Building product graphs automatically

Automated system tripled the number of facts in a product graph.

Knowledge graphs are data structures that capture relationships between data in a very flexible manner. They can help make information retrieval more precise, and they can also be used to uncover previously unknown relationships in large data sets.

Manually assembling knowledge graphs is extremely time consuming, so researchers in the field have long been investigating techniques for producing them automatically. The approach has been successful for domains such as movie information, which feature relatively few types of relationships and abound in sources of structured data.

Automatically producing knowledge graphs is much more difficult in the case of retail products, where the types of relationships between data items are essentially unbounded — color for clothes, flavor for candy, wattage for electronics, and so on — and where much useful information is stored in free-form product descriptions, customer reviews, and question-and-answer forums.

AutoKnow.png
The inputs to AutoKnow include an existing product taxonomy, user logs, and a product catalogue. AutoKnow automatically combines data from all three sources into a product graph, adding new product types to the taxonomy, adding new values for product attributes, correcting errors, and identifying synonyms.
Credit: Stacy Reilly

This year, at the Association for Computing Machinery’s annual conference on Knowledge Discovery and Data Mining (KDD), my colleagues and I will present a system we call AutoKnow, a suite of techniques for automatically augmenting product knowledge graphs with both structured data and data extracted from free-form text sources.

With AutoKnow, we increased the number of facts in Amazon’s consumables product graph (which includes the categories grocery, beauty, baby, and health) by almost 200%, identifying product types with 87.7% accuracy.

We also compared each of our system’s five modules, which execute tasks such as product type extraction and anomaly detection, to existing systems and found that they improved performance across the board, often quite dramatically (an improvement of more than 300% in the case of product type extraction).

The AutoKnow framework

Knowledge graphs typically consist of entities — the nodes of the graph, often depicted as circles — and relations between the entities — usually depicted as line segments connecting nodes. The entity “drink”, for example, might be related to the entity “coffee” by the relationship “contains”. The entity “bag of coffee” might be related to the entity “16 ounces” by the relationship “has_volume”.

In a narrow domain such as movie information, the number of entity types — such as director, actor, and editor — is limited, as are the number of relationships — directed, performed in, edited, and so on. Moreover, movie sources often provide structured data, explicitly listing cast and crew.

In a retail domain, on the other hand, the number of product types tends to grow as the graph expands. Each product type has its own set of attributes, which may be entirely different from the next product type’s — color and texture, for instance, versus battery type and effective range. And the vital information about a product — that a coffee mug gets too hot to hold, for instance — could be buried in the free-form text of a review or question-and-answer section.

AutoKnow addresses these challenges with five machine-learning-based processing modules, each of which builds on the outputs of the one that precedes it:

  1. Taxonomy enrichment extends the number of entity types in the graph;
  2. Relation discovery identifies attributes of products, those attributes’ range of possible values (different flavors or colors, for instance), and, crucially, which of those attributes are important to customers;
  3. Data imputation uses the entity types and relations discovered by the previous modules to determine whether free-form text associated with products contains any information missing from the graph;
  4. Data cleaning sorts through existing and newly extracted data to see whether any of it was misclassified in the source texts; and
  5. Synonym finding attempts to identify entity types and attribute values that have the same meaning.

The ontology suite

The inputs to AutoKnow include an existing product graph; a catalogue of products that includes some structured information, such as labeled product names, and unstructured product descriptions; free-form product-related information, such as customer reviews and sets of product-related questions and answers; and product query data.

To identify new products, the taxonomy enrichment module uses a machine learning model that labels substrings of the product titles in the source catalogue. For instance, in the product title “Ben & Jerry’s black cherry cheesecake ice cream”, the model would label the substring “ice cream” as the product type.

The same model also labels substrings that indicate product attributes, for use during the relation discovery step. In this case, for instance, it would label “black cherry cheesecake” as the flavor attribute. The model is trained on product descriptions whose product types and attributes have already been classified according to a hand-engineered taxonomy.

Next, the taxonomy enrichment module classifies the newly extracted product types according to their hypernyms, or the broader product categories that they fall under. Ice cream, for instance, falls under the hypernym “Ice cream and novelties”, which falls under the hypernym “Frozen”, and so on.

The hypernym classifier uses data about customer interactions, such as which products customers viewed or purchased after a single query. Again, the machine learning model is trained on product data labeled according to an existing taxonomy.

Relation discovery

The relation discovery module classifies product attributes according to two criteria. The first is whether the attribute applies to a given product. The attribute flavor, for instance, applies to food but not to clothes.

The second criterion is how important the attribute is to buyers of a particular product. Brand name, it turns out, is more important to buyers of snack foods than to buyers of produce.

Both classifiers analyze data provided by providers — product descriptions — and by customers — reviews and Q&As. With both types of input data, the classifiers consider the frequency with which attribute words occur in texts associated with a given product; with the provider data, they also consider how frequently a given word occurs across instances of a particular product type.

The models were trained on data that had been annotated to indicate whether particular attributes applied to the associated products.

The data suite

Step three, data imputation, looks for terms in product descriptions that may fit the new product and attribute categories identified in the previous steps, but which have not yet been added to the graph.

This step uses embeddings, which represent descriptive terms as points in a vector space, where related terms are grouped together. The idea is that, if a number of terms clustered together in the space share the same attribute or product type, the unlabeled terms in the same cluster should, too.

Previously, my Amazon colleagues and I, together with colleagues at the University of Utah, demonstrated state-of-the-art data imputation results by training a sequence-tagging model, much like the one I described above, which labeled “black cherry cheesecake” as a flavor.

Here, however, we vary that approach by conditioning the sequence-tagging model on the product type: that is, the tagged sequence output by the model depends on the product type, whose embedding we include among the inputs.

Cleaning module.png
The architecture of the AutoKnow cleaning module.

The next step is data cleaning, which uses a machine learning model based on the Transformer architecture. The inputs to the model are a textual product description, an attribute (flavor, volume, color, etc.), and a value for that attribute (chocolate, 16 ounces, blue, etc.). Based on the product description, the model decides whether the attribute value is misassigned.

To train the model, we collect valid attribute-value pairs that occur across many instances of a single product type (all ice cream types, for instance, have flavors); these constitute the positive examples. We also generate negative examples by replacing the values in valid attribute-value pairs with mismatched values.

Finally, we analyze our product and attribute sets to find synonyms that should be combined in a single node of the product graph. First, we use customer interaction data to identify items that were viewed during the same queries; their product and attribute descriptions are candidate synonyms.

Then we use a combination of techniques to filter the candidate terms. These include edit distance (a measure of the similarity of two strings of characters) and a neural network. In tests, this approach yielded a respectable .83 area under the precision-recall curve.

In ongoing work, we’re addressing a number of outstanding questions, such as how to handle products with multiple hypernyms (products that have multiple “parents” in the product hierarchy), cleaning data before it’s used to train our models, and using image data as well as textual data to improve our models’ performance.

Watch a video presentation of the AutoKnow paper from Jun Ma, senior applied scientist.

AutoKnow: Self-driving knowledge collection for products of thousands of types | Amazon Science

Related content

US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack, optimizing and scaling models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
CN, 31, Shanghai
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. Starting in 2024, the Innovation Center launched a new Custom Model and Optimization program to help customers develop and scale highly customized generative AI solutions. The team helps customers imagine and scope bespoke use cases that will create the greatest value for their businesses, define paths to navigate technical or business challenges, develop and optimize models to power their solutions, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Applied Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. As an Applied Scientist, you will - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate generative AI solutions to address real-world challenges - Interact with customers directly to understand their business problems, aid them in implementation of generative AI solutions, brief customers and guide them on adoption patterns and paths to production - Help customers optimize their solutions through approaches such as model selection, training or tuning, right-sizing, distillation, and hardware optimization - Provide customer and market feedback to product and engineering teams to help define product direction About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, WA, Redmond
Amazon Leo is Amazon’s low Earth orbit satellite network. Our mission is to deliver fast, reliable internet connectivity to customers beyond the reach of existing networks. From individual households to schools, hospitals, businesses, and government agencies, Amazon Leo will serve people and organizations operating in locations without reliable connectivity. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. This position is part of the Satellite Attitude Determination and Control team. You will design and analyze the control system and algorithms, support development of our flight hardware and software, help integrate the satellite in our labs, participate in flight operations, and see a constellation of satellites flow through the production line in the building next door. Key job responsibilities - Design and analyze algorithms for estimation, flight control, and precise pointing using linear methods and simulation. - Develop and apply models and simulations, with various levels of fidelity, of the satellite and our constellation. - Component level environmental testing, functional and performance checkout, subsystem integration, satellite integration, and in space operations. - Manage the spacecraft constellation as it grows and evolves. - Continuously improve our ability to serve customers by maximizing payload operations time. - Develop autonomy for Fault Detection and Isolation on board the spacecraft. A day in the life This is an opportunity to play a significant role in the design of an entirely new satellite system with challenging performance requirements. The large, integrated constellation brings opportunities for advanced capabilities that need investigation and development. The constellation size also puts emphasis on engineering excellence so our tools and methods, from conceptualization through manufacturing and all phases of test, will be state of the art as will the satellite and supporting infrastructure on the ground. You will find that Amazon Leo's mission is compelling, so our program is staffed with some of the top engineers in the industry. Our daily collaboration with other teams on the program brings constant opportunity for discovery, learning, and growth. About the team Our team has lots of experience with various satellite systems and many other flight vehicles. We have bench strength in both our mission and core GNC disciplines. We design, prototype, test, iterate and learn together. Because GNC is central to safe flight, we tend to drive Concepts of Operation and many system level analyses.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for applied scientists to solve challenging and open-ended problems in the domain of user and content safety. As an applied scientist on Twitch's Community team, you will use machine learning to develop data products tackling problems such as harassment, spam, and illegal content. You will use a wide toolbox of ML tools to handle multiple types of data, including user behavior, metadata, and user generated content such as text and video. You will collaborate with a team of passionate scientists and engineers to develop these models and put them into production, where they can help Twitch's creators and viewers succeed and build communities. You will report to our Senior Applied Science Manager in San Francisco, CA. You can work from San Francisco, CA or Seattle, WA. You Will - Build machine learning products to protect Twitch and its users from abusive behavior such as harassment, spam, and violent or illegal content. - Work backwards from customer problems to develop the right solution for the job, whether a classical ML model or a state-of-the-art one. - Collaborate with Community Health's engineering and product management team to productionize your models into flexible data pipelines and ML-based services. - Continue to learn and experiment with new techniques in ML, software engineering, or safety so that we can better help communities on Twitch grow and stay safe. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
US, WA, Redmond
As a Guidance, Navigation & Control Hardware Engineer, you will directly contribute to the planning, selection, development, and acceptance of Guidance, Navigation & Control hardware for Amazon Leo's constellation of satellites. Specializing in critical satellite hardware components including reaction wheels, star trackers, magnetometers, sun sensors, and other spacecraft sensors and actuators, you will play a crucial role in the integration and support of these precision systems. You will work closely with internal Amazon Leo hardware teams who develop these components, as well as Guidance, Navigation & Control engineers, software teams, systems engineering, configuration & data management, and Assembly, Integration & Test teams. A key aspect of your role will be actively resolving hardware issues discovered during both factory testing phases and operational space missions, working hand-in-hand with internal Amazon Leo hardware development teams to implement solutions and ensure optimal satellite performance. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. Key job responsibilities * Planning and coordination of resources necessary to successfully accept and integrate satellite Guidance, Navigation & Control components including reaction wheels, star trackers, magnetometers, and sun sensors provided by internal Amazon Leo teams * Partner with internal Amazon Leo hardware teams to develop and refine spacecraft actuator and sensor solutions, ensuring they meet requirements and providing technical guidance for future satellite designs * Collaborate with internal Amazon Leo hardware development teams to resolve issues discovered during both factory test phases and operational space missions, implementing corrective actions and design improvements * Work with internal Amazon Leo teams to ensure state-of-the-art satellite hardware technologies including precision pointing systems, attitude determination sensors, and spacecraft actuators meet mission requirements * Lead verification and testing activities, ensuring satellite Guidance, Navigation & Control hardware components meet stringent space-qualified requirements * Drive implementation of hardware-in-the-loop testing for satellite systems, coordinating with internal Amazon Leo hardware engineers to validate component performance in simulated space environments * Troubleshoot and resolve complex hardware integration issues working directly with internal Amazon Leo hardware development teams
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
US, WA, Seattle
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Demand Utilization team with Sponsored Products and Brands owns finding the appropriate ads to surface to customers when they search for products on Amazon. We strive to understand our customers’ intent and identify relevant ads which enable them to discover new and alternate products. This also enables sellers on Amazon to showcase their products to customers, which may at times be buried deeper in the search results. Our systems and algorithms operate on one of the world's largest product catalogs, matching shoppers with products - with a high relevance bar and strict latency constraints. We are a team of machine learning scientists and software engineers working on complex solutions to understand the customer intent and present them with ads that are not only relevant to their actual shopping experience, but also non-obtrusive. This area is of strategic importance to Amazon Retail and Marketplace business, driving long term-growth. We are looking for an Applied Scientist III, with a background in Machine Learning to optimize serving ads on billions of product pages. The solutions you create would drive step increases in coverage of sponsored ads across the retail website and ensure relevant ads are served to Amazon's customers. You will directly impact our customers’ shopping experience while helping our sellers get the maximum ROI from advertising on Amazon. You will be expected to demonstrate strong ownership and should be curious to learn and leverage the rich textual, image, and other contextual signals. This role will challenge you to utilize innovative machine learning techniques in the domain of predictive modeling, natural language processing (NLP), deep learning, reinforcement learning, query understanding, vector search (kNN) and image recognition to deliver significant impact for the business. Ideal candidates will be able to work cross functionally across multiple stakeholders, synthesize the science needs of our business partners, develop models to solve business needs, and implement solutions in production. In addition to being a strongly motivated IC, you will also be responsible for mentoring junior scientists and guiding them to deliver high impacting products and services for Amazon customers and sellers. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video https://youtu.be/zD_6Lzw8raE Key job responsibilities As an Applied Scientist III on this team, you will: - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in deploying your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches.
US, VA, Arlington
Customer Experience and Business Trends (CXBT) is looking for an Applied Scientist to join its team. CXBT's mission is to create best-in-class AI agents that seamlessly integrate multimodal inputs, enabling natural, empathetic, and adaptive interactions. We leverage advanced architectures, cross-modal learning, interpretability, and responsible AI techniques to provide coherent, context-aware responses augmented by real-time knowledge retrieval. As part of CXBT, we have a vision to revolutionize how we understand, test, and optimize customer experiences at scale. Where traditional testing approaches fall short, we create AI-powered solutions that enable rapid experimentation, de-risk product launches, and generate actionable insights, -all before a single real customer is impacted. Be a part of our agentic initiative and shape how Amazon leverages artificial intelligence to run tests at scale and improve customer experiences. As an Applied Scientist, you will research state-of-the-art techniques in agent-based modeling, and lead scientific innovation by building foundational agentic simulation capabilities. If you are passionate about the intersection of AI and human behavior modeling, and want to fundamentally influence how Amazon tests and improves customer experiences, this role offers a great opportunity to make your mark. Key job responsibilities - Design and implement frameworks for creating representative, diverse agents that faithfully capture real-world characteristics - Use state-of-the-art techniques in user modeling and behavioral simulation to build robust agentic frameworks - Develop data simulation approaches that mimic real-world speech interactions. - Research and implement novel algorithms and modeling techniques. - Acquire and curate diverse datasets while ensuring user privacy. - Create robust evaluation metrics and test sets to assess language model performance. - Innovate in data representation and model training techniques. - Apply responsible AI practices throughout the development process. - Write clear, scientific documentation describing methodologies, solutions, and design choices. A day in the life Our team is dedicated to improving Amazon's products and services through evaluation of the end-to-end customer experience using both internal and external processes and technology. Our mission is to deeply understand our customers' experiences, challenge the status quo, and provide insights that drive innovation to improve that experience. Through our analysis and insights, we inform business decisions that directly impact customer experience as customers of new GenAI and LLM technologies. About the team Customer Experience and Business Trends (CXBT) is an organization made up of a diverse suite of functions dedicated to deeply understanding and improving customer experience, globally. We are a team of builders that develop products, services, ideas, and various ways of leveraging data to influence product and service offerings – for almost every business at Amazon – for every customer (e.g., consumers, developers, sellers/brands, employees, investors, streamers, gamers).
US, WA, Seattle
We are looking for a passionate Applied Scientist to contribute to the next generation of agentic AI applications for Amazon advertisers. In this role, you will support the development of agentic architectures, help build tools and datasets, and contribute to systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work alongside senior scientists at the forefront of applied AI, gaining hands-on experience with methods for fine-tuning, reinforcement learning, and preference optimization, while contributing to evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—contributing to customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will support the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role involves tackling well-scoped technical problems, while collaborating with engineers and product managers to bring solutions into production. Key Job Responsibilities - Contribute to building agents that guide advertisers in conversational and non-conversational experiences. - Implement model and agent optimization techniques, including supervised fine-tuning, instruction tuning, and preference optimization (e.g., DPO/IPO) under guidance from senior scientists. - Support dataset curation and tool development for MCP. - Contribute to evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Implement and iterate on agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Support prototyping of multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering, science, and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and apply findings to practical problems. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.