Amazon and UCLA announce fellowship recipients

The Amazon Fellows fulfill the Science Hub for Humanity and Artificial Intelligence's mission of researching the societal impact of artificial intelligence

The Science Hub for Humanity and Artificial Intelligence, launched in October 2021 to facilitate collaboration between academic researchers and Amazon scientists, today announced the second cohort of Amazon Fellows. The fellowships are aimed at graduate students pursuing research into artificial intelligence and its impact on society.

Related content
The UCLA Science Hub seeks to address challenges to humanity through research using artificial intelligence, bringing together academic and industry scientists.

The fellowships provide PhD students at UCLA Samueli School of Engineering with up to two quarters of funding during the academic year to pursue independent research projects. The Amazon Fellows study within the departments of computer science, electrical and computer engineering, bioengineering, and mechanical and aerospace engineering. In addition to project funding, they will be invited to apply to intern at Amazon.

Top row, left to right, Sanae Amani Geshnigani, Kewei Cheng, Zi-Yi Dou, Kai Fukami, and Luzhe Huang; second row, left to right, Alexander Johnson, Tung Nguyen, Alexander Schperberg, and Zhouxing Shi; and bottom row, left to right, Zhaoqiang Wang, Yu Yang, Da Yin, and Zhe Zeng. The UCLA logo is on the bottom right.
The Science Hub for Humanity and Artificial Intelligence's second cohort of Amazon Fellows are: top row, left to right, Sanae Amani Geshnigani, Kewei Cheng, Zi-Yi Dou, Kai Fukami, and Luzhe Huang; second row, left to right, Alexander Johnson, Tung Nguyen, Alexander Schperberg, and Zhouxing Shi; and bottom row, left to right, Zhaoqiang Wang, Yu Yang, Da Yin, and Zhe Zeng.

What follows is the list of fellows, their areas of research, and their UCLA faculty advisors:

Sanae Amani Geshnigani is pursuing a PhD in electrical and computer engineering; her advisor is Lin Yang, assistant professor of electrical and computer engineering.

“My research goal is to expand the applicability of bandit and reinforcement learning algorithms to new application domains: specifically, safety-critical and distributed physical systems, such as robotics, wireless networks, the power grid and medical trials.”

Kewei Cheng, is pursuing a PhD in computer science; her advisor is Yizhou Sun, professor of computer science.

“My research interests mainly focus on knowledge graph reasoning with a specific concentration on neural-symbolic reasoning, and more generally in machine learning and network science.”

Zi-Yi Dou is pursuing a PhD in computer science; his advisor is Nanyun Peng, assistant professor of computer science.

“My research has been centered around advancing the field of artificial intelligence with an aim of helping people around the globe by allowing computers to interact with them through natural language and help them accomplish tasks. State-of-the-art models still struggle with gathering information from diverse modalities and languages, and generalizing well to novel scenarios. To overcome these limitations, my current research goal is to build robust multimodal and multilingual AI models and comprehensively evaluate them along multiple dimensions and domains.”

Related content
Models that map spoken language to objects in an image would make it easier for customers to communicate with multimodal devices.

Kai Fukami is pursuing a PhD in mechanical and aerospace engineering; his advisor is Kunihiko Taira, professor, computer science.

“My academic interest belongs to fluid dynamics which is a discipline to study flows around us such as air and water. In particular, I am working on the design of artificial-intelligent techniques and machine-learning methods to understand and control turbulent flows from limited sensor measurements.”

Luzhe Huang is pursuing a PhD in electrical and computer engineering; his advisor is Aydogan Ozcan, Chancellor's Professor and the Volgenau Chair for Engineering Innovation.

“In the past decade, AI has revolutionized many fields, including robotics, computer vision, and natural language processing, and greatly improved our daily life. When it comes to microscopy imaging, despite some researches exploring the integration of AI and microscopy imaging, critical challenges remain for real-world applications and prevent the advance of AI to benefit a broad group of users in biology, pathology and medical science. I am fortunate to be studying on this frontier of human’s knowledge and develop technologies to conquer these challenges using my interdisciplinary knowledge in both AI and optics.”

Alexander Johnson, is pursuing a PhD in electrical and computer engineering; his advisor is Abeer Alwan, professor of electrical and computer engineering.

“My research focuses on improving speech technology performance for children’s speech and African American English (AAE) speech in order to provide more equitable outcomes in early education. Speech technologies perform well for certain demographics (ie. able-bodied, adult, first-language speakers of mainstream dialects). However, they perform much worse for underrepresented groups (eg. young children, speakers of non-mainstream dialects, people with speech-related disabilities, etc.). Child speakers of AAE often show poorer reading and oral language performance than their white counterparts as a result of the orthographic mismatch between their spoken dialect and mainstream American English (MAE) taught in their classrooms. ASR systems trained to recognize AAE could give these students additional teaching support and help bridge this performance gap. However, this is a difficult low-resource problem given the small number of publicly available, labeled datasets for AAE speech in comparison to those for MAE speech. Thus, novel methods for low-resource dialects are needed in order to bring ASR systems for AAE-speaking children to the level of current data-driven ASR approaches for MAE.”

Tung Nguyen is pursuing a PhD in computer science; his advisor is Aditya Grover, assistant professor of computer science.

“Deep learning has grown rapidly in both scale and generalizability over the past decade. However, the majority of the real-world advances are made in the field of vision or language, while sequential decision-making paradigms such as reinforcement learning (RL) have lagged behind and only showed limited successes for controlled domains such as games. Sequential decision making in the real world is more challenging, because 1) the inputs are high-dimensional with long-range spatiotemporal dependencies; 2) agents need to quantify uncertainty to balance exploration and exploitation; and 3) active online interactions with the environment can be very expensive or even infeasible in high-stakes applications. My research goal is to address these challenges, and thereby enable robust sequential decision making for real-world applications. I outline my past research and future plans below.”

Alexander Schperberg is pursuing a PhD in mechanical and aerospace engineering; his advisor is Dennis Hong, professor of mechanical and aerospace engineering.

Related content
Teaching robots to stow items presents a challenge so large it was previously considered impossible — until now.

“My goal is to facilitate the dream of one day seeing diverse sets of wheeled, aerial, legged, and underwater robots being used ubiquitously towards reducing the burdens of society. Robotics and AI technology have the enormous potential to support humanity by performing tasks too dangerous for human workers, or through human-robot interactions. Unfortunately, while the potential use of robotics is an exciting prospect, they are still not commonly used due to a justified concern for both their safety and cost. For example, to make robots safer typically demands high-fidelity sensor and computer components. Thus, these robots are very expensive and are still seen as a luxury item rather than a product for everyday use. More troubling is that those from economically challenged and/or underprivileged groups may not have access and potentially cannot reap the benefit from this technology. Ideally, creating new robots using off-the-shelve or inexpensive components would greatly expand the robotic field and rapidly benefit society for all.”

Zhouxing Shi is pursuing a PhD in computer science; his advisor is Cho-Jui Hsieh, associate professor of computer science.

“My research interest is trustworthy machine learning and responsible AI, and I am currently working on the formally verifiable robustness of machine learning models especially neural networks.”

Zhaoqiang Wang is pursuing a PhD in bioengineering; his advisor is Liang Gao, assistant professor of bioengineering.

“Cardiovascular diseases (CVDs) are the leading cause of death globally, taking an estimated 17.9 million lives each year. In the United States, it is reported that approximately 82.6 million people currently live with at least one type of CVD, which contributes to a significant healthcare burden. To elucidate the underlying mechanism, researchers replicate the cardiac disease model in well-established genetic systems such as mouse and zebrafish. These model animals possess the essential common physiology as humans, but intelligent microscopy is critically necessary to reveal their heart morphology and dynamics.”

Yu Yang is pursuing a PhD in computer science; her advisor is Baharan Mirzasoleiman, assistant professor of computer science.

“My research contributes to the foundations of large-scale machine learning. Learning from massive datasets is financially and environmentally expensive. Moreover, large real-world data are usually biased toward large sub-populations, and often contain noisy or malicious examples that harm the generalization performance of the trained models. To address these problems, my research primarily focuses on understanding and improving the training data or learning objectives for resource-efficient and accountable learning.”

Da Yin is pursuing a PhD in computer science; his advisor is Kai-Wei Chang, associate professor computer science.

“I propose to utilize external knowledge to promote the effectiveness and inclusivity of neural models. Specifically, the framework of building models enhanced with external knowledge is usually separated into three important stages: 1) understanding what knowledge is not well learned by neural models; 2) acquiring knowledge necessary for specified domains; and 3) injecting knowledge to strengthen model’s capability.”

Zhe Zeng is pursuing a PhD in computer science; her advisor is Guy Van den Broeck, associate professor of computer science.

“How can we build artificial intelligence systems that are able to make efficient and re-liable inference under complex, noisy and highly structured real-world scenarios? One primary challenge to tackle this question is that probabilistic inference in such systems is, in general, computationally intractable. While current machine learning techniques heavily emphasize on scaling up probabilistic inference, they are at the cost of harming inference reliability. One promising direction is to combine probabilistic machine learning techniques and the formal verification techniques. My research interests primarily lie in bridging between AI and formal methods for such purposes.”

Related content

US, WA, Seattle
Are you excited about building high-performance robotic systems that can perceive, learn, and act intelligently alongside humans? The Robotics AI team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.The Amazon Robotics team is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. Come join us!
US, VA, Arlington
The Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. As Director for PXT Central Science Technology, you will be responsible for leading multiple teams through rapidly evolving complex demands and define, develop, deliver and execute on our science roadmap and vision. You will provide thought leadership to scientists and engineers to invent and implement scalable machine learning recommendations and data driven algorithms supporting flexible UI frameworks. You will manage and be responsible for delivering some of our most strategic technical initiatives. You will design, develop and operate new, highly scalable software systems that support Amazon’s efforts to be Earth’s Best Employer and have a significant impact on Amazon’s commitment to our employees and communities where we both serve and employ 1.3 million Amazonians. As Director of Applied Science, you will be part of the larger technical leadership community at Amazon. This community forms the backbone of the company, plays a critical role in the broad business planning, works closely with senior executives to develop business targets and resource requirements, influences our long-term technical and business strategy, helps hire and develop engineering leaders and developers, and ultimately enables us to deliver engineering innovations.This role is posted for Arlington, VA, but we are flexible on location at many of our offices in the US and Canada.
US, VA, Arlington
Employer: Amazon.com Services LLCPosition: Data Scientist IILocation: Arlington, VAMultiple Positions Available1. Manage and execute entire projects or components of large projects from start to finish including data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights and recommendations.2. Oversee the development and implementation of data integration and analytic strategies to support population health initiatives.3. Leverage big data to explore and introduce areas of analytics and technologies.4. Analyze data to identify opportunities to impact populations.5. Perform advanced integrated comprehensive reporting, consultative, and analytical expertise to provide healthcare cost and utilization data and translate findings into actionable information for internal and external stakeholders.6. Oversee the collection of data, ensuring timelines are met, data is accurate and within established format.7. Act as a data and technical resource and escalation point for data issues, ensuring they are brought to resolution.8. Serve as the subject matter expert on health care benefits data modeling, system architecture, data governance, and business intelligence tools. #0000
US, TX, Dallas
Employer: Amazon.com Services LLCPosition: Data Scientist II (multiple positions available)Location: Dallas, TX Multiple Positions Available:1. Assist customers to deliver Machine Learning (ML) and Deep Learning (DL) projects from beginning to end, by aggregating data, exploring data, building and validating predictive models, and deploying completed models to deliver business impact to the organization;2. Apply understanding of the customer’s business need and guide them to a solution using AWS AI Services, AWS AI Platforms, AWS AI Frameworks, and AWS AI EC2 Instances;3. Use Deep Learning frameworks like MXNet, PyTorch, Caffe 2, Tensorflow, Theano, CNTK, and Keras to help our customers build DL models;4. Research, design, implement and evaluate novel computer vision algorithms and ML/DL algorithms;5. Work with data architects and engineers to analyze, extract, normalize, and label relevant data;6. Work with DevOps engineers to help customers operationalize models after they are built;7. Assist customers with identifying model drift and retraining models;8. Research and implement novel ML and DL approaches, including using FPGA;9. Develop computer vision and machine learning methods and algorithms to address real-world customer use-cases; and10. Design and run experiments, research new algorithms, and work closely with engineers to put algorithms and models into practice to help solve customers' most challenging problems.11. Approximately 15% domestic and international travel required.12. Telecommuting benefits are available.#0000
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Manager III, Data ScienceLocation: Bellevue, WashingtonPosition Responsibilities:Manage a team of data scientists working to build large-scale, technical solutions to increase effectiveness of Amazon Fulfillment systems. Define key business goals and map them to the success of technical solutions. Aggregate, analyze and model data from multiple sources to inform business decisions. Manage and quantify improvement in the customer experience resulting from research outcomes. Develop and manage a long-term research vision and portfolio of research initiatives, with algorithms and models that to be integrated in production systems. Hire and mentor junior scientists.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Arlington, VirginiaPosition Responsibilities:Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing Oracle, RedShift, and Spark storage systems. Build relationships with stakeholders and counterparts. Analyze data for trends and input validity by inspecting univariate distributions, exploring bivariate relationships, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build models using statistical modeling, mathematical modeling, econometric modeling, network modeling, social network modeling, natural language processing, machine learning algorithms, genetic algorithms, and neural networks. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, IL, Chicago
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist ILocation: Chicago, IllinoisPosition Responsibilities:Build the core intelligence, insights, and algorithms that support the real estate acquisition strategies for Amazon physical stores. Tackle cutting-edge, complex problems such as predicting the optimal location for new Amazon stores by bringing together numerous data assets, and using best-in-class modeling solutions to extract the most information out of them. Work with business stakeholders, software development engineers, and other data scientists across multiple teams to develop innovative solutions at massive scale.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, WA, Seattle
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve the employee and manager experience at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science!The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.We are seeking a senior Applied Scientist with expertise in more than one or more of the following areas: machine learning, natural language processing, computational linguistics, algorithmic fairness, statistical inference, causal modeling, reinforcement learning, Bayesian methods, predictive analytics, decision theory, recommender systems, deep learning, time series modeling. In this role, you will lead and support research efforts within all aspects of the employee lifecycle: from candidate identification to recruiting, to onboarding and talent management, to leadership and development, to finally retention and brand advocacy upon exit.The ideal candidate should have strong problem-solving skills, excellent business acumen, the ability to work independently and collaboratively, and have an expertise in both science and engineering. The ideal candidate is not methods-driven, but driven by the research question at hand; in other words, they will select the appropriate method for the problem, rather than searching for questions to answer with a preferred method. The candidate will need to navigate complex and ambiguous business challenges by asking the right questions, understanding what methodologies to employ, and communicating results to multiple audiences (e.g., technical peers, functional teams, business leaders).About the teamWe are a collegial and multidisciplinary team of researchers in People eXperience and Technology (PXT) that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We leverage data and rigorous analysis to help Amazon attract, retain, and develop one of the world’s largest and most talented workforces.
US, WA, Bellevue
Job summaryThe Global Supply Chain-ACES organization aims to raise the bar on Amazon’s customer experience by delivering holistic solutions for Global Customer Fulfillment that facilitate the effective and efficient movement of product through our supply chain. We develop strategies, processes, material handling and technology solutions, reporting and other mechanisms, which are simple, technology enabled, globally scalable, and locally relevant. We achieve this through cross-functional partnerships, listening to the needs of our customers and prioritizing initiatives to deliver maximum impact across the value chain. Within the organization, our Quality team balances tactical operation with operations partners with global engagement on programs to deliver improved inventory accuracy in our network. The organization is looking for an experienced Principal Research Scientist to partner with senior leadership to develop long term strategic solutions. As a Principal Scientist, they will lead critical initiatives for Global Supply Chain, leveraging complex data analysis and visualization to:a. Collaborate with business teams to define data requirements and processes;b. Automate data pipelines;c. Design, develop, and maintain scalable (automated) reports and dashboards that track progress towards plans;d. Define, track and report program success metrics.e. Serve as a technical science lead on our most demanding, cross-functional projects.
US, MA, Cambridge
Job summaryMULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Cambridge, MassachusettsPosition Responsibilities:Utilize code (Python, R, etc.) to build ML models to solve specific business problems. Build and measure novel online & offline metrics for personal digital assistants and customer scenarios, on diverse devices and endpoints. Research and implement novel machine learning algorithms and models. Collaborate with researchers, software developers, and business leaders to define product requirements and provide modeling solutions. Communicate verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000