How We Make Alexa Sound More Human-like Lead.png
Andrew Breen, senior manager, Amazon text-to-speech research, provided an overview of the history of TTS advancements at last June's re:MARS conference.

Advances in text-to-speech technologies help computers find their voice

Generating natural sounding, human-like speech has been a goal of scientists for decades.

Editor's Note: The Alexa team recently introduced a new longform speaking style so Alexa sounds more natural when reading long pieces of content, like this article. If you prefer to listen to this story rather than read it, below is this article utilizing the longform speaking style.

The spoken word is important to people. We love the sound of our child’s voice, of a favorite song, or of our favorite movie star reciting a classic line.

Computer-generated, synthesized spoken words also are becoming increasingly common. Alexa, Amazon’s popular voice service, has been responding to customers’ questions and requests for more than five years, and is now available on hundreds of millions of devices from Amazon and third-party device manufacturers. Other businesses also are taking advantage of computer-generated speech to handle customer service calls, market products, and more.

How we make Alexa sound more human-like

Language and speech are incredibly complex. Words have meaning, sure. So does the context of those words, the emotion behind them, and the response of the person listening. It would seem the subtleties of the spoken word would be beyond the reach of even the most sophisticated computers. But in recent years, advances in text-to-speech (TTS) technologies – the ability of computers to convert sequences of words into natural sounding, intelligible audio responses – have made it possible for computers to sound more human-like.

Amazon scientists and engineers are helping break new ground in an era where computers sound not only friendly and knowledgeable, but also predict how the sentiment of an utterance might sound to an average listener, for example, and respond with human-like intonations.

A revolution within the field occurred in 2016, when WaveNet – a technology for generating raw audio – was introduced. Created by researchers at London-based artificial intelligence firm DeepMind, the technique could generate realistic voices using a neural network trained with recordings of real speech.

Andrew Breen (crop)
Andrew Breen, senior manager, TTS research

“This early research suggested that a new machine learning method offered equal or greater quality and the potential for more flexibility,” says Andrew Breen, senior manager of the TTS research team in Cambridge, UK. Breen has long worked on the problem of making computerized speech more responsive and authentic. Before joining Amazon in 2018, he was director of TTS research for Nuance, a Massachusetts-based company that develops conversational artificial intelligence solutions.

Modeled loosely on the human neural system, neural nets are networks of simple but densely interconnected processing nodes. Typically, those nodes are arranged into layers, and the output of each layer passes to the layer above it. The connections between layers have associated “weights” that determine how much the output of one node contributes to the computation performed by the next.

Combined with machine learning, neural networks have accelerated progress in improving computerized speech. “It’s really a gold rush of invention,” says Breen.

Generating natural-sounding speech

Generating natural sounding, human-like speech has been a goal of scientists for decades. In the 1930s Bell Labs scientist Homer Dudley developed the Voder, a primitive synthetic-speech machine that an operator worked like a piano keyboard – except rather than music, out came a squawking mechanical voice. In the 1980s, a computerized TTS application called DECTalk, developed by the Digital Equipment Corporation, had progressed to the point where the late Stephen Hawking could use a version of it, paired with a keyboard to “talk”. The results were artificial-sounding, but intelligible words that many people still associated with a talking machine.

It's really been a gold rush of invention.
Andrew Breen, senior manager, TTS research

By the early 2000s, more accurate speech synthesis became common. The foremost approach taken then: hybrid unit concatenation. Amazon, for instance, used this approach until 2015 to build early versions of Alexa’s voice or to build voice capabilities into products like the Fire Tablet. Says Nikhil Sharma, a principal product manager in Amazon’s TTS group: “To create some of the early Alexa voices, we worked with voice talents in a studio for hours and had them say a wide variety of phrases. We broke that speech data down into a single diphone (a single diphone is a combination of halves of two phonemes, a distinct unit of sound) and put that in a large audio database. Then, when a request came to generate speech, we could tap into that database and select the best diphones to stitch together and create a sentence spoken by Alexa.”

Nikhil Sharma, principal product manager, TTS, Amazon
Nikhil Sharma, principal product manager, TTS

That process worked fairly well. But hybrid unit concatenation has its limits. It needs large amounts of pre-recorded sounds from professional voice talent for reference – sort of like a tourist constantly flipping through a large French book to find particular phrases. “Because of that, we really couldn’t say a hybrid unit concatenation system ‘learned’ a language,” says Breen.

Creating a computer that actually learns a language – not just memorizes phrases – became a goal of researchers. “That has been the Holy Grail, but nobody knew how to do it,” says Breen. “We were close but had a quality ceiling that limited its viability.”

Neural networks offered a way to do just that. In 2018, Amazon scientists demonstrated that by using a generative neural network approach to creating synthetic speech, they could produce natural sounding speech. Using the generative neural network approach, Alexa could also flex the way she speaks about certain content. For example, Amazon scientists created Alexa’s newscaster style of speech from just a few hours of training data, allowing customers to hear the news in a style to which they’ve become accustomed. This advance paved the way for Alexa and other Amazon services to adopt different speaking styles in different contexts, improving customer experiences.

Comparisons of Alexa synthesized speech

Star Trek

2014 Concatenative
2020 NTTS

Song ID

Standard response
Music style response
Above are examples of how Alexa's voice has become more natural over the years.

Amazon recently announced a new Amazon Polly feature called Brand Voice, which provides the opportunity for organizations to work with the Amazon Polly team of AI research scientists and linguists to build an exclusive, high-quality, neural TTS voice that represents their brand’s persona. Early adopters Kentucky Fried Chicken (KFC) Canada and National Australia Bank (NAB) have utilized the service to each create two unique brand voices that utilize the same deep learning technology that powers the voice of Alexa.

Amazon Polly is an AWS service that turns text into lifelike speech, allowing customers to build entirely new categories of speech-enabled products. Polly provides dozens of lifelike voices across a broad set of languages, allowing customers to build speech-enabled applications that work in many different countries.

Looking forward, Amazon researchers are working toward teaching computers to understand the meaning of a set of words, and speak those words using the appropriate affect. “If I gave a computer a news article, it would do a reasonable job of rendering the words in the article,” says Breen. “But it’s missing something. What is missing is the understanding of what is in the article, whether it’s good news or bad, and what is the focal point. It lacks that intuition.”

That is changing. Now, computers can be taught to say the same sentence with varying kinds of inflection. In the future, it’s possible they’ll recognize how they should be saying those words based simply on the context of the words, or the words themselves. “We want computers to be sensitive to the environment and to the listener, and adapt accordingly,” says Breen.

There are numerous potential TTS applications, from customer service and remote learning to narration of news articles. Driving improvements in this technology is one approach Amazon scientists and engineers are taking to create better experiences, not only for Alexa customers, but for organizations worldwide.

“The ability for Alexa to adapt her speaking style based on the context of a customer's request opens the possibility to deliver new and delightful experiences that were previously unthinkable,” says Breen. “These are really exciting times.”

Related content

US, NY, New York
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Design and build agents to guide advertisers in conversational and non-conversational experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.
CA, ON, Toronto
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Lead business, science and engineering strategy and roadmap for Sponsored Products Agentic Advertiser Guidance. - Design and build agents to guide advertisers in conversational and non-conversational experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the next level. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, MA, Boston
As a Principal Scientist within the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. You solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location. You scrutinize and review experimental design, modeling, verification and other research procedures. You probe assumptions, illuminate pitfalls, and foster shared understanding. You align teams toward coherent strategies. You educate, keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. You help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). About the team The AGI team has a mission to push the envelope with multimodal LLMs and Gen AI in Computer Vision, in order to provide the best-possible experience for our customers.
US, CA, Palo Alto
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities As an Applied Science Manager, you will: * Directly manage and lead a cross-functional team of Applied Scientists, Machine Learning Engineers, and Software Development Engineers. * Develop science and engineering roadmaps for SPB ads response prediction with ML and Gen AI solutions, run annual planning, and foster cross-team collaboration on model development and integration to advertising applications. * Hire and develop top talent, provide technical and career development guidance to scientists and engineers within and across the organization. * Stay informed about recent scientific publications, industrial research trends, and system designs that are pertinent to the SPB advertising business and bring those insights with the team. About the team The Ad Response Prediction team within Sponsored Products and Brands (SPB) drives personalized shopping experiences for SPB Ads across placements, pages, and devices worldwide. We achieve this through ML and GenAI solutions that include customized shopper response prediction and session-level understanding to optimize every stage of the ad-serving process, from sourcing and bidding to widget discovery and auctions. Our responsibilities include advancing response prediction through model and feature innovations and extending prediction beyond the auction stage to areas such as targeting, sourcing, and bidding. We are seeking an Applied Science Manager with a strong background in ML and Gen AI solutions. The ideal candidate shall have experience managing both scientists and engineers and will be passionate about applying these technologies to the advertising domain.
GB, Cambridge
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like Echo, Fire Tablets, Fire TV, and other consumer devices. We are looking for exceptional scientists to join our Applied Science team to advance the state-of-the-art in developing efficient multimodal language models across our product portfolio. Through close hardware-software integration, we design and train models for resource efficiency across the hardware and software tech stack. The Silicon and Solutions Group Edge AI team is looking for a talented Sr. Applied Scientist who will lead our efforts on inventing evaluation methods for multimodal language models and agents for new devices, including audio and vision experiences. Key job responsibilities - Collaborate with cross-functional engineers and scientists to advance the state of the art in multimodal model evaluations for devices, including audio, images, and videos - Invent and validate reliability for novel automated evaluation methods for perception tasks, such as fine-tuned LLM-as-judge - Develop and extend our evaluation framework(s) to support expanding capabilities for multimodal language models - Analyze large offline and online datasets to understand model gaps, develop methods to interpret model failures, and collaborate with training teams to enhance model capabilities for product use cases - Work closely with scientists, compiler engineers, data collection, and product teams to advance evaluation methods - Mentor less experienced Applied Scientists A day in the life As a Scientist with the Silicon and Solutions Group Edge AI team, you'll contribute to innovative methods for evaluating new product experiences and discover ways to enhance our model capabilities and enrich our customer experiences. You'll research new methods for reliably assessing perception capabilities for audio-visual tasks in multimodal language models, design and implement new metrics, and develop our evaluation framework. You'll collaborate across teams of engineers and scientists to identify and root cause issues in models and their system integration to continuously enhance the end-to-end experience. About the team Our Edge AI science team brings together our unique skills and experiences to deliver state-of-the-art multimodal AI models that enable new experiences on Amazon devices. We work at the intersection of hardware, software, and science to build models designed for our custom silicon.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with generative AI (GenAI) and multi-modal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to develop algorithms and modeling techniques to advance the state of the art with multi-modal systems. Your work will directly impact our customers in the form of products and services that make use of vision and language technology. You will leverage Amazon’s large-scale computing resources to accelerate development with multi-modal Large Language Models (LLMs) and GenAI in Computer Vision. About the team The AGI team has a mission to push the envelope with multimodal LLMs and GenAI in Computer Vision, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.