DynamoDB 10-year anniversary Swami Sivasubramanian and Werner Vogels
The early success of the Dynamo database encouraged Swaminathan (Swami) Sivasubramanian (top right), Werner Vogels (lower right) and colleagues to write the Dynamo research paper, and share it at the 2007 ACM Symposium on Operating Systems Principles (SOSP conference). The Dynamo paper served as a catalyst to create the category of distributed database technologies commonly known as NoSQL. Dynamo is the progenitor to Amazon DynamoDB, the company's cloud-based NoSQL database service that launched 10 years ago today.

Amazon’s DynamoDB — 10 years later

Amazon DynamoDB was introduced 10 years ago today; one of its key contributors reflects on its origins, and discusses the 'never-ending journey' to make DynamoDB more secure, more available and more performant.

Ten years ago, Amazon Web Services (AWS) launched Amazon DynamoDB, a fast, flexible NoSQL database service that offers single-digit millisecond performance at any scale.

In an online post on Jan. 18, 2012, Werner Vogels, chief technical officer at Amazon.com, wrote: “Today is a very exciting day as we release Amazon DynamoDB, a fast, highly reliable and cost-effective NoSQL database service designed for internet scale applications. DynamoDB is the result of 15 years of learning in the areas of large scale non-relational databases and cloud services.

“Several years ago we published a paper on the details of Amazon’s Dynamo technology, which was one of the first non-relational databases developed at Amazon,” Vogels continued. “The original Dynamo design was based on a core set of strong distributed systems principles resulting in an ultra-scalable and highly reliable database system. Amazon DynamoDB, which is a new service, continues to build on these principles, and also builds on our years of experience with running non-relational databases and cloud services, such as Amazon SimpleDB and Amazon S3, at scale. It is very gratifying to see all of our learning and experience become available to our customers in the form of an easy-to-use managed service.”

One of Vogels’s coauthors on the 2007 Dynamo paper, and a key contributor to the development of DynamoDB was Swaminathan (Swami) Sivasubramanian, then an Amazon research engineer working on the design, implementation, and analysis of distributed systems technology, and now vice president of Database, Analytics, and Machine Learning at AWS.

More and more, CIOs and organizations are realizing that it is going to be survival of the most informed, and those that put their data to work are the ones that won't just survive, they will thrive.
Swami Sivasubramanian

A decade after the launch of DynamoDB, Sivasubramanian says we’re “experiencing an amazing era of renaissance when it comes to data and machine learning.”

“We now live in an era where you can actually store your data in these databases and quickly start building your data lakes within Amazon S3 and then analyze them using Amazon SageMaker in a matter of a couple of weeks, if not days. That is simply remarkable.

“We now have the opportunity to help customers gain insights from their data faster,” Sivasubramanian added. “This is a mission that truly excites me because customers really want to put their data to work to enable data-driven decision making. More and more, CIOs and organizations are realizing that it is going to be survival of the most informed, and those that put their data to work are the ones that won't just survive, they will thrive.”

To mark the 10-year anniversary of the launch of Amazon DynamoDB, Amazon Science asked Sivasubramanian three questions about the origins of DynamoDB, its progenitor Dynamo, and the future of DynamoDB.

  1. Q. 

    You were a co-author on the 2007 Dynamo paper. At that time, the industry was transitioning to a scale out vs scale up architectural approach. Can you tell us about the origin story for Dynamo?

    A. 

    To get to 2007, I have to start with 2004, 2005. Even as I was working on my PhD [Sivasubramanian earned his PhD in computer science in 2006 from Vrije Universiteit Amsterdam] I was contemplating where I would work. Ultimately what convinced me to join Amazon as a research engineer intern [2005] was seeing how Amazon was pushing the boundaries of scale.

    I admit I was a little bit of a skeptic as an outsider. At that time, AWS didn’t even exist. But when I joined, I soon had an ‘a ha moment’ that, yes, Amazon was an e-commerce company, but actually it was a technology company that also did e-commerce. It was an interesting revelation for me seeing how Amazon had to invent so many new technologies to even support its e-commerce workload.

    As an intern, I was working as an engineer on amazon.com and during our peak holiday traffic time we experienced a serious scaling failure due to a database transaction deadlocking issue. The problem was caused by the relational database from a commercial vendor that we were using at the time. A bunch of engineers got together and wrote what we call a COE, a correction of errors document in which we say what happened, what we learned, how we fixed the issue, and how we would avoid a recurrence.

    I don't know if it was me being naive or just being confident in the way only a 20 something intern can be, but I asked the question ‘Why are we using a relational database for this? These workloads don't need the SQL level of complexity and transactional guarantees.’

    Peter Vosshall presents Dynamo at 2007 ACM Symposium on Operating System Principles (SOSP).

    This led us to start rethinking how we architected our underlying data stores altogether. At the time there wasn’t a scalable non-relational database. This is what led us to build the original Dynamo, and which led us to write the paper. Dynamo was not the only thing we were rethinking about our architecture at this time. We realized we also needed a scalable storage system, which led us to build S3, and we also realized that we needed a more managed relational database with the ability to do automated replication, failover, and backups/restore, which led us to build Amazon RDS.

    One rule we had related to writing the original Dynamo paper was not to publish when we developed the original design, but first let Dynamo run in production supporting several Amazon.com services, so that the Dynamo paper would be an end-to-end experience paper. Werner and I felt very strongly about this because we didn't want it to be just another academic paper. That’s why I was very proud when 10 years later that paper was awarded a test of time award.

  2. Q. 

    What’s the origin story for DynamoDB, and how has the technology evolved in the past decade?

    A. 

    The idea behind DynamoDB developed from discussions with customers like Don MacAskill, the CEO of SmugMug and Flickr. More and more companies like Don’s were web-based companies, and the number of users online was exploding. The traditional relational database model of storing all the data in a single box was not scaling well. It forced the complexity back on the users to shard their relational databases and then manage all the partitioning and re-partitioning and so forth.

    This wasn’t new to us; these challenges are why we built the original Dynamo, but it wasn’t yet a service. It was a software system that Amazon engineers had to operate. At some point in one of our customer advisory board meetings, Don said, ‘You all started Dynamo and showed what is possible with a scalable non-relational database system. Why can't we have that as an external service?’

    All senior AWS executives were there, and honestly it was a question we were asking ourselves at the time. Don wasn’t the only customer asking for it, more and more customers wanted that kind of scalable database where they didn't have to deal with partitioning and re-partitioning, and they also wanted extreme availability. This led to the genesis of our thinking about what it would take to build a scalable cloud database that wasn’t constrained by the SQL API.

    DynamoDB was different from the original Dynamo because it actually exposed several of the original Dynamo components via very easy-to-use cloud controls. Our customers didn’t have to provision clusters anymore. They could just create a table and seamlessly scale it up and down; they didn’t have to deal with any of the operations, or even install a single library to operate a database. This evolution of Dynamo to DynamoDB was important because we truly embraced the cloud, and its elasticity and scalability in an unprecedented manner.

    Werner Vogels, vice president and chief technology officer of Amazon.com, introduced DynamoDB on Jan. 18, 2012 with this post in which he said DynamoDB "brings the power of the cloud to the NoSQL database world."

    We launched it on January 18th, 2012 and it was a hit right out of the gate. Don’s company and several others started using it. Right from the launch, not just elasticity, but single-digit latency performance was something that resonated really well with customers. We had innovated quite a bit, all the way from the protocol layer, to the underlying storage layer for SSD storage, and other capabilities that we enabled.

    One of the first production projects was a customer with an interesting use case; they were doing a Super Bowl advertisement. Because DynamoDB was extremely elastic it could seamlessly scale up to 100,000 writes a second, and then scale down after the Super Bowl was over so they wouldn’t incur costs anymore. This was a big deal; it wasn’t considered possible at that time. It seems super obvious now, but at that time databases were not that elastic and scalable.

    It was a bold vision. But DynamoDB’s built-for-the-cloud architecture made all of these scale-out use cases possible, and that is one of the reasons why DynamoDB now powers multiple high-traffic Amazon sites and systems including Alexa, Amazon.com, and all Amazon fulfillment centers. Last year, over the course of our 66-hour Prime Day, these sources made trillions of API calls and DynamoDB maintained high availability with single-digit millisecond performance, peaking at 89.2 million requests per second.

    And since 2012, we have added so many innovations, not just for its underlying availability, durability, security and scale, but ease-of-use features as well.

    Swami Sivasubramanian, AWS | CUBE Conversation, January 2022

    We’ve gone beyond key value store and now support not just a hash-based partition but also range-based partitioning, and we’ve added support for secondary indexes to enable more complex query capabilities —without compromising on scale or availability.

    We also now support scalable change data capture through Amazon Kinesis Data Steams for DynamoDB. One of the things I strongly believe with any database is that it should not be an island; it can’t be a dead end. It should generate streams of what data changed and then use that to bridge it to your analytics applications, or other data stores.

    We have continued innovating across the board on features like backup and restore. For a large-scale database system like DynamoDB with millions of partitions, doing backup and restore isn’t easy, and a lot of great innovations went into making this experience easy for customers.

    We have also added the ability to do global tables so customers can operate across multiple regions. And then we added the ability to do transactions with DynamoDB, all with an eye on how do you continue to keep DynamoDB’s mission around availability and scalability?

    Recently we also launched the ability to reduce the cost of storage with the Amazon DynamoDB Standard Infrequent Access table class. Customers often need to store data long term, and while this older data may be accessed infrequently, it must remain highly available. For example, end users of social media apps rarely access older posts and uploaded images, but the app must ensure that these artifacts are immediately accessible when requested. This infrequently accessed data can represent significant storage expense for customers due to their growing volume and the relatively high cost of storing this data, so customers optimize costs in these cases by writing code to move older, less frequently accessed data from DynamoDB to lower cost storage alternatives like Amazon S3. So at the most recent re:Invent we launched Amazon DynamoDB Standard-Infrequent Access table class, a new cost-efficient table class to store infrequently accessed data, yet maintain the high availability and performance of DynamoDB.

    We are on this journey of maintaining the original vision of DynamoDB as the guiding light, but continue to innovate to help customers with use cases around ease of querying, the ability to do complex, global transaction replication, while also continuing to manage costs.

  3. Q. 

    What might the next 10 years bring?

    A. 

    When we started with DynamoDB ten years ago, the cloud itself was something customers were just starting to understand better — its benefits and what they could do.

    Now we live in a world where cloud is the new normal in terms of how customers are building IT applications, and scale is also the new normal because every app is being built to handle viral moments. DynamoDB itself will be on this continuous journey where we will continue to innovate on behalf of customers. One of the things we will continue moving toward is an end-to-end data strategy mission because, as I mentioned earlier, no database is an island.

    Customers no longer want to just store and query the data in their databases. They then want to analyze that data to create value, whether that’s a better personalization or recommendation engine, or a forecasting system that you can run predictive analytics against using machine learning. Connecting the dots end to end, and continuing to make DynamoDB more secure, more available, more performant, and easier to use will be our never-ending journey.

Research areas

Related content

IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field or relevant science experience (publications/scientific prototypes) in lieu of Masters - Experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment - Papers published in AI/ML venues of repute
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
US, WA, Seattle
The Search Supply & Experiences team, within Sponsored Products, is seeking an Applied Scientist to solve challenging problems in natural language understanding, personalization, and other areas using the latest techniques in machine learning. In our team, you will have the opportunity to create new ads experiences that elevate the shopping experience for our hundreds of millions customers worldwide. As an Applied Scientist, you will partner with other talented scientists and engineers to design, train, test, and deploy machine learning models. You will be responsible for translating business and engineering requirements into deliverables, and performing detailed experiment analysis to determine how shoppers and advertisers are responding to your changes. We are looking for candidates who thrive in an exciting, fast-paced environment and who have a strong personal interest in learning, researching, and creating new technologies with high customer impact. Key job responsibilities As an Applied Scientist on the Search Supply & Experiences team you will: - Perform hands-on analysis and modeling of enormous datasets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end machine learning projects that have a high degree of ambiguity, scale, and complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Design and run experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Stay up to date on the latest advances in machine learning. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to shoppers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. About the team The International Seller Services (ISS) Economics team is a dynamic group at the forefront of shaping Amazon's global seller ecosystem. As part of ISS, we drive innovation and growth through sophisticated economic analysis and data-driven insights. Our mission is critical: we're transforming how Amazon empowers millions of international sellers to succeed in the digital marketplace. Our team stands at the intersection of innovative technology and practical business solutions. We're leading Amazon's transformation in seller services through work with Large Language Models (LLMs) and generative AI, while tackling fundamental questions about seller growth, marketplace dynamics, and operational efficiency. What sets us apart is our unique blend of rigorous economic methodology and practical business impact. We're not just analyzing data – we're building the frameworks and measurement systems that will define the future of Amazon's seller services. Whether we're optimizing the seller journey, evaluating new technologies, or designing innovative service models, our team transforms complex economic challenges into actionable insights that drive real-world results. Join us in shaping how millions of businesses worldwide succeed on Amazon's marketplace, while working on problems that combine economic theory, advanced analytics, and innovative technology.