Interspeech
This year's Interspeech will be held in Graz, Austria, whose famed clock tower was built in the mid-1500s
Photo courtesy of Getty Images

The 16 Alexa-related papers at this year’s Interspeech

At next week’s Interspeech, the largest conference on the science and technology of spoken-language processing, Alexa researchers have 16 papers, which span the five core areas of Alexa functionality: device activation, or recognizing speech intended for Alexa and other audio events that require processing; automatic speech recognition (ASR), or converting the speech signal into text; natural-language understanding, or determining the meaning of customer utterances; dialogue management, or handling multiturn conversational exchanges; and text-to-speech, or generating natural-sounding synthetic speech to convey Alexa’s responses. Two of the papers are also more-general explorations of topics in machine learning.

Device Activation

Model Compression on Acoustic Event Detection with Quantized Distillation
Bowen Shi, Ming Sun, Chieh-Chi Kao, Viktor Rozgic, Spyros Matsoukas, Chao Wang

The researchers combine two techniques to shrink neural networks trained to detect sounds by 88%, with no loss in accuracy. One technique, distillation, involves using a large, powerful model to train a leaner, more-efficient one. The other technique, quantization, involves using a fixed number of values to approximate a larger range of values.

Sub-band Convolutional Neural Networks for Small-footprint Spoken Term Classification
Chieh-Chi Kao, Ming Sun, Yixin Gao, Shiv Vitaladevuni, Chao Wang

Convolutional neural nets (CNNs) were originally designed to look for the same patterns in every block of pixels in a digital image. But they can also be applied to acoustic signals, which can be represented as two-dimensional mappings of time against frequency-based “features”. By restricting an audio-processing CNN’s search only to the feature ranges where a particular pattern is likely to occur, the researchers make it much more computationally efficient. This could make audio processing more practical for power-constrained devices.

A Study for Improving Device-Directed Speech Detection toward Frictionless Human-Machine Interaction
Che-Wei Huang, Roland Maas, Sri Harish Mallidi, Björn Hoffmeister

This paper is an update of prior work on detecting device-directed speech, or identifying utterances intended for Alexa. The researchers find that labeling dialogue turns (distinguishing initial utterances from subsequent utterances) and using signal representations based on Fourier transforms rather than mel-frequencies improve accuracy. They also find that, among the features extracted from speech recognizers that the system considers, confusion networks, which represent word probabilities at successive sentence positions, have the most predictive power.

Automatic Speech Recognition (ASR)

Acoustic Model Bootstrapping Using Semi-Supervised Learning
Langzhou Chen, Volker Leutnant

The researchers propose a method for selecting machine-labeled utterances for semi-supervised training of an acoustic model, the component of an ASR system that takes an acoustic signal as input. First, for each training sample, the system uses the existing acoustic model to identify the two most probable word-level interpretations of the signal at each position in the sentence. Then it finds examples in the training data that either support or contradict those probability estimates, which it uses to adjust the uncertainty of the ASR output. Samples that yield significant reductions in uncertainty are preferentially selected for training.

Improving ASR Confidence Scores for Alexa Using Acoustic and Hypothesis Embeddings
Prakhar Swarup, Roland Maas, Sri Garimella, Sri Harish Mallidi, Björn Hoffmeister

Speech recognizers assign probabilities to different interpretations of acoustic signals, and these probabilities can serve as inputs to a machine learning model that assesses the recognizer’s confidence in its classifications. The resulting confidence scores can be useful to other applications, such as systems that select machine-labeled training data for semi-supervised learning. The researchers append embeddings — fixed-length vector representations — of both the raw acoustic input and the speech recognizer’s best estimate of the word sequence to the inputs to a confidence-scoring network. The result: a 6.5% reduction in equal-error rate (the error rate that results when the false-negative and false-positive rates are set as equal).

Multi-Dialect Acoustic Modeling Using Phone Mapping and Online I-Vectors
Harish Arsikere, Ashtosh Sapru, Sri Garimella

Multi-dialect acoustic models, which help convert multi-dialect speech signals to words, are typically neural networks trained on pooled multi-dialect data, with separate output layers for each dialect. The researchers show that mapping the phones — the smallest phonetic units of speech — of each dialect to those of the others offers comparable results with shorter training times and better parameter sharing. They also show that recognition accuracy can be improved by adapting multi-dialect acoustic models, on the fly, to a target speaker.

Neural Machine Translation for Multilingual Grapheme-to-Phoneme Conversion
Alex Sokolov, Tracy Rohlin, Ariya Rastrow

Grapheme-to-phoneme models, which translate written words into their phonetic equivalents (“echo” to “E k oU”), enable speech recognizers to handle words they haven’t seen before. The researchers train a single neural model to handle grapheme-to-phoneme conversion in 18 languages. The results are comparable to those of state-of-the-art single-language models for languages with abundant training data and better for languages with sparse data. Multilingual models are more flexible and easier to maintain in production environments.

Scalable Multi Corpora Neural Language Models for ASR
Anirudh Raju, Denis Filimonov, Gautam Tiwari, Guitang Lan, Ariya Rastrow

Language models, which compute the probability of a given sequence of words, help distinguish between different interpretations of speech signals. Neural language models promise greater accuracy than existing models, but they’re difficult to incorporate into real-time speech recognition systems. The researchers describe several techniques to make neural language models practical, from a technique for weighting training samples from out-of-domain data sets to noise contrastive estimation, which turns the calculation of massive probability distributions into simple binary decisions.

Natural-Language Understanding

Neural Named Entity Recognition from Subword Units
Abdalghani Abujabal, Judith Gaspers

Named-entity recognition is crucial to voice-controlled systems — as when you tell Alexa “Play ‘Spirit’ by Beyoncé”. A neural network that recognizes named entities typically has dedicated input channels for every word in its vocabulary. This has two drawbacks: (1) the network grows extremely large, which makes it slower and more memory intensive, and (2) it has trouble handling unfamiliar words. The researchers trained a named-entity recognizer that instead takes subword units — characters, phonemes, and bytes — as inputs. It offers comparable performance with a vocabulary of only 332 subwords, versus 74,000-odd words.

Dialogue Management

HyST: A Hybrid Approach for Flexible and Accurate Dialogue State Tracking
Rahul Goel, Shachi Paul, Dilek Hakkani-Tür

Dialogue-based computer systems need to track “slots” — types of entities mentioned in conversation, such as movie names — and their values — such as Avengers: Endgame. Training a machine learning system to decide whether to pull candidate slot values from prior conversation or compute a distribution over all possible slot values improves slot-tracking accuracy by 24% over the best-performing previous system.

Towards Universal Dialogue Act Tagging for Task-Oriented Dialogues
Shachi Paul, Rahul Goel, Dilek Hakkani-Tür

Dialogue-based computer systems typically classify utterances by “dialogue act” — such as requesting, informing, and denying — as a way of gauging progress toward a conversational goal. As a first step in developing a system that will automatically label dialogue acts in human-human conversations (to, in turn, train a dialogue-act classifier), the researchers create a “universal tagging scheme” for dialogue acts. They use this scheme to reconcile the disparate tags used in different data sets.

Topical-Chat: Towards Knowledge-Grounded Open-Domain Conversations
Karthik Gopalakrishnan, Behnam Hedayatnia, Qinlang Chen, Anna Gottardi, Sanjeev Kwatra, Anu Venkatesh, Raefer Gabriel, Dilek Hakkani-Tür

The researchers report a new data set, which grew out of the Alexa Prize competition and is intended to advance research on AI agents that engage in social conversations. Pairs of workers recruited through Mechanical Turk were given information on topics that arose frequently during Alexa Prize interactions and asked to converse about them, documenting the sources of their factual assertions. The researchers used the resulting data set to train a knowledge-grounded response generation network, and they report automated and human evaluation results as state-of-the-art baselines.

Text-to-Speech

Towards Achieving Robust Universal Neural Vocoding
Jaime Lorenzo Trueba, Thomas Drugman, Javier Latorre, Thomas Merritt, Bartosz Putrycz, Roberto Barra-Chicote, Alexis Moinet, Vatsal Aggarwal

A vocoder is the component of a speech synthesizer that takes the frequency-spectrum snapshots generated by other components and fills in the information necessary to convert them to audio. The researchers trained a neural-network-based vocoder using data from 74 speakers of both genders in 17 languages. The resulting “universal vocoder” outperformed speaker-specific vocoders, even on speakers and languages it had never encountered before and unusual tasks such as synthesized singing.

Fine-Grained Robust Prosody Transfer for Single-Speaker Neural Text-to-Speech
Viacheslav Klimkov, Srikanth Ronanki, Jonas Rohnke, Thomas Drugman

The researchers present a new technique for transferring prosody (intonation, stress, and rhythm) from a recording to a synthesized voice, enabling the user to choose whose voice will read recorded content, with inflections preserved. Where earlier prosody transfer systems used spectrograms — frequency spectrum snapshots — as inputs, the researchers’ system uses easily normalized prosodic features extracted from the raw audio.

Machine Learning

Two Tiered Distributed Training Algorithm for Acoustic Modeling
Pranav Ladkat, Oleg Rybakov, Radhika Arava, Sree Hari Krishnan Parthasarathi,I-Fan Chen, Nikko Strom

When neural networks are trained on large data sets, the training needs to be distributed, or broken up across multiple processors. A novel combination of two state-of-the-art distributed-learning algorithms — GTC and BMUF — achieves both higher accuracy and more-efficient training then either, when learning is distributed to 128 parallel processors.

BMUF-GTC.gif._CB436386414_.gif
The researchers' new method splits distributed processors into groups, and within each group, the processors use the highly accurate GTC method to synchronize their models. At regular intervals, designated representatives from all the groups use a different method — BMUF — to share their models and update them accordingly. Finally, each representative broadcasts its updated model to the rest of its group.
Animation by Nick Little

One-vs-All Models for Asynchronous Training: An Empirical Analysis
Rahul Gupta, Aman Alok, Shankar Ananthakrishnan

A neural network can be trained to perform multiple classifications at once: it might recognize multiple objects in an image, or assign multiple topic categories to a single news article. An alternative is to train a separate “one-versus-all” (OVA) classifier for each category, which classifies data as either in the category or out of it. The advantage of this approach is that each OVA classifier can be re-trained separately as new data becomes available. The researchers present a new metric that enables comparison of multiclass and OVA strategies, to help data scientists determine which is more useful for a given application.

Research areas

Related content

US, WA, Bellevue
Does the idea of creating technology solutions for delivering 11 Billion+ packages across the globe excite you? If yes, come join a fun-loving, diverse, and creative team at Amazon Last Mile! The vision of the team is "To create Earth’s safest, most adaptive, and efficient plans for Last Mile logistics". The Last Mile Delivery Technology team is instrumental in impacting customer satisfaction directly, by devising innovative ways to deliver packages quickly and cost-effectively to the customers, and at scale using Artificial Intelligence (AI), Machine Learning and Operations Research solutions. Last Mile Delivery Technology organization supports the design, planning and execution of last mile transportation for Amazon’s various parcel and grocery delivery programs. All these programs require a large number of decision support systems to operate at scale and serve our customers, spanning demand planning, jurisdiction planning, delivery channel and network design, capacity planning for on the road and under the roof at delivery stations, routing inputs and route optimization. While these decision support systems have thus far been approached through the lens of traditional optimization and machine learning, we are looking to re-envision this space and pursue Foundational AI research, to innovate and advance the state of these decision support systems. Specifically, we are looking to develop foundational models (including Large Language Models, Multimodal Language Models, Multimodal Models), and adaptations to serve last mile use cases. Beyond Amazon the work developed will spur new fundamental knowledge and innovation in the logistics space. Job Location : Bellevue WA or Austin TX. Key job responsibilities You have deep expertise in ML/AI, staying current with the latest research and techniques. You also invent or adapt new scientific approaches based on customer needs, producing high-quality research reports and contributing to peer-reviewed publications when appropriate You are a highly skilled software engineer whose work is consistently of high quality, meets industry standards, and incorporates best practices. You work semi-autonomously, contribute to operational excellence. You have strong interpersonal and leadership skills, effectively collaborating with your team, championing scientific advancements, onboarding new teammates, setting a high standard for your scientific contributions, and actively participating in the wider scientific community
US, TX, Austin
The Automated Reasoning Group in AWS Utility Computing is looking for a Senior Applied Scientist with experience in building scalable automated reasoning solutions that delight customers. You will be part of a world-class team building the next generation of automated reasoning tools and services. You will apply your knowledge to propose solutions, create software prototypes, and develop prototypes into production systems using software development tools. In addition, you will support and scale your solutions to meet the ever-growing demand of customer use. You have demonstrated leadership in automated reasoning positions in industry or academia, strong verbal and written communication skills, are self-driven and deliver high quality results in a fast-paced environment. Each day, hundreds of thousands of developers make billions of transactions worldwide on AWS. They harness the power of the cloud to enable innovative applications, websites, and businesses. Using automated reasoning technology and mathematical proofs, AWS allows customers to answer questions about security, availability, durability, and functional correctness. We call this provable security, absolute assurance in security of the cloud and in the cloud. https://aws.amazon.com/security/provable-security/ Key job responsibilities As a Senior Applied Scientist, you will help shape the definition and vision for applied science across teams within AWS. We have a diverse portfolio of projects that target protocol, code, and hardware verification, and leadership opportunities exist for: - Advance automated code-level reasoning and invariant synthesis and proof repair for cloud-scale web services. - Build new engines and extending foundational proof engines that apply to distributed systems. - Researching the application of automated reasoning to novel software applications. - Building automated reasoning solutions for critical AWS DSLs for architectural configuration, migration, code generation, and other areas. - Improving integration and user experience of tools to support large-scale adoption and use of automated reasoning techniques. You will work in an agile, startup-like development environment, where you are always working on the most important things, and you will design, implement, test, deploy and maintain innovative software solutions to transform service performance, durability, cost, and security. About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. This team is part of AWS Utility Computing: Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services.
US, WA, Seattle
We’re working to improve shopping on Amazon using the conversational capabilities of large language models, and are searching for pioneers who are passionate about technology, innovation, and customer experience, and are ready to make a lasting impact on the industry. You'll be working with talented scientists and engineers to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey! Key job responsibilities We seek strong Applied Scientists with domain expertise in machine learning and deep learning, transformers, generative models, large language models, computer vision and multimodal models. You will devise innovative solutions at scale, pushing the technological and science boundaries. You will guide the design, modeling, and architectural choices of state-of-the-art large language models and multimodal models. You will devise and implement new algorithms and new learning strategies and paradigms. You will be technically hands-on and drive the execution from ideation to productionization. You will work in collaborative environment with other technical and business leaders, to innovate on behalf of the customer.
US, WA, Seattle
The Worldwide Defect Elimination (WWDE) Science team in Amazon Customer Service builds state-of-the-art Artificial Intelligence (AI) models to enable defect-free shopping experiences for Amazon customers. We develop technology and mechanisms to discover, root cause, measure, and escalate defects for resolution before they impact a broader range of customers. We are looking for a creative problem solver and technically-skilled Research Scientist able and interested in building AI solutions to address customer issues at scale. The ideal candidate will lead the development of innovative solutions that identify, root cause, attribute, and summarize problems embedded in large volumes of customer feedback in different modalities. They will also utilize the latest advances in GenAI technology to explore billions of customer contacts and automate defect resolution workflows. As a part of this role, this candidate will collaborate with a large team of experts in the field and move the state of defect elimination research forward. This candidate should have a knack for leveraging AI to translate complex data insights into actionable strategies and can communicate these effectively to both technical and non-technical audiences. Key job responsibilities * Apply science models to extract actionable information from large volumes and varying modalities of customer feedback * Leverage GenAI/Large Language Model (LLM) technology for scaling and automating defect elimination workflows * Design and implement metrics to evaluate the effectiveness of AI models * Present deep dives and analysis to both technical and non-technical stakeholders, ensuring clarity and understanding and influencing business partners * Perform statistical analysis and statistical tests including hypothesis testing and A/B testing * Recognize and adopt best practices in reporting and analysis: data integrity, test design, analysis, validation, and documentation A day in the life If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan About the team The Worldwide Defect Elimination (WWDE) team's mission is to understand and resolve all issues impacting customers at scale. The WWDE Science team is a force multiplier within this group, helping to to apply science solutions to eliminate defects and enhance customer experience.
AE, Dubai
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center at AWS is a new strategic team that helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, data scientists, engineers, and solution architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for ML Data Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities As an ML Data Scientist, you will * Collaborate with ML scientist and architects to Research, design, develop, and evaluate cutting-edge generative AI algorithms to address real-world challenges * Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production * Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder * Provide customer and market feedback to Product and Engineering teams to help define product direction
US, WA, Bellevue
We are seeking a passionate, talented, and inventive individual to join the Applied AI team and help build industry-leading technologies that customers will love. This team offers a unique opportunity to make a significant impact on the customer experience and contribute to the design, architecture, and implementation of a cutting-edge product. The mission of the Applied AI team is to enable organizations within Worldwide Amazon.com Stores to accelerate the adoption of AI technologies across various parts of our business. We are looking for a Senior Applied Scientist to join our Applied AI team to work on LLM-based solutions. We are seeking an experienced Scientist who combines superb technical, research, analytical and leadership capabilities with a demonstrated ability to get the right things done quickly and effectively. This person must be comfortable working with a team of top-notch developers and collaborating with our research teams. We’re looking for someone who innovates, and loves solving hard problems. You will be expected to have an established background in building highly scalable systems and system design, excellent project management skills, great communication skills, and a motivation to achieve results in a fast-paced environment. You should be somebody who enjoys working on complex problems, is customer-centric, and feels strongly about building good software as well as making that software achieve its operational goals. Key job responsibilities You will be responsible for developing and maintaining the systems and tools that enable us to accelerate knowledge operations and work in the intersection of Science and Engineering. You will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. A day in the life On our team you will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team.
US, MA, Westborough
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics is seeking Applied Science Interns and Co-ops with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects within robotics. Examples of projects include allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, identifying objects and damage, and learning how to grasp all the products Amazon sells. As an Applied Science Intern/Co-op at Amazon Robotics, you will be working on one or more of our robotic technologies such as autonomous mobile robots, robot manipulators, and computer vision identification technologies. The intern/co-op project(s) and the internship/co-op location are determined by the team the student will be working on. Please note that by applying to this role you would be considered for Applied Scientist summer intern, spring co-op, and fall co-op roles on various Amazon Robotics teams. These teams work on robotics research within areas such as computer vision, machine learning, robotic manipulation, navigation, path planning, perception, optimization and more. Learn more about Amazon Robotics: https://amazon.jobs/en/teams/amazon-robotics
IL, Tel Aviv
Are you a MS or PhD student interested in a 2024 Research Science Internship, where you would be using your experience to initiate the design, development, execution and implementation of scientific research projects? If so, we want to hear from you! Is your research in machine learning, deep learning, automated reasoning, speech, robotics, computer vision, optimization, or quantum computing? If so, we want to hear from you! We are looking for motivated students with research interests in a variety of science domains to build state-of-the-art solutions for never before solved problems You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Research Science Intern, you will have following key job responsibilities; • Work closely with scientists and engineering teams (position-dependent) • Work on an interdisciplinary team on customer-obsessed research • Design new algorithms, models, or other technical solutions • Experience Amazon's customer-focused culture A day in the life At Amazon, you will grow into the high impact, visionary person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships and up to 12 months for part time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain, UAE, and UK). Please note these are not remote internships.
US, WA, Bellevue
The AGI Data Service team is seeking a dedicated, skilled, and innovative Scientist with a robust background in deep learning, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As part of the AGI-DS team, a Research Scientist will collaborate closely with talented colleagues to lead the development of advanced approaches and modeling techniques, driving forward the frontier of LLM technology. This includes innovating model-in-the-loop and human-in-the-loop approaches to ensure the collection of high-quality data, safeguarding data privacy and security for LLM training, and more. A scientist will also have a direct impact on enhancing customer experiences through state-of-the-art products and services that harness the power of speech and language technology. A day in the life The Scientist with the AGI team will support the science solution design, run experiments, research new algorithms, and find new ways of optimizing the customer experience; while setting examples for the team on good science practice and standards. Besides theoretical analysis and innovation, the scientist will also work closely with talented engineers and scientists to put algorithms and models into practice. The ideal candidate should be passionate about delivering experiences that delight customers and creating robust solutions. They will also create reliable, scalable and high-performance products that require exceptional technical expertise, and a sound understanding of Machine Learning.
US, WA, Seattle
Join us in building on AWS, for AWS! Amazon Web Services (AWS) provides companies of all sizes with an infrastructure web services platform in the cloud (“Cloud Computing”). With AWS you can requisition compute power, storage, and many other services – gaining access to a suite of elastic IT infrastructure services as your business demands them. AWS is the leading platform for designing and developing applications for the cloud and is growing rapidly with hundreds of thousands of companies in over 190 countries on the platform. Developers all over the world rely on our storage, compute, and virtualized services. Our success depends on our world-class selling and field teams, and these teams rely on the Worldwide Sales Strategy and Operations (SMGS Ops) team to power their activities. We’re handling massive scale, providing data that drives the AWS business internally, and delivering products and services to help our Amazon Web Service selling teams, marketing groups, and customers. We’re looking for a Data Scientist to design and deliver solutions that combine machine learning, human-in-the-loop input, and distributed big data technologies. We're building a cutting-edge data platform to enable us to arm our field teams with the actionable intelligence needed to engage and serve every possible AWS customer in the world, to the fullest. This position may be based in Seattle, WA; Dallas, TX Key job responsibilities - Design solutions to complex and ambiguous data challenges, starting from first principles - Apply Machine Learning to solve data problems, such as record matching, at scale - Leverage company data from third-party sources in combination with internal AWS data to develop quantitative models answering critical business questions - Build human-in-the-loop workflows, to complement and augment ML solutions - Work with AWS machine learning and big data technologies such as Amazon Sagemaker, EMR, S3, DynamoDB, Lambda, and more - Experiment and explore new technologies to create innovative solutions - Use Natural Language Processing and language models to derive insights from unstructured sources like public company regulatory filings and annual reports About the team Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and we host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team also puts a high value on work-life balance. Striking a healthy balance between your personal and professional life is crucial to your happiness and success here, which is why we aren’t focused on how many hours you spend at work or online. Instead, we’re happy to offer a flexible schedule so you can have a more productive and well-balanced life—both in and outside of work. About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.