical direction for specific research initiatives, ensuring robust performance in production environments. - Mentor fellow scientists while maintaining strong individual technical contributions. A day in the life As a member of the Delivery Foundation Model team, you’ll spend your day on the following: - Develop and implement novel foundation model architectures, working hands-on with data and our extensive training and evaluation infrastructure - Guide and support fellow scientists in solving complex technical challenges, from trajectory planning to efficient multi-task learning - Guide and support fellow engineers in building scalable and reusable infra to support model training, evaluation, and inference - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems- Drive technical discussions within the team and and key stakeholders - Conduct experiments and prototype new ideas - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team The Delivery Foundation Model team combines ambitious research vision with real-world impact. Our foundation models provide generative reasoning capabilities required to meet the demands of Amazon's global Last Mile delivery network. We leverage Amazon's unparalleled computational infrastructure and extensive datasets to deploy state-of-the-art foundation models to improve the safety, quality, and efficiency of Amazon deliveries. Our work spans the full spectrum of foundation model development, from multimodal training using images, videos, and sensor data, to sophisticated modeling strategies that can handle diverse real-world scenarios. We build everything end to end, from data preparation to model training and evaluation to inference, along with all the tooling needed to understand and analyze model performance. Join us if you're excited about pushing the boundaries of what's possible in logistics, working with world-class scientists and engineers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Key job responsibilities You will contribute directly to AI agent development in an engineering management role: leading a software development team focused on our internal platform for acquiring agentic experience at large scale. You will help set direction, align the team’s goals with the broader lab, mentor team members, recruit great people, and stay technically involved. You will be hired as a Member of Technical Staff. About the team Our lab is a small, talent-dense team with the resources and scale of Amazon. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up!
US, NY, New York
Are you a passionate Applied Scientist (AS) ready to shape the future of digital content creation? At Amazon, we're building Earth's most desired destination for creators to monetize their unique skills, inspire the next generation of customers, and help brands expand their reach. We build innovative products and experiences that drive growth for creators across Amazon's ecosystem. Our team owns the entire Creator product suite, ensuring a cohesive experience, optimizing compensation structures, and launching features that help creators achieve both monetary and non-monetary goals. Key job responsibilities As an AS on our team, you will: - Handle challenging problems that directly impact millions of creators and customers - Independently collect and analyze data - Develop and deliver scalable predictive models, using any necessary programming, machine learning, and statistical analysis software - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Participate in design and implementation across teams to contribute to initiatives and develop optimal solutions that benefit the creators organization The successful candidate is a self-starter, comfortable with a dynamic, fast-paced environment, and able to think big while paying careful attention to detail. You have deep knowledge of an area/multiple areas of science, with a track record of applying this knowledge to deliver science solutions in a business setting and a demonstrated ability to operate at scale. You excel in a culture of invention and collaboration.
US, WA, Seattle
The AWS Supply Chain organization is looking for a Sr. Manager of Applied Science to lead science and data teams working on innovative AI-powered supply chain solutions. As part of the AWS Solutions organization, we have a vision to provide business applications, leveraging Amazon’s unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers’ businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. We blend vision with curiosity and Amazon’s real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. Are you excited about developing state-of-the-art GenAI/Agentic AI based solutions for enterprise applications? As a Sr. Manager of Applied Scientist at AWS Supply Chain, you will bring AI advancements to customer facing enterprise applications. In this role, you will drive the technical vision and strategy for your team while fostering a culture of innovation and scientific excellence. You will be leading a fast-paced, cross-disciplinary team of researchers who are leaders in the field. You will take on challenging problems, distill real requirements, and then deliver solutions that either leverage existing academic and industrial research, or utilize your own out-of-the-box pragmatic thinking. In addition to coming up with novel solutions and prototypes, you may even need to deliver these to production in customer facing products. Key job responsibilities Building and mentoring teams of Applied Scientists, ML Engineers, and Data Scientists. Setting technical direction and research strategy aligned with business goals. Driving innovation in Supply Chains systems using AI/ML models and AI Agents. Collaborating with cross-functional teams to translate research into production. Managing project portfolios and resource allocation.
CA, ON, Toronto
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Targeting and Recommendations team within Sponsored Products and Brands empowers advertisers with intelligent targeting controls and one-click campaign recommendations that automatically populate optimal settings based on ASIN data. This comprehensive suite provides advanced targeting capabilities through AI-generated keyword and ASIN suggestions, sophisticated targeting controls including Negative Targeting, Manual Targeting with Product Attribute Targeting (PAT) and Keyword Targeting (KWT), and Automated Targeting (ATv2). Our vision is to build a revolutionary, highly personalized and context-aware agentic advertiser guidance system that seamlessly integrates Large Language Models (LLMs) with sophisticated tooling, operating across both conversational and traditional ad console experiences while scaling from natural language queries to proactive, intelligent guidance delivery based on deep advertiser understanding, ultimately enhancing both targeting precision and one-click campaign optimization. Through strategic partnerships across Ad Console, Sales, and Marketing teams, we identify high-impact opportunities spanning from strategic product guidance to granular keyword optimization and deliver them through personalized, scalable experiences grounded in state-of-the-art agent architectures, reasoning frameworks, sophisticated tool integration, and model customization approaches including tuning, MCP, and preference optimization. This presents an exceptional opportunity to shape the future of e-commerce advertising through advanced AI technology at unprecedented scale, creating solutions that directly impact millions of advertisers. Key job responsibilities * Design and build targeting and 1 click recommendation agents to guide advertisers in conversational and non-conversational experience. * Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). * Collaborate with peers across engineering and product to bring scientific innovations into production. * Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. * Develop agentic architectures that integrate planning, tool use, and long-horizon reasoning. A day in the life As an Applied Scientist on our team, your days will be immersed in collaborative problem-solving and strategic innovation. You'll partner closely with expert applied scientists, software engineers, and product managers to tackle complex advertising challenges through creative, data-driven solutions. Your work will center on developing sophisticated machine learning and AI models, leveraging state-of-the-art techniques in natural language processing, recommendation systems, and agentic AI frameworks. From designing novel targeting algorithms to building personalized guidance systems, you'll contribute to breakthrough innovations
US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to support the development of algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Principal Quantum Research Scientist. You will join a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers working at the forefront of quantum computing. You should have a deep and broad knowledge of experimental quantum computing and a track record of original scientific contributions. We are looking for candidates with strong engineering principles, resourcefulness and a bias for action, superior problem solving, and excellent communication skills. Working effectively within a team environment is essential. As principal research scientist you will be expected to lead new ideas and stay abreast of the field of experimental quantum computation. Key job responsibilities Key job responsibilities In this role, you will work on improvements in all components of SC qubits quantum hardware, from qubits and resonators to quantum-limited amplifiers. You will also work on their integration into multiqubit chips. This will require designing new experiments, collecting statistically significant data through automation, analyzing the results, and summarizing conclusions in written form. Finally, you will work with hardware engineers, material scientists, and circuit designers to advance the state of the art of SC qubits hardware. About the team About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.