Endel Deeper Focus
Endel, creator of personalized soundscapes that have attracted more than 2 million users, has partnered with pioneering electronic producer and DJ Plastikman (Richie Hawtin) to release their AI-powered soundscape "Deeper Focus". The new soundscape is now available to Alexa customers.
Credit: Endel

How Endel’s AI-powered Focus soundscapes earned the backing of neuroscience

A new study has found that when compared to curated playlists and silence, personalized AI soundscapes generated by Alexa Fund company Endel are more effective in helping people focus. 

(Editor’s Note: This is the second in a series of articles Amazon Science is publishing related to the science behind products and services from companies in which Amazon has invested. The Amazon Alexa Fund first invested in Endel in 2018, and in 2020 the Alexa Fund participated in Endel’s $5 million Series A financing round.)

Founded in 2018, Endel creates personalized soundscapes to help people focus, relax, and sleep. Built on the back of its patented technology, Endel Pacific, the artificial intelligence (AI)-powered service takes into account the individual conditions of each listener, such as their heartbeat or the amount of light present, to generate customized sounds that help improve their well being, the company says.  

Endel provides three primary soundscapes: Focus, Relax, and Sleep. Using Alexa for instance, each soundscape is able to extract key local data about individuals, such as time of day, weather, and the amount of natural light, to help generate sound environments that improve these key states.

With the aim of helping people sleep better, Endel started collaborating with SleepScore Labs in 2020, to improve the effectiveness and user experience of their sleep soundscapes. The company also made headlines when it collaborated with musician Grimes to create “AI Lullaby”, a custom-made sleep soundscape which was made available through the Endel skill, for Alexa. 

Now, with the recent publication of a new white paper, "Differences In The Effects On Human Focus Of Music Playlists And Personalized Soundscapes, As Measured By Brain Signals", Focus mode is in the scientific spotlight. The white paper examines what properties of sound affect human focus, validating the company’s existing approach, while providing a roadmap for future improvements to its custom soundscapes. 

Focus results

Published by Arctop, a data and AI technology company that has developed a pioneering brain decoding SaaS solution, the white paper used Endel’s personalized Focus soundscapes, alongside focus-themed playlists from popular streaming platforms, to see how they affected a cross-section of users as they performed everyday tasks.

The white paper, which was authored by Arctop's research and development team led by principal investigator Dan Furman, PhD, and first author Aia Haruvi, MSc, was supported by Warner Music, Sony, Endel, and Universal Music, who provided the company with sounds, data, and financial support to help advance the research. The report looked at users at home in their natural environment, recording and interpreting their brain signals to show how they reacted to the music. The aim: examine what, if any, impact the use of Endel soundscapes, popular curated playlists that have been optimized for focus purposes, or just pure silence, had on the ability of listeners to perform tasks.  

“From the very beginning it has been important to us to be rooted in science,” says Endel co-founder and CEO Oleg Stavitsky. Upon launching Endel with renowned composer and sound designer Dmitry Evgrafov, Stavitsky began looking for research papers to inform their work within functional music, especially as it relates to helping people focus. 

“The majority of white papers out there would only reference popular music like Queen, Bach… making straightforward comments like, sad music makes you feel sad,” said Stavitsky.” There was nothing out there for what we were trying to apply here, anything that would help us go deeper and ask, ‘How does your brain react to certain types of sounds?’” 

When Stavitsky and Evgrafov received preliminary results from Arctop, it helped validate how their soundscapes impact brain activity on a second-by-second basis. 

Endel Image 1
The goal of the Arctop study was to determine what properties of sound affect human focus the most. This diagram from the research paper demonstrates the framework for reverse correlation of time-series focus values with audio features. A is an example of a recorded brain signal, B is an audio segment from one of the songs, and C shows the audio features dynamics during 30 minutes of recordings.
Credit: Arctop

“This was gold for us,” Stavitsky says about the results. “It wasn’t just about validating what we had, it was about how it worked specifically. Arctop has this proprietary system that allows you to zoom into a song, and on a second-by-second basis say ‘here’s the progression and here’s the brain activity.’”

Arctop examined participants doing various tasks in their home or work environments. Listening to either Endel soundscapes, curated playlists, or just silence, each volunteer completed four, one-hour sessions, that included a set tasks, and followed by an activity of their own preference. As the participants performed their tasks, they were monitored using state-of-the-art technology to pick up on the brain’s impulses, tracking its responses to the audio in relation to their task. Through this analysis, the team devised a ‘focus coefficient’, based on input from a brain decoded data electroencephalograph headband, and additional survey data from the participants. 

The results demonstrated that participants listening to personalized soundscapes increased their focus significantly when compared to listening to music playlists, or silence.

Endel releases new Deeper Focus soundscape on Alexa

On April 30, Endel made its latest soundscape, Deeper Focus, available on Alexa. Endel partnered with with pioneering electronic producer and DJ Plastikman (Richie Hawtin) to release their collaborative AI-powered soundscape. Read more about the new soundscape here.

“When we set up this experiment we didn’t know what would happen,” Furman explained. “One of our main takeaways is that the personalization of soundscapes is really effective.” 

The approach to the research is also relatively new, Furman explains. 

“One thing we want to highlight is that the method we used is naturalistic neuroscience – outside of the lab, with no technicians present, no wires... It was a uniquely natural capture of data. Here people were able to work at home, and use their own tablet or phone, they wore regular headphones and a light headband only for the brain decoding, which was really novel they were able to experience the content exactly as they would in everyday life. Ultimately, we believe that context, gives more credence to our findings.

How focus works

Endel’s founders believe the study provides new information that the company can use to enhance its soundscapes. Unlike its other modes, Sleep and Relax, Focus is the only Endel soundscape to employ percussion. But it’s more complex than just adding a few beats.

“The tempo is closely tied to your heart rate, and can adjust based on your resting and active heart rate,” explains Evgrafov, who works closely with fellow Endel sound designer, Alexander Vasilenko, to bring its soundscapes to life. “The sounds are more active, have less reverb and are more nuanced. There is a very gentle balance that must be maintained with the rhythm, as the brain starts to block out rhythmic sounds after a time.” 

Endel Image 2
This diagram from the Arctop white paper shows the study's processing pipeline. Data acquisition included at home EEG recordings of four sessions, each with a different background audio stream. EEG processing included filtering the signal, feature extraction, and training machine learning models to map between brain features and reported focus. Obtaining the brain decoded focus dynamics enables comparison of focus levels during different types of audio streams.
Credit: Arctop

Thanks to the way that in which the data was collected, Endel can now assess how sound impacts customers’ responses on a second-by-second basis.

“We got a lot of information about structure, where we realized we had to build it up, and relax things. In those transitions, the curve [for the focus coefficient] goes up drastically,” Evgrafov explains. “It’s not about the amount of instruments, it’s the nature of change that provides the most impact. This isn’t something we could have worked out ourselves.”

Further areas of focus 

From its inception, Endel has taken a scientific approach to programming its technology, applying information and knowledge on psychoacoustics that was readily available online, while at the same time relying on Evgrafov’s musicianship and heuristic knowledge.

“We started getting more neuroscience data, and that was more important for us, but we couldn’t answer simple questions like, ‘What is focus?’, and ‘What makes something relaxing?’ Now, thanks to the report, we see how the entire structure of a song impacts brain functionality,” Evgrafov said. “There are other layers of knowledge as well, such as the acoustical and other sound treatments that are present in the very spectrum of the sound. These parameters can help us program our core technology.”

This is more thorough and goes deeper than anything that has been done before, specifically about how sounds affect your cognitive state when it comes to concentration.
Oleg Stavitsky, Endel CEO

Now, Endel is focused on taking its AI technology to the next level. 

“To me, what is important is how groundbreaking this is,” says Stavitsky. “This is more thorough and goes deeper than anything that has been done before, specifically about how sounds affect your cognitive state when it comes to concentration.”

Both Arctop and Endel see potential in further exploring additional factors that weren’t examined in the report, such as how personalized soundscapes can affect productivity, creativity, and wellbeing — states that can be directly associated with focusing. Using current Arctop technology for headphones, earbuds, AR/VR devices and the ‘focus coefficient,’ for example, Endel soundscapes can adapt in real-time to fit an individual user’s precise needs for focusing in the moment.   

“We believe personalized soundscapes are the new way to experience functional music,” Stavitsky says. “We see it as a new category of music — functional music — and within this field, Endel is a leader.”

 

View from space of a connected network around planet Earth representing the Internet of Things.
Sign up for our newsletter


US, WA, Seattle
Job summaryWW Installments is one of the fastest growing businesses within Amazon and we are looking for an Economist to join the team. This group has been entrusted with a massive charter that will impact every customer that visits Amazon.com. We are building the next generation of features and payment products that maximize customer enablement in a simple, transparent, and customer obsessed way. Through these products, we will deliver value directly to Amazon customers improving the shopping experience for hundreds of millions of customers worldwide. Our mission is to delight our customers by building payment experiences and financial services that are trusted, valued, and easy to use from anywhere in any way.Economists at Amazon are solving some of the most challenging applied economics questions in the tech sector. Amazon economists apply the frontier of economic thinking to market design, pricing, forecasting, program evaluation, online advertising and other areas. Our economists build econometric models using our world class data systems, and apply economic theory to solve business problems in a fast-moving environment. A career at Amazon affords economists the opportunity to work with data of unparalleled quality, apply rigorous applied econometric approaches, and work with some of the most talented applied econometricians in the trade.As the Economist within WW Installments, you will be responsible for building long-term causal inference models and experiments. These analysis represent a core capability for WW Installments and businesses across Amazon. Your work will directly impact customers by influencing how objective functions are designed and which inputs are consumed for modeling. You will work across functions including machine learning, business intelligence, data engineering, software development, and finance to induce data driven decisions at every level of the organization.Key job responsibilitiesThis role will be responsible for:• Developing a causal inference and experimentation roadmap for the WW Installments Competitive Pricing team.• Apply expertise in causal and econometric modeling to develop large-scale systems that are deployed across Amazon businesses.• Identify business opportunities, define and execute modeling approach, then deliver outcomes to various Amazon businesses with an Amazon-wide perspective for solutions.• Lead the project plan from a scientific perspective on product launches including identifying potential risks, key milestones, and paths to mitigate risks• Own key inputs to reports consumed by VPs and Directors across Amazon.• Identifying new opportunities to influence business strategy and product vision using causal inference.• Continually improve the WW Installments experimentation roadmap automating and simplifying whenever possible.• Coordinate support across engineers, scientists, and stakeholders to deliver analytical projects and build proof of concept applications.• Work through significant business and technical ambiguity delivering on analytics roadmap across the team with autonomy.
US, WA, Seattle
Job summaryWW Installments is one of the fastest growing businesses within Amazon and we are looking for an Applied Scientist to join the team. This group has been entrusted with a massive charter that will impact every customer that visits Amazon.com. We are building the next generation of features and payment products that maximize customer enablement in a simple, transparent, and customer obsessed way. Through these products, we will deliver value directly to Amazon customers improving the shopping experience for hundreds of millions of customers worldwide. Our mission is to delight our customers by building payment experiences and financial services that are trusted, valued, and easy to use from anywhere in any way.As an Applied Scientist within WW Installments, you will be responsible for building machine learning models and pipelines with direct customer impact. These models represent a core capability for WW Installments and businesses across Amazon. Your work will directly impact customers by influencing how they interact with financing options to make purchases. You will work across functions including data engineering, software development, and business to induce data driven decisions at every level of the organization.Key job responsibilitiesThis role will be responsible for:• Developing production machine learning models and pipelines for the WW Installments Competitive Pricing team that directly impact customers.• Apply expertise in machine learning to develop large-scale production systems that are deployed across Amazon businesses.• Identify business opportunities, define and execute modeling approach, then deliver outcomes to various Amazon businesses with an Amazon-wide perspective for solutions.• Lead the implementation of production ML from a scientific perspective including identifying potential risks, key milestones, and paths to mitigate risks.• Identifying new opportunities to influence business strategy and product vision using data science and machine learning.• Continually improve the WW Installments ML roadmap automating and simplifying whenever possible.• Coordinate support across engineers, scientists, and stakeholders to deliver ML pipelines, analytics projects, and build proof of concept applications.• Work through significant business and technical ambiguity delivering on analytics roadmap across the team with autonomy.
US, WA, Seattle
Job summaryWW Installments is one of the fastest growing businesses within Amazon and we are looking for a Data Scientist to join the team. This group has been entrusted with a massive charter that will impact every customer that visits Amazon.com. We are building the next generation of features and payment products that maximize customer enablement in a simple, transparent, and customer obsessed way. Through these products, we will deliver value directly to Amazon customers improving the shopping experience for hundreds of millions of customers worldwide. Our mission is to delight our customers by building payment experiences and financial services that are trusted, valued, and easy to use from anywhere in any way.As a Data Scientist within WW Installments, you will be responsible for building machine learning models and pipelines with direct customer impact. These models represent a core capability for WW Installments and businesses across Amazon. Your work will directly impact customers by influencing how they interact with financing options to make purchases. You will work across functions including data engineering, software development, and business to induce data driven decisions at every level of the organization.Key job responsibilitiesThis role will be responsible for:• Developing machine learning models and pipelines for the WW Installments Competitive Pricing team.• Apply expertise in machine learning to develop large-scale systems that are deployed across Amazon businesses.• Identify business opportunities, define and execute modeling approach, then deliver outcomes to various Amazon businesses with an Amazon-wide perspective for solutions.• Lead the project plan from a scientific perspective on product launches including identifying potential risks, key milestones, and paths to mitigate risks.• Own key inputs to reports consumed by VPs and Directors across Amazon.• Identifying new opportunities to influence business strategy and product vision using data science and machine learning.• Continually improve the WW Installments ML roadmap automating and simplifying whenever possible.• Coordinate support across engineers, scientists, and stakeholders to deliver ML pipelines, analytics projects, and build proof of concept applications.• Work through significant business and technical ambiguity delivering on analytics roadmap across the team with autonomy.
US, CA, San Diego
Job summaryPrivate Brands is fast-growing within Amazon, and is a highly visible, emerging business. We have a unique business and obsess over quality and building global brands our customers love. We aspire to be part of our customers’ everyday lives by offering them unique products at compelling prices backed by Amazon’s strong customer obsessed reputation.Private Brands Intelligence (PBI) is looking for a Data Scientist to join our team in building Machine Learning solutions at scale. PBI applies Machine Learning, Causal Inference, and Econometrics/Economics to derive actionable insights about the complex economy of Amazon’s retail business. We also develop statistical models and algorithms to drive strategic business decisions and improve operations. We are an interdisciplinary team of Economists, Scientists, and Engineers incubating and building Day One solutions using cutting-edge technology, to solve some of the toughest business problems at Amazon.You will work with business leaders, scientists, economists, and engineers to translate business and functional requirements into concrete deliverables, including the design, development, testing, and deployment of highly scalable distributed services. You will partner with scientists, economists, and engineers to help invent and implement scalable ML and econometric models while building tools to help our customers gain and apply insights.This is a unique, high visibility opportunity for someone who wants to have business impact, dive deep into large-scale economic problems, enable measurable actions on the Consumer economy, and work closely with scientists and economists. We are particularly interested in candidates with experience building predictive models and working with distributed systems.As a Data Scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions.
US, VA, Arlington
Job summaryThis role will sit in our new headquarters in Northern Virginia, where Amazon will invest $2.5 billion dollars, occupy 4 million square feet of energy efficient office space, and create at least 25,000 new full-time jobs.The AWS Infrastructure Data Center Planning and Delivery (DCPD) Data Science team owns supply chain management activities at a global scale.We consolidate usage and supply chain health data and forecasts at a variety of horizons to ensure that we have the right strategic lens associated with each decision we make.We identify gaps to ensure that the AWS business is able to support any and all customers who want to capitalize on the scalability, flexibility, and cost-efficiency of AWS. Our actions and decisions decide the where, how, and what will make it into each of our data centers and we need you to help us to make those decisions and clearly explain the why.The Business Insights and Optimization (BIO) team owns data science, engineering, and business intelligence solutions feeding this team.We identify gaps in our capacity planning and delivery mechanisms and design/build systems which will fix those gaps.We are end to end data product owners and the analysis, models we produce drives billions of dollars of decisions annually.Data Scientists on this team have end to end range and capabilities.They work directly with business owners to understand how they use data to drive their business.They design modeling frameworks to dive deep into these raw sources of information to get the most out of the data they have.They work directly with data engineers to build automated pipelines and production scale information systems and models.They build automated tools which will allow their results to be shared with the business at scale.They align with business owners to continuously track their work to ensure maximum impact from their projects.They monitor performance of their work to evaluate whether improvements are needed after tracking has started in production.
US, CA, Sunnyvale
Job summaryAmong the goals of the Alexa Devices AI team, is to make Alexa the most knowledgeable and trusted ally for notifications, annoucements, pickup services and voice assistance while on the go.Key job responsibilities1. As an Applied Scientist on our team you will work with talented peers to develop novel algorithms and modeling techniques to advance the state of the art NLU (Natural language understanding) developments.2. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to traing Machine Learning models for their application in NLU.3. This role requires a pragmatic technical leader comfortable with ambiguity, capable of summarizing complex data and models through clear visual and written explanations.4. The ideal candidate will have experience with machine learning models and their application in AI systems. We are particularly interested in experience applying natural language processing, deep learning at scale. Additionally, we are seeking candidates with strong interest in data/research sciences and engineering, creativity, curiosity, and great judgment.5. You will interact with various stake holders: product leaders, program managers, other domain managers and developers on regular basis for requirement collections, deliveries, and other related communication6. You will help attract and recruit technical talentA day in the lifeApplied Scientist will help develop novel algorithms and apply modeling techniques to advance the state of the art in spoken language understanding (SLU) and to improve the customer experience in engaging with Alexa.About the teamThe Alexa Devices AI science team's work directly impacts the experience and engagement of customers who rely on Alexa while in-the-car, on-the-go and at-home.
US, VA, Arlington
Job summaryThe Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.We are looking for an economist with expertise in applying causal inference, experimental design, or causal machine learning techniques to topics in labor, personnel, education, health, public, or behavioral economics. We are particularly interested in candidates with experience applying these skills to strategic problems with significant business and/or social policy impact.Candidates will work with economists and engineers to estimate and validate their models on large scale data, and will help business partners turn the results of their analysis into policies, programs, and actions that have a major impact on Amazon’s business and its workforce. We are looking for creative thinkers who can combine a strong economic toolbox with a desire to learn from others, and who know how to execute and deliver on big ideas.Ideal candidates will own key inputs to all stages of research projects, including model development, survey administration, experimental design, and data analysis. They will be customer-centric, working closely with business partners to define key research questions, communicate scientific approaches and findings, listen to and incorporate partner feedback, and deliver successful solutions.
US, CA, Palo Alto
Job summaryAmazon is the 4th most popular site in the US (http://www.alexa.com/topsites/countries/US). Our product search engine is one of the most heavily used services in the world, indexes billions of products, and serves hundreds of millions of customers world-wide. We are working on a new AI-first initiative to re-architect and reinvent the way we do search through the use of extremely large scale next-generation deep learning techniques. Our goal is to make step function improvements in the use of advanced Machine Learning (ML) on very large scale datasets, specifically through the use of aggressive systems engineering and hardware accelerators. This is a rare opportunity to develop cutting edge ML solutions and apply them to a problem of this magnitude. Some exciting questions that we expect to answer over the next few years include:· Can a focus on compilers and custom hardware help us accelerate model training and reduce hardware costs?· Can combining supervised multi-task training with unsupervised training help us to improve model accuracy?· Can we transfer our knowledge of the customer to every language and every locale ? The Search Science team is looking for a Senior Applied Science Manager to drive roadmap on making large business impact through application of Deep Learning models via close collaboration with partner teams. The team also has a focus on technology solution for deep-learning based embedding generation, sensitive data ingestion and applications, data quality measurement, improvement, data bias identification and reduction to achieve model fairness.Success in this role will require the courage to chart a new course. You will manage your own team to understand all aspects of the customer journey. You and your team will inform other scientists and engineers by providing insights and building models to help improving training data quality and reducing bias. The research focus includes but not limited to Natural Language Processing, recommendation, applications relevant to Amazon buyers, sellers and more. You will be working with cutting edge technologies that enable big data and parallelizable algorithms. You will play an active role in translating business and functional requirements into concrete deliverables and working closely with software development teams to put solutions into production.
US, WA, Seattle
Job summaryAmazon EC2 provides cloud computing which forms the foundation for the majority of AWS services, as well as a large portion of compute use cases for businesses and individuals around the world. A critical factor in the continued success of EC2 is the ability to provide reliable and cost effective computing. The EC2 Fleet Health and Lifecycle (EC2 FHL) organization is responsible for ensuring that the global EC2 server fleet continues to raise the bar for reliability, security, and efficiency. We are looking for seasoned engineering leaders with passion for technology and an entrepreneurial mindset. At Amazon, it is all about working hard, having fun and making history. If you are ready to make history, we want to hear from you!Come join a brand new team, EC2 Health Analytics, under EC2 Foundational Technology, to solve complex cutting-edge problems to power a faster, more robust and performant EC2 of tomorrow. The charter of our team is to improve customer experience on the EC2 fleet by analyzing hundreds of signals and driving next-generation detection and remediation tools. We apply Machine Learning to predict outcomes and optimize decisions that improve customer experience and operational efficiency. As an Applied Scientist in the EC2 Health Analytics team, you will join an industry-leading engineering team solving challenging problems at massive scale.· Build a world-class forecasting platform that scales to handling billions of time series data in real time.· Drive fleet utilization improvement where each 1% means tens of millions of additional free cash flow.· Automate tactical and strategic capacity planning tools to optimize for service availability and infrastructure cost.· Build recommendation algorithms for improving the AWS customer experience.· · Reduce dependence on manual troubleshooting for deep-dives.What you will learn:· State-of-the-art analytics and forecasting methodologies.· Application of machine learning to large-scale data sets.· · Product recommendation algorithms.· Resource management and admission control for the Cloud.· The internals of all AWS services.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, CA, Palo Alto
Job summaryThe Amazon Search team creates powerful, customer-focused search and advertising solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, the Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. Our team works to maximize the quality and effectiveness of the search experience for visitors to Amazon websites worldwide.