Building systems that automatically adjust to workloads and data

Tim Kraska, who joined Amazon this summer to build the new Learned Systems research group, explains the power of “instance optimization”.

As an associate professor of electrical engineering and computer science at MIT, Tim Kraska researched instance-optimized database systems, or systems that can automatically adapt to new workloads with minimal human involvement.

Tim Kraska.png
Tim Kraska, an associate professor of electrical engineering and computer science at MIT and director of applied science for Amazon Web Services.

Earlier this year, Amazon hired Kraska and his team to further develop this technology. Currently, Kraska is on leave from MIT, and as director of applied science for Amazon Web Services (AWS), he is helping establish Amazon’s new Learned Systems Group (LSG), which will focus on integrating machine learning (ML) into system design. The group’s first project is to bring instance optimization to AWS’s data warehousing service, Amazon Redshift. Kraska spoke with Amazon Science about the value of instance optimization and the attraction of doing research in an industrial setting.

  1. Q. 

    What is instance optimization?

    A. 

    If you develop a system from scratch for a particular use case, you are able to get orders of magnitude better performance, as you can tailor every system component to that use case. However, in most cases you don't want to do that, because it's a huge effort. In the case of databases, the saying is that it normally takes at least seven years to get the system so that it's usable and stable.

    The idea of instance optimization is that, rather than build one system per use case, we build a system that self-adjusts — instance-optimizes itself — to a particular scenario to get as close as possible to a hand-tuned solution.

  2. Q. 

    How does it do that?

    A. 

    There are different ways to achieve the self-adjustment. With any system, you have a bunch of knobs and a bunch of design choices. If you take Redshift, you can tune the buffer size; you can create materialized views; you can create different types of sort orders. And database administrators can adjust these knobs and make design choices, based on their workloads, to get better performance.

    Related content
    Two authors of Amazon Redshift research paper that will be presented at leading international forum for database researchers reflect on how far the first petabyte scale cloud data warehouse has advanced since it was announced ten years ago.

    The first form of self-adjustment is to make those decisions automatically. You have, let's say, a machine learning model that observes the workload and figures out how to adjust these knobs and what materialized views and sort keys to create. Redshift already does this, for example, with a feature called Automated Materialized Views, which accelerates query performance.

    The next step is that in some cases it's possible to replace components through novel techniques that allow either more customization or tuning in ways that weren’t previously possible.

    To give you an example, in the case of data layouts, current systems mainly support partitioning data by one attribute, which could be a composite key. The reason is that the developers of these systems always thought that someone has to eventually make these design choices manually. Thus, in the past, the tendency was to reduce the number of tuning parameters as much as possible.

    Related content
    Amazon researchers describe new method for distributing database tables across servers.

    This, of course, changes the moment you have automatic tuning techniques using machine learning, which can explore the space much more efficiently. And now maybe the opposite is true: providing more degrees of freedom and more knobs is a good thing, as they offer more potential for customization and, thus, better performance.

    The third self-adjustment method is where you deeply embed machine learning models into a component of the system to give you much better performance than is currently possible.

    Every database, for example, has a query optimizer that takes a SQL query and optimizes it to an execution plan, which describes how to actually run that query. This query optimizer is a complex piece of software, which requires very carefully tuned heuristics and cost models to figure out how best to do this translation. The state of the art now is that you treat this as a deep-learning problem. So we talk at that stage about learned components.

    Query patterns.png
    A comparison of two different approaches to learning to detect query patterns, using graph convolution networks (top) and tree convolution networks (bottom). From “LSched: A workload-aware learned query scheduler for analytical database systems”.

    The ultimate goal is to build a system out of learned components and to have everything tuned in a holistic way. There's a model monitoring the workload, watching the system, and making the right adjustments — potentially in ways no human is able to.

  3. Q. 

    Is it true that you developed an improved sorting algorithm? I thought that sorting was pretty much a solved problem.

    A. 

    That's right. It's still surprising. The way it works is, you learn a model over the distribution of the data — the cumulative distribution function, or CDF, which tells you where an item falls into the probability mass. Let's assume that in an e-commerce database, you have a table with orders, each order has a date, and you want to sort the table by date. Now you can build the CDF over the date attribute, and then you can ask a question like “How many orders happened before January 1st, 2021?”, and it spits out the probability.

    The nice thing about that is that, essentially, the CDF function allows you to ask, “Given an order date, where in the sorted order does it fit?” Assuming the model is perfect, it suddenly allows you to do sorting in O(n). [I.e., the sorting time is proportional to the number of items being sorted, n, not n2nlogn, or the like.]

    Learned sorting.png
    Recursively applying the cumulative distribution function (CDF) to sort items in an array in O(n) time. From “The case for a learned sorting algorithm”.

    Radix sort is also O(n), but it can be memory intensive, as the efficiency depends on the domain size — how many unique values there could possibly be. If your domain is one to a million, it might still be easily do-able in memory. If it's one to a billion, it already gets a little bit harder. If it's one to — pick your favorite power of ten — it eventually becomes impossible to do it in one pass.

    The model-based approach tries to overcome that in a clever way. You know roughly where items land, so you can place them into their approximate position and use insertion sort to correct for model errors. It’s a trick we used for indexes, but it turns out that you can use the same thing for sorting.

  4. Q. 

    For you, what was the appeal of doing research in the industrial setting?

    A. 

    One of the reasons we are so attracted to working for Amazon is access to information about real-world workloads. Instance optimization is all about self-adjusting to the workload and the data. And it's extremely hard to test it in academia.

    There are a few benchmark datasets, but internally, they often use random-number generators to create the data and to determine when and what types of queries are issued against the system.

    We fundamentally have to rethink how we build systems. ... Whenever a developer has to make a trade-off between two techniques or defines a constant, the developer should think about if this constant or trade-off shouldn’t be automatically tuned.
    Tim Kraska

    Because of this randomness, first of all, there are no interesting usage patterns — say, when are the dashboarding queries running, versus the batch jobs for loading the data. All that is gone. Even worse, the data itself doesn’t contain any interesting patterns, which either makes it too hard, because everything is random, or too easy, because everything is random.

    For example, when we tested our learned query optimizer on a very common data-warehousing benchmark, we found that we barely got any improvements, whereas for real-world workloads, we saw big improvements.

    We dug in a little bit, and it turns out that for common benchmarks, like TPC-H, every single database vendor makes sure that the query plans are close to perfect. They manually overfit the system to the benchmark. And this translates in no way to any real-world customer. No customer really runs queries exactly like the benchmark. Nobody does.

    Working with Redshift’s amazing development team and having access to real-world information provides a huge advantage here. It allows us not only to evaluate if our previous techniques actually work in practice, but it also helps us to focus on developing new techniques, which actually make a big difference to users by providing better performance or improved ease of use.

  5. Q. 

    So the collaboration with the Redshift team is going well?

    A. 

    It has been great and, in many ways, exceeded our expectations. When we joined, we certainly had some anxiety about how we would be working with the Redshift team, how much we would still be able to publish, and so on. For example, I know many researchers in industry labs who struggle to get access to data or have actual impact on the product.

    None of these turned out to be a real concern. Not only did we define our own research agenda, but we are also already deeply involved with many exciting projects and have a whole list of exciting things we want to publish about.

  6. Q. 

    Do you still collaborate with MIT?

    A. 

    Yes, and it is very much encouraged. Amazon recently created a Science Hub at MIT, and as part of the hub, AWS is also sponsoring DSAIL, a lab focused on ML-for-systems research. This allows us to work very closely with researchers at MIT.

  7. Q. 

    Some of the techniques you’ve discussed, such as sorting, have a wide range of uses. Will the Learned Systems Group work with groups other than Redshift?

    A. 

    We decided to focus on Redshift first as we had already a lot of experience with instance optimization for analytical systems, but we’ve already started to talk to other teams and eventually plan to apply the ideas more broadly.

    I believe that we fundamentally have to rethink how we build systems and system components. For example, whenever a developer has to make a trade-off between two techniques or defines a constant, the developer should think about if this constant or trade-off shouldn’t be automatically tuned. In many cases, the developer would probably approach the design of the component completely differently if she knows that the component is expected to self-adjust to the workload and data.

    Related content
    Optimizing placement of configuration data ensures that it’s available and consistent during “network partitions”.

    This is true not only for data management systems but across the entire software stack. For example, there has been work on improving network packet classification using learned indexes, spark scheduling algorithms using reinforcement learning, and video compression using deep-learning techniques to provide a better experience when bandwidth is limited. All these techniques will eventually impact the customer experience in the form of performance, reduced cost, or ease of use.

    For good reason, we already see a lot of adaptation of ML to improve systems at Amazon. Redshift, for example, offers multiple ML-based features — like Automated Materialized Views or automatic workload management. With the Learned Systems Group, we hope to accelerate that trend, with fully instance-optimized systems that self-adjust to workloads and data in ways no traditional system can. And that will provide better performance, cost, and ease of use for AWS customers.

Related content

US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.
GB, London
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The AWS Industries Team at AWS helps AWS customers implement Generative AI solutions and realize transformational business opportunities for AWS customers in the most strategic industry verticals. This is a team of data scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and build applications to launch these solutions at scale. The AWS Industries team provides guidance and implements best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. In this Data Scientist role you will be capable of using GenAI and other techniques to design, evangelize, and implement and scale cutting-edge solutions for never-before-solved problems. Key job responsibilities - Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms and build ML systems to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Seattle
We’re working on the future. If you are seeking an iterative fast-paced environment where you can drive innovation, apply state-of-the-art technologies to solve large-scale real world delivery challenges, and provide visible benefit to end-users, this is your opportunity. Come work on the Amazon Prime Air Team! We are seeking a highly skilled weather scientist to help invent and develop new models and strategies to support Prime Air’s drone delivery program. In this role, you will develop, build, and implement novel weather solutions using your expertise in atmospheric science, data science, and software development. You will be supported by a team of world class software engineers, systems engineers, and other scientists. Your work will drive cross-functional decision-making through your excellent oral and written communication skills, define system architecture and requirements, enable the scaling of Prime Air’s operation, and produce innovative technological breakthroughs that unlock opportunities to meet our customers' evolving demands. About the team Prime air has ambitious goals to offer its service to an increasing number of customers. Enabling a lot of concurrent flights over many different locations is central to reaching more customers. To this end, the weather team is building algorithms, tools and services for the safe and efficient operation of prime air's autonomous drone fleet.
US, CA, Palo Alto
Amazon Sponsored Products is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of GenAI/LLM powered self-service performance advertising products that drive discovery and sales. Our products are strategically important to Amazon’s Selling Partners and key to driving their long-term growth. We deliver billions of ad impressions and clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving team with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. This role will be pivotal within the Autonomous Campaigns org of Sponsored Products Ads, where we're pioneering the development of AI-powered advertising innovations that will redefine the future of campaign management and optimization. As a Principal Applied Scientist, you will lead the charge in creating the next generation of self-operating, GenAI-driven advertising systems that will set a new standard for the industry. Our team is at the forefront of designing and implementing these transformative technologies, which will leverage advanced Large Language Models (LLMs) and sophisticated chain-of-thought reasoning to achieve true advertising autonomy. Your work will bring to life systems capable of deeply understanding the nuanced context of each product, market trends, and consumer behavior, making intelligent, real-time decisions that surpass human capabilities. By harnessing the power of these future-state GenAI systems, we will develop advertising solutions capable of autonomously selecting optimal keywords, dynamically adjusting bids based on complex market conditions, and optimizing product targeting across various Amazon platforms. Crucially, these systems will continuously analyze performance metrics and implement strategic pivots, all without requiring manual intervention from advertisers, allowing them to focus on their core business while our AI works tirelessly on their behalf. This is not simply about automating existing processes; your work will redefine what's possible in advertising. Our GenAI systems will employ multi-step reasoning, considering a vast array of factors, from seasonality and competitive landscape to macroeconomic trends, to make decisions that far exceed human speed and effectiveness. This autonomous, context-aware approach represents a paradigm shift in how advertising campaigns are conceived, executed, and optimized. As a Principal Applied Scientist, you will be at the forefront of this transformation, tackling complex challenges in natural language processing, reinforcement learning, and causal inference. Your pioneering efforts will directly shape the future of e-commerce advertising, with the potential to influence marketplace dynamics on a global scale. This is an unparalleled opportunity to push the boundaries of what's achievable in AI-driven advertising and leave an indelible mark on the industry. Key job responsibilities • Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business using GenAI, LLM, and ML solutions. • Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in AI/ML. • Design and lead organization-wide AI/ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our advertisers. • Work with our engineering partners and draw upon your experience to meet latency and other system constraints. • Identify untapped, high-risk technical and scientific directions, and devise new research directions that you will drive to completion and deliver. • Be responsible for communicating our Generative AI/ Traditional AI/ML innovations to the broader internal & external scientific community.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As a Data Scientist on this team you will: - Lead Data Science solutions from beginning to end. - Deliver with independence on challenging large-scale problems with complexity and ambiguity. - Write code (Python, R, Scala, SQL, etc.) to obtain, manipulate, and analyze data. - Build Machine Learning and statistical models to solve specific business problems. - Retrieve, synthesize, and present critical data in a format that is immediately useful to answering specific questions or improving system performance. - Analyze historical data to identify trends and support optimal decision making. - Apply statistical and machine learning knowledge to specific business problems and data. - Formalize assumptions about how our systems should work, create statistical definitions of outliers, and develop methods to systematically identify outliers. Work out why such examples are outliers and define if any actions needed. - Given anecdotes about anomalies or generate automatic scripts to define anomalies, deep dive to explain why they happen, and identify fixes. - Build decision-making models and propose effective solutions for the business problems you define. - Conduct written and verbal presentations to share insights to audiences of varying levels of technical sophistication. Why you will love this opportunity: Amazon has invested heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video ~ https://youtu.be/zD_6Lzw8raE
US, CO, Boulder
Do you want to lead the Ads industry and redefine how we measure the effectiveness of the WW Amazon Ads business? Are you passionate about causal inference, Deep Learning/DNN, raising the science bar, and connecting leading-edge science research to Amazon-scale implementation? If so, come join Amazon Ads to be an Applied Science leader within our Advertising Incrementality Measurement science team! Key job responsibilities As an Applied Science leader within the Advertising Incrementality Measurement (AIM) science team, you are responsible for defining and executing on key workstreams within our overall causal measurement science vision. In particular, you will lead the science development of our Deep Neural Net (DNN) ML model, a foundational ML model to understand the impact of individual ad touchpoints for billions of daily ad touchpoints. You will work on a team of Applied Scientists, Economists, and Data Scientists to work backwards from customer needs and translate product ideas into concrete science deliverables. You will be a thought leader for inventing scalable causal measurement solutions that support highly accurate and actionable causal insights--from defining and executing hundreds of thousands of RCTs, to developing an exciting science R&D agenda. You will solve hard problems, advance science at Amazon, and be a leading innovator in the causal measurement of advertising effectiveness. In this role, you will work with a team of applied scientists, economists, engineers, product managers, and UX designers to define and build the future of advertising causal measurement. You will be working with massive data, a dedicated engineering team, and industry-leading partner scientists. Your team’s work will help shape the future of Amazon Advertising.