How Prime Video updates its app for more than 8,000 device types

The switch to WebAssembly increases stability, speed.

At Prime Video, we’re delivering content to millions of customers on more than 8,000 device types, such as gaming consoles, TVs, set-top boxes, and USB-powered streaming sticks. When we want to do an update, every one of those devices requires a separate native release, posing a difficult trade-off between updatability and performance.

In the past year, we’ve been using WebAssembly (Wasm), a framework that allows code written in high-level languages to run efficiently on any device, to help resolve that trade-off. Because we are excited to contribute to the Wasm ecosystem, Amazon has joined the Bytecode Alliance, a consortium dedicated to developing secure, efficient, modular, and portable runtime environments built atop standards such as Wasm.

By using Wasm instead of JavaScript for certain elements of the Prime Video app, we’ve reduced the average frame times on a mid-range TV from 28 milliseconds to 18. The worst-case frame times also decreased from 40 milliseconds to 25. And in ongoing work we’re driving the frame time down still further.

Division of labor

To enable efficient updates on a wide variety of devices while still maintaining performance, the Prime Video app has two parts: a high-performance engine written in C++ that is stored on-device and an easy-to-update component that is downloaded every time the app launches.

Original architecture.jpeg
The original architecture of the Prime Video app, with a layer of C++ code stored on-device and layers of JavaScript code downloaded at run time.

In the figure above, the stuff on device is a thin C++ layer that includes a JavaScript virtual machine (VM) and the components required to run the Prime Video application, which handle input, the media pipeline, and such processes as such as network access, image decoding, and window events handling.

Related content
In a pilot study, an automated code checker found about 100 possible errors, 80% of which turned out to require correction.

The stuff we download (at run time) includes the application code, along with low-level components that handle scene management, the animation system, graphics rendering, layout, and resource management, among other things. Historically, these components all used JavaScript

This architecture split allows us to deliver new features and bug fixes without having to go through the very slow process of updating the C++ layer. The downloadable code is delivered through a fully automated continuous integration and delivery pipeline that can release updates as often as every few hours. However, we have a constant tension between writing code that’s performant (C++) and writing less-performant code that we can update with ease (JavaScript).

WebAssembly

Wasm provides a compilation target for programming languages that offer more expressivity than JavaScript does, such as C or Rust. Like JavaScript code, compiled Wasm binaries run on a VM that provides a uniform interface between code and hardware, regardless of device.

Wasm was initially intended for web browsers, but there are now standalone applications of Wasm VMs outside the browser, such as running Internet-of-things software, game mods, and server-side workloads.

Our Wasm investigations started in August 2020, when we built some prototypes to compare the performance of Wasm VMs and JavaScript VMs in simulations involving the type of work our low-level JavaScript components were doing. In those experiments, code written in Rust and compiled to Wasm was 10 to 25 times as fast as JavaScript.

Related content
Two papers at WACV propose neural models for enhancing video-streaming experiences.

We can’t just rewrite the Prime Video application in Rust and run it on a Wasm VM, however, as it still needs to run on legacy devices and browsers that don’t have Wasm support. We also don’t want to create a new app only for the new architecture, as we value deploying the same application across environments.

This is why we moved only the low-level systems from JavaScript to Wasm. In this way, we still bring performance benefits to the application, without the application teams’ having to know or care that we run certain systems on a Wasm VM.

This is what our new architecture looks like:

Architecture with Wasm.jpeg
The new architecture, with WebAssembly.

The Wasm binaries are deployed with the JavaScript code, through the same fully automated pipeline that can take a program from code commit to running on customers’ devices in a few hours.

The switch

The figure above shows the new architecture with a Wasm VM and a JavaScript VM running in separate threads. But how did we transition from the first architecture to the second one without rewriting the app?

The first step is updating the stuff on device to include the Wasm VM, so it can now run both versions of a given software component (JavaScript only or JavaScript and Wasm). This allows us to gradually release the Wasm components to a subset of customers.

We had to modify how the Prime Video application communicates with these components. At a high level, the application works by creating a scene — a representation of a visual scene — which consists of nodes whose implementations are device specific. A host node (e.g., view, image, text) is a data structure that has all the necessary information to update and render a component of the visual scene.

Related content
Meet Amazon Science’s newest research area.

At startup, we check if we’re running on a device that has Wasm available. If it does, we create lightweight host nodes in JavaScript that don’t do anything other than send commands to the Wasm VM. The “real” host nodes are created in Wasm when these commands are handled.

We use messages to communicate between the two VMs because we don’t want the JavaScript VM work to interrupt the Wasm VM work. The job of the Wasm components is to update nodes and pump frames out to the screen as fast as possible without any interruptions.

The hard part was doing this switch in a way that preserves the behavior of the JavaScript systems. We sometimes had to duplicate the “incorrect” behavior of the JavaScript renderer in the new Wasm version, because the app relied on it for some edge cases. Making sure the JavaScript VM code never calls any dangerous function on the wrong thread has also added extra difficulties.

Results 

As I mentioned, the switch to Rust and Wasm has improved the applications’ frame rate stability and speed. To reach our goal of reliable 60-frame-per-second frame generation and improve input latency, we will move more systems to Wasm, such as focus management and layout.

The total memory consumption for the Wasm VM, including the module instance, environment, and the module itself is at most 7.5 megabytes. By moving these systems to Wasm, we have saved a total of 30 megabytes of JavaScript heap memory. Memory is a scarce resource on most of the devices we deploy on, so this is a welcome reduction.

The binary size of our Wasm module is 150 kilobytes when compressed (750 kilobytes uncompressed, after symbol stripping). The module’s small size, coupled with the fast VM start time, means that the addition of Wasm doesn’t affect the app start-up time.

Using Rust has enabled programmers of all experience levels to contribute code without requiring reviewers to carefully scrutinize every line for safety pitfalls. We trust the compiler, and we can focus our code reviews on functionality, not language corner cases.

Another benefit of using Rust is having access to an ecosystem of high-quality libraries. For instance, we built an application that overlays debugger information on an application scene render using egui, a Rust GUI library. Integrating egui with our Wasm renderer took a couple of hours of work and offers us an easy way to gain insights into the engine’s internals.

Debug overlay.png
An image generated by the renderer, with debugging information overlaid.

Overall, we think that this investment in Rust and WebAssembly has paid off: after a year and 37,000 lines of Rust code, we have significantly improved performance, stability, and CPU consumption and reduced memory utilization.

Research areas

Related content

LU, Luxembourg
The Decision, Science and Technology (DST) team part of the global Reliability Maintenance Engineering (RME) is looking for a Senior Operations Research Scientist interested in solving challenging optimization problems in the maintenance space. Our mission is to leverage the use of data, science, and technology to improve the efficiency of RME maintenance activities, reduce costs, increase safety and promote sustainability while creating frictionless customer experiences. As a Senior OR Scientist in DST you will be focused on leading the design and development of innovative approaches and solutions by leading technical work supporting RME’s Predictive Maintenance (PdM) and Spare Parts (SP) programs. You will connect with world leaders in your field and you will be tackling customer's natural language challenges by carrying out a systematic review of existing solutions. The appropriate choice of methods and their deployment into effective tools will be the key for the success in this role. The successful candidate will be a self-starter comfortable with ambiguity, with strong attention to detail and outstanding ability in balancing technical leadership with strong business judgment to make the right decisions about model and method choices. Key job responsibilities • Provide technical expertise to support team strategies that will take EU RME towards World Class predictive maintenance practices and processes, driving better equipment up-time and lower repair costs with optimized spare parts inventory and placement • Implement an advanced maintenance framework utilizing Machine Learning technologies to drive equipment performance leading to reduced unplanned downtime • Provide technical expertise to support the development of long-term spares management strategies that will ensure spares availability at an optimal level for local sites and reduce the cost of spares A day in the life As a Senior OR Scientist in DST you will be focused on leading the design and development of innovative approaches and solutions by leading technical work supporting RME’s Predictive Maintenance (PdM) and Spare Parts (SP) programs. You will connect with world leaders in your field and you will be tackling customer's natural language challenges by carrying out a systematic review of existing solutions. The appropriate choice of methods and their deployment into effective tools will be the key for the success in this role. About the team Our mission is to leverage the use of data, science, and technology to improve the efficiency of RME maintenance activities, reduce costs, increase safety and promote sustainability while creating frictionless customer experiences. We are open to hiring candidates to work out of one of the following locations: Luxembourg, LUX
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Bellevue, WA, USA | Boston, MA, USA | Los Angeles, CA, USA | New York, NY, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Bellevue, WA, USA | Boston, MA, USA | Los Angeles, CA, USA | New York, NY, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
US, CA, Santa Clara
AWS AI Research and Engineering (AIRE) is looking for world class scientists and engineers to work on the development of autonomous AI agents. At AWS AI/ML you will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and innovate on new learning techniques. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Large-scale foundation models have been the powerhouse in many of the recent advancements in computer vision, natural language processing, automatic speech recognition, recommendation systems, and time series modeling. Developing such models requires not only skillful modeling in individual modalities, but also understanding of how to seamlessly combine them, and how to scale the modeling methods to learn with huge models and on large datasets. We seek a strong technical leader with domain expertise in machine learning, large language models and multimodal models, reinforcement learning and setting up simulation environments to benchmark and evaluate. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices. We are open to hiring candidates to work out of one of the following locations: Santa Clara, CA, USA
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Bellevue, WA, USA | Boston, MA, USA | Los Angeles, CA, USA | New York, NY, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Bellevue, WA, USA | Boston, MA, USA | Los Angeles, CA, USA | New York, NY, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists in the Forecasting, Macroeconomics & Finance field document, interpret and forecast Amazon business dynamics. This track is well suited for economists adept at combining cutting edge times-series statistical methods with strong economic analysis and intuition. This track could be a good fit for candidates with research experience in: macroeconometrics and/or empirical macroeconomics; international macroeconomics; time-series econometrics; forecasting; financial econometrics and/or empirical finance; and the use of micro and panel data to improve and validate traditional aggregate models. Economists at Amazon are expected to work directly with our senior management and scientists from other fields on key business problems faced across Amazon, including retail, cloud computing, third party merchants, search, Kindle, streaming video, and operations. The Forecasting, Macroeconomics & Finance field utilizes methods at the frontier of economics to develop formal models to understand the past and the present, predict the future, and identify relevant risks and opportunities. For example, we analyze the internal and external drivers of growth and profitability and how these drivers interact with the customer experience in the short, medium and long-term. We build econometric models of dynamic systems, using our world class data tools, formalizing problems using rigorous science to solve business issues and further delight customers. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Bellevue, WA, USA | Boston, MA, USA | Los Angeles, CA, USA | New York, NY, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists in the Forecasting, Macroeconomics & Finance field document, interpret and forecast Amazon business dynamics. This track is well suited for economists adept at combining cutting edge times-series statistical methods with strong economic analysis and intuition. This track could be a good fit for candidates with research experience in: macroeconometrics and/or empirical macroeconomics; international macroeconomics; time-series econometrics; forecasting; financial econometrics and/or empirical finance; and the use of micro and panel data to improve and validate traditional aggregate models. Economists at Amazon are expected to work directly with our senior management and scientists from other fields on key business problems faced across Amazon, including retail, cloud computing, third party merchants, search, Kindle, streaming video, and operations. The Forecasting, Macroeconomics & Finance field utilizes methods at the frontier of economics to develop formal models to understand the past and the present, predict the future, and identify relevant risks and opportunities. For example, we analyze the internal and external drivers of growth and profitability and how these drivers interact with the customer experience in the short, medium and long-term. We build econometric models of dynamic systems, using our world class data tools, formalizing problems using rigorous science to solve business issues and further delight customers. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Bellevue, WA, USA | Boston, MA, USA | Los Angeles, CA, USA | New York, NY, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
US, WA, Seattle
Economists in the Forecasting, Macroeconomics & Finance field document, interpret and forecast Amazon business dynamics. This track is well suited for economists adept at combining cutting edge times-series statistical methods with strong economic analysis and intuition. This track could be a good fit for candidates with research experience in: macroeconometrics and/or empirical macroeconomics; international macroeconomics; time-series econometrics; forecasting; financial econometrics and/or empirical finance; and the use of micro and panel data to improve and validate traditional aggregate models. Economists at Amazon are expected to work directly with our senior management and scientists from other fields on key business problems faced across Amazon, including retail, cloud computing, third party merchants, search, Kindle, streaming video, and operations. The Forecasting, Macroeconomics & Finance field utilizes methods at the frontier of economics to develop formal models to understand the past and the present, predict the future, and identify relevant risks and opportunities. For example, we analyze the internal and external drivers of growth and profitability and how these drivers interact with the customer experience in the short, medium and long-term. We build econometric models of dynamic systems, using our world class data tools, formalizing problems using rigorous science to solve business issues and further delight customers. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Bellevue, WA, USA | Boston, MA, USA | Los Angeles, CA, USA | New York, NY, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Bellevue, WA, USA | Boston, MA, USA | Los Angeles, CA, USA | New York, NY, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA