NAACL: Industry track offers reality checks, new directions

Industry track chair and Amazon principal research scientist Rashmi Gangadharaiah on trends in industry papers and the challenges of building practical dialogue systems.

The annual meeting of the North American chapter of the Association for Computational Linguistics (NAACL) introduced an industry track in 2018, and at this year’s conference, which begins next week, one of the industry track chairs is Amazon principal research scientist Rashmi Gangadharaiah.

Rashmi Gangadharaiah.png
Rashmi Gangadharaiah, a principal research scientist at Amazon and an industry track chair at this year's meeting of the North American chapter of the Association for Computational Linguistics (NAACL).

“The NAACL industry track inspired industry tracks at other conferences such as COLING and EMNLP,” Gangadharaiah says. “The industry track provides a forum for researchers in the industry to exchange ideas and discuss successful deployments of ML [machine learning] and NLP [natural-language processing] technologies, as well as share challenges that arise in deploying such systems in real-world settings.”

For instance, Gangadharaiah explains, “academic research is often done in very controlled settings. It's not a negative thing: people have to do research, and it's useful to start in a controlled setting. But when we put such systems in real-world situations, we typically have to worry about latency, memory, and space. It's not always accuracy that we go for. It's a balance of latency, memory, space, and accuracy — and a question of how we measure accuracy. So I think it makes it more interesting that way.”

Similarly, Gangadharaiah explains, industry track papers often report negative results. “There are lots of papers that get published in academia, but when we try to put it in real-world settings, we notice that many of these methods don't work well,” she says. “So we do have papers on negative results. And it's crucial, because we do want to show that these are the methods that we tried, and they didn't work.”

The case for simplicity

Related content
Dataset contains more than 11,000 newly collected dialogues to aid research in open-domain conversation.

At Amazon, Gangadharaiah’s own research is on dialogue systems, and in her field, she says, a common reason that methods reported in academic papers prove impractical in real-world settings is that they require excessive hyperparameter optimization.

Hyperparameters are features of neural networks — such as the number of network layers, the number of nodes per layer, and the learning rate during training — whose variation can make a large difference in model performance. If the range of possible hyperparameter values is too great, and the range of values for which performance is good too narrow, hyperparameter optimization can prove prohibitively time consuming.

“In real-world applications, conversations can go really, really wild,” Gangadharaiah explains. “When you're trying to mimic the hyperparameters that are provided in academic settings, they usually don't work that well. So the best is to always go for a much simpler model. This is something that I have noticed: in industry, simple models perform way better, especially when you don't have to do so much tweaking of the models themselves.”

Hierarchical thinking

Of course, not all industry papers report negative results, and in some cases, Gangadharaiah says, industry research has pointed in directions where academic research has followed.

Again, her own research provides an example. The dialogue systems that Gangadharaiah works on are goal directed, meaning that the purpose of each dialogue is that an AI agent should identify and fulfill the goal of a human speaker. Such systems rely on natural-language-understanding models to make sense of customer utterances, but they also include state trackers that assess progress toward the speaker’s goal.

There is some need of semantic parsing in dialogue systems. ... I think the industry kind of motivated all that work.
Rashmi Gangadharaiah

“If you consider restaurant booking, you might say that you want to book a restaurant for six people, and then you might change your mind and say, ‘Hey no, now I want it for eight people,’” Gangadharaiah explains. “The system will have to make appropriate changes.

“We can introduce more complexity. So, for example, if you're ordering a pizza, maybe you would start with toppings of olives, and then you might go to pepperoni. In this case, you're not asking the system to replace olives with pepperoni; multiple values are being provided for the toppings itself.”

Related content
Dialogue simulator and conversations-first modeling architecture provide ability for customers to interact with Alexa in a natural and conversational manner.

In natural-language understanding, categories such as “pizza topping” are often referred to as slots, and specific instances of the categories, such as “pepperoni” and “olives”, are referred to as slot values.

“We did have a few papers on why it makes sense to have some form of hierarchical structure to represent what the user really wants,” Gangadharaiah says. “So you have this high-level slot, which is called ‘toppings’, and under toppings, you have olives, pepperoni, and many other things. Above ‘toppings’, there might be a high-order intent like ‘pizza ordering’, and under ‘pizza ordering’, you would need ‘toppings’, but you also want to know the type of pizza, the size of the pizza, and so on.

“What this is saying is that there is some hierarchical representation, and there is some need of semantic parsing in dialogue systems. Some of these things have been pointed out in the industry, and now people are moving in that direction. So I think the industry kind of motivated all that work.”

Large language models

Recently, the big story in natural-language processing (NLP) has been the power and adaptability of large language models, such as BERT and GPT-3, that encode the probabilities of long sequences of words and can be fine-tuned on particular NLP tasks. They have applications in dialogue management, too, Gangadharaiah says.

“We’ve successfully deployed such models in Amazon,” she says, “and we’ve been actively exploring how to improve these models in order to make our chatbots — such as AWS Chatbot, LEX, and Alexa — more powerful. For example, I can take these large language models and then fine-tune them on, let's say, a restaurant domain, where I want to book certain seats in a certain restaurant for a certain number of people, and so on.

Related content
New method would enable BERT-based natural-language-processing models to handle longer text strings, run in resource-constrained settings — or sometimes both.

“I think the crucial part is the dialogue history. These models are still not perfect at handling dialogue history, and we still do not know the best strategy to handle dialogue history. Should I just send the model everything that was said in the previous turns? Or do I come up with a better representation — a state representation — to feed that as input? This is where it becomes really critical to explore more and see what works best for dialogue systems.”

Dialogue management systems have been in the headlines recently, with the commotion about an engineer who believed a chatbot had become sentient. But, Gangadharaiah says, “I consider goal-oriented dialogue as more complex because it has to be more than non-goal-oriented. Not only does the system have to be fluent and coherent, like non-goal-oriented systems, but it also has to interact with multiple databases in order to achieve the end goal, which could be making a reservation at a restaurant or booking a flight. And these could be skill commands, too. I guess people can argue both ways, but I think in general goal-oriented dialogue systems are more complex.”

Related content

US, VA, Arlington
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics, as well as basic familiarity with Python (or R, Matlab, or equivalent) is necessary, and experience with SQL would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Virtual Contact Center-WA
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. About the team The Selling Partner Fees team owns the end-to-end fees experience for two million active third party sellers. We own the fee strategy, fee seller experience, fee accuracy and integrity, fee science and analytics, and we provide scalable technology to monetize all services available to third-party sellers. Within the Science team, our goal is to understand the impact of changing fees on Seller (supply) and Customers (demand) behavior (e.g. price changes, advertising strategy changes, introducing new selection etc.) as well as using this information to optimize our fee structure and maximizing our long term profitability.
US, WA, Seattle
This is a unique opportunity to build technology and science that millions of people will use every day. Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Deep Learning (DL)? We are embarking on a multi-year journey to improve the shopping experience for customers globally. Amazon Search team creates customer-focused search solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. As Amazon expands to new geographies, we are faced with the unique challenge of maintaining the bar on Search Quality due to the diversity in user preferences, multilingual search and data scarcity in new locales. We are looking for an applied researcher to work on improving search on Amazon using NLP, ML, and DL technology. As an Applied Scientist, you will lead our efforts in query understanding, semantic matching (e.g. is a drone the same as quadcopter?), relevance ranking (what is a "funny halloween costume"?), language identification (did the customer just switch to their mother tongue?), machine translation (猫の餌を注文する). This is a highly visible role with a huge impact on Amazon customers and business. As part of this role, you will develop high precision, high recall, and low latency solutions for search. Your solutions should work for all languages that Amazon supports and will be used in all Amazon locales world-wide. You will develop scalable science and engineering solutions that work successfully in production. You will work with leaders to develop a strategic vision and long term plans to improve search globally. We are growing our collaborative group of engineers and applied scientists by expanding into new areas. This is a position on Global Search Quality team in Seattle Washington. We are moving fast to change the way Amazon search works. Together with a multi-disciplinary team you will work on building solutions with NLP/ML/DL at its core. Along the way, you’ll learn a ton, have fun and make a positive impact on millions of people. Come and join us as we invent new ways to delight Amazon customers.
US, WA, Seattle
This is a unique opportunity to build technology and science that millions of people will use every day. Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Deep Learning (DL)? We are embarking on a multi-year journey to improve the shopping experience for customers globally. Amazon Search team creates customer-focused search solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. As Amazon expands to new geographies, we are faced with the unique challenge of maintaining the bar on Search Quality due to the diversity in user preferences, multilingual search and data scarcity in new locales. We are looking for an applied researcher to work on improving search on Amazon using NLP, ML, and DL technology. As an Applied Scientist, you will lead our efforts in query understanding, semantic matching (e.g. is a drone the same as quadcopter?), relevance ranking (what is a "funny halloween costume"?), language identification (did the customer just switch to their mother tongue?), machine translation (猫の餌を注文する). This is a highly visible role with a huge impact on Amazon customers and business. As part of this role, you will develop high precision, high recall, and low latency solutions for search. Your solutions should work for all languages that Amazon supports and will be used in all Amazon locales world-wide. You will develop scalable science and engineering solutions that work successfully in production. You will work with leaders to develop a strategic vision and long term plans to improve search globally. We are growing our collaborative group of engineers and applied scientists by expanding into new areas. This is a position on Global Search Quality team in Seattle Washington. We are moving fast to change the way Amazon search works. Together with a multi-disciplinary team you will work on building solutions with NLP/ML/DL at its core. Along the way, you’ll learn a ton, have fun and make a positive impact on millions of people. Come and join us as we invent new ways to delight Amazon customers.
US, WA, Seattle
The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals. We are seeking an experienced high-energy Economist to help envision, design and build the next generation of retail pricing capabilities. You will work at the intersection of economic theory, statistical inference, and machine learning to design new methods and pricing strategies to deliver game changing value to our customers. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities Amazon’s Pricing Science and Research team is seeking an Economist to help envision, design and build the next generation of pricing capabilities behind Amazon’s on-line retail business. As an economist on our team, you will work at the intersection of economic theory, statistical inference, and machine learning to design new methods and pricing strategies with the potential to deliver game changing value to our customers. This is an opportunity for a high-energy individual to work with our unprecedented retail data to bring cutting edge research into real world applications, and communicate the insights we produce to our leadership. This position is perfect for someone who has a deep and broad analytic background and is passionate about using mathematical modeling and statistical analysis to make a real difference. You should be familiar with modern tools for data science and business analysis. We are particularly interested in candidates with research background in applied microeconomics, econometrics, statistical inference and/or finance. A day in the life Discussions with business partners, as well as product managers and tech leaders to understand the business problem. Brainstorming with other scientists and economists to design the right model for the problem in hand. Present the results and new ideas for existing or forward looking problems to leadership. Deep dive into the data. Modeling and creating working prototypes. Analyze the results and review with partners. Partnering with other scientists for research problems. About the team The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals.
US, CA, San Francisco
The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon's on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon's goods and services are aligned with Amazon's corporate goals. We are seeking an experienced high-energy Economist to help envision, design and build the next generation of retail pricing capabilities. You will work at the intersection of statistical inference, experimentation design, economic theory and machine learning to design new methods and pricing strategies for assessing pricing innovations. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities Amazon's Pricing Science and Research team is seeking an Economist to help envision, design and build the next generation of pricing capabilities behind Amazon's on-line retail business. As an economist on our team, you will will have the opportunity to work with our unprecedented retail data to bring cutting edge research into real world applications, and communicate the insights we produce to our leadership. This position is perfect for someone who has a deep and broad analytic background and is passionate about using mathematical modeling and statistical analysis to make a real difference. You should be familiar with modern tools for data science and business analysis. We are particularly interested in candidates with research background in experimentation design, applied microeconomics, econometrics, statistical inference and/or finance. A day in the life Discussions with business partners, as well as product managers and tech leaders to understand the business problem. Brainstorming with other scientists and economists to design the right model for the problem in hand. Present the results and new ideas for existing or forward looking problems to leadership. Deep dive into the data. Modeling and creating working prototypes. Analyze the results and review with partners. Partnering with other scientists for research problems. About the team The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon's on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon's goods and services are aligned with Amazon's corporate goals.
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US
The Amazon Supply Chain Optimization Technology (SCOT) organization is looking for an Intern in Economics to work on exciting and challenging problems related to Amazon's worldwide inventory planning. SCOT provides unique opportunities to both create and see the direct impact of your work on billions of dollars’ worth of inventory, in one of the world’s most advanced supply chains, and at massive scale. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. We are looking for a PhD candidate with exposure to Program Evaluation/Causal Inference. Knowledge of econometrics and Stata/R/or Python is necessary, and experience with SQL, Hadoop, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
The Selling Partner Fees team owns the end-to-end fees experience for two million active third party sellers. We own the fee strategy, fee seller experience, fee accuracy and integrity, fee science and analytics, and we provide scalable technology to monetize all services available to third-party sellers. We are looking for an Intern Economist with excellent coding skills to design and develop rigorous models to assess the causal impact of fees on third party sellers’ behavior and business performance. As a Science Intern, you will have access to large datasets with billions of transactions and will translate ambiguous fee related business problems into rigorous scientific models. You will work on real world problems which will help to inform strategic direction and have the opportunity to make an impact for both Amazon and our Selling Partners.