Automatically evaluating question-answering models

Relative to human evaluation of question-answering models, the new method has an error rate of only 7%.

As natural-language processing (NLP) has become more integral to our daily lives, the ability to accurately evaluate NLP models has grown in importance. Deployed commercial NLP models must be regularly tested to ensure that they continue to perform well, and updates to NLP models should be monitored to verify that they improve upon their previous settings.

Ideally, model evaluation would be automatic, to save time and labor. But in the field of question answering, automatic model evaluation is difficult, since both questions and answers might be phrased in any number of different ways, and answers must be judged on their ability to satisfy customers’ information needs, which is a difficult concept to quantify.

At this year’s meeting of the North American chapter of the Association for Computational Linguistics (NAACL), we presented the first machine learning models that can check the correctness of long answers to any type of questions. We call our approach AVA, for Automatic eValuation Approach.

In one set of experiments, we used AVA to evaluate the correctness of answers provided by several different question-answering models and compared the results to human evaluations. Relative to human judgment, the best-performing version of AVA — which uses a novel peer attention scheme that we present in the paper — had an error rate of only 7%, with 95% statistical confidence.

AVA peer attention.jpg
A diagram of the researchers’ “peer attention” mechanism. As input, the network takes two pairs of sentences <ai, aj> and <bi, bj>. Before passing to a classification layer, the representation of each sentence pair is conditioned on the representation of the other.

To train our models, we also developed a new dataset, each of whose training examples consists of a question and two different answers in natural language. One of the answers — the reference answer — is always correct, while the other answer is labeled as either true or false. The dataset includes more than two million triplets of question, reference answer, and candidate answer. 

Polymorphic problem

Other NLP applications have benefited from automatic evaluation methods. Machine translation research, for instance, commonly measures translation accuracy using BLEU scores, which measure the similarity between the output of a machine translation model and a reference translation.

But this type of approach doesn’t work for question answering. With translation, the input text corresponds to the output text; with question answering, it doesn’t. And in question answering, the output text — the answer — can vary widely, while still conveying the same information.

Furthermore, in question answering, the essential concern is whether the answer is correct. Structurally, an answer candidate could look exactly like a reference answer, differing only in the vital piece of information that determines its correctness. These two considerations make evaluation of question-answering models more difficult than evaluating some other NLP models.

Models

In our NAACL paper, we consider four different machine learning models for evaluating question-answering accuracy. The first is a simple linear model, and the other three are neural-network models based on the Transformer language model. 

We consider question-answering approaches with answer selection components, in which a Web search based on the text of a question returns a large number of documents, and the answer selection model ranks sentences extracted from those documents according to the likelihood that they answer the question.

As inputs, all four models take a question, a reference (correct) answer, and a candidate answer.

One of the four is a linear model, which we use because it is more easily interpretable than neural models. It takes an additional input that the other models don’t: a short version of the reference answer (say, “39 million” instead of “the resident population of California had increased to 39 million people by 2018”).

Using a variation of Jaccard similarity, the linear model computes pairwise similarities between the short answer and the candidate answer, the reference answer and the candidate answer, the reference answer and the question, and the candidate answer and the question. It also scores the candidate answer according to how many words of the short answer it contains. Each of these measures is assigned a weight, learned from the training data, and if the weighted sum of the measures crosses some threshold — also learned from data — the model judges the candidate answer to be correct.

The other three models use pretrained Transformer-based networks, which represent texts — and relations between their constituent parts — as embeddings in a multidimensional space. As input, these networks can take pairs of sentences, transforming them into embeddings that reflect linguistic and semantic relations learned from training data.

In the first of our Transformer-based models, we consider three different types of input pairs: question-reference, question-candidate, and reference-candidate. We also consider a model that concatenates the representations of those three pairs to produce a representation of all three inputs. In four different experiments, we train classifiers to predict answer sentence accuracy based on each of these four representations.

In our second Transformer-based models, we pair each text with a concatenation of the other two. Again, we concatenate the other three embeddings to produce an overall representation of the input data.

Finally, our third model uses our novel peer attention mechanism. This model takes two pairs of input sentences, rather than one. As with the second model, each pair includes one sentence and a concatenation of the other two.

As indicated in the figure above, the embedding of each pair is conditioned on the embeddings of the other pair before passing to the classifier. This enables the model to better exploit commonalities in the relations between different kinds of sentence pairs — using similarities between question and reference answer, for instance, to identify similarities between reference and answer candidate.

Evaluation

We tested our approach on several different pretrained answer selection models. The inputs to each of our evaluation models included the source question, the reference answer, and the answer predicted by one of the answer selection models.

The evaluation model that used our peer attention mechanism offered the best performance, achieving an F1 score of almost 75% in predicting human annotators’ judgements about whether an answer was correct or incorrect. (The F1 score is a measure that factors in both false-positive and false-negative rate.)

Additionally, we aggregated AVA’s judgments over the output of different question-answering models run on our entire test set (thousands of questions). This provided estimates of the different models’ accuracy (percentage of correct answers). Then we compared those estimates to a measure of accuracy based on human judgements, again on the entire test set. This allowed us to compute the overall AVA error rate with respect to human evaluation, which was less than 7% with 95% statistical confidence.

Related content

US, WA, Seattle
Amazon's Global Fixed Marketing Campaign Measurement & Optimization (CMO) team is looking for a senior economic expert in causal inference and applied ML to advance the economic measurement, accuracy validation and optimization methodologies of Amazon's global multi-billion dollar fixed marketing spend. This is a thought leadership position to help set the long-term vision, drive methods innovation, and influence cross-org methods alignment. This role is also an expert in modeling and measuring marketing and customer value with proven capacity to innovate, scale measurement, and mentor talent. This candidate will also work closely with senior Fixed Marketing tech, product, finance and business leadership to devise science roadmaps for innovation and simplification, and adoption of insights to influence important resource allocation, fixed marketing spend and prioritization decisions. Excellent communication skills (verbal and written) are required to ensure success of this collaboration. The candidate must be passionate about advancing science for business and customer impact. Key job responsibilities - Advance measurement, accuracy validation, and optimization methodology within Fixed Marketing. - Motivate and drive data generation to size. - Develop novel, innovative and scalable marketing measurement techniques and methodologies. - Enable product and tech development to scale science solutions and approaches. A day in the life - Propose and refine economic and scientific measurement, accuracy validation, and optimization methodology to improve Fixed Marketing models, outputs and business results - Brief global fixed marketing and retails executives about FM measurement and optimization approaches, providing options to address strategic priorities. - Collaborate with and influence the broader scientific methodology community. About the team CMO's vision is to maximizing long-term free cash flow by providing reliable, accurate and useful global fixed marketing measurement and decision support. The team measures and helps optimize the incremental impact of Amazon (Stores, AWS, Devices) fixed marketing investment across TV, Digital, Social, Radio, and many other channels globally. This is a fully self supported team composed of scientists, economists, engineers, and product/program leaders with S-Team visibility. We are open to hiring candidates to work out of one of the following locations: Irvine, CA, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
GB, Cambridge
Our team builds generative AI solutions that will produce some of the future’s most influential voices in media and art. We develop cutting-edge technologies with Amazon Studios, the provider of original content for Prime Video, with Amazon Game Studios and Alexa, the ground-breaking service that powers the audio for Echo. Do you want to be part of the team developing the future technology that impacts the customer experience of ground-breaking products? Then come join us and make history. We are looking for a passionate, talented, and inventive Applied Scientist with a background in Machine Learning to help build industry-leading Speech, Language, Audio and Video technology. As an Applied Scientist at Amazon you will work with talented peers to develop novel algorithms and generative AI models to drive the state of the art in audio (and vocal arts) generation. Position Responsibilities: * Participate in the design, development, evaluation, deployment and updating of data-driven models for digital vocal arts applications. * Participate in research activities including the application and evaluation and digital vocal and video arts techniques for novel applications. * Research and implement novel ML and statistical approaches to add value to the business. * Mentor junior engineers and scientists. We are open to hiring candidates to work out of one of the following locations: Cambridge, GBR
US, TX, Austin
The Workforce Solutions Analytics and Tech team is looking for a senior Applied Scientist who is interested in solving challenging optimization problems in the labor scheduling and operations efficiency space. We are actively looking to hire senior scientists to lead one or more of these problem spaces. Successful candidates will have a deep knowledge of Operations Research and Machine Learning methods, experience in applying these methods to large-scale business problems, the ability to map models into production-worthy code in Python or Java, the communication skills necessary to explain complex technical approaches to a variety of stakeholders and customers, and the excitement to take iterative approaches to tackle big research challenges. As a member of our team, you'll work on cutting-edge projects that directly impact over a million Amazon associates. This is a high-impact role with opportunities to designing and improving complex labor planning and cost optimization models. The successful candidate will be a self-starter comfortable with ambiguity, with strong attention to detail and outstanding ability in balancing technical leadership with strong business judgment to make the right decisions about model and method choices. Successful candidates must thrive in fast-paced environments, which encourage collaborative and creative problem solving, be able to measure and estimate risks, constructively critique peer research, and align research focuses with the Amazon's strategic needs. Key job responsibilities • Candidates will be responsible for developing solutions to better manage and optimize flexible labor capacity. The successful candidate should have solid research experience in one or more technical areas of Operations Research or Machine Learning. As a senior scientist, you will also help coach/mentor junior scientists on the team. • In this role, you will be a technical leader in applied science research with significant scope, impact, and high visibility. You will lead science initiatives for strategic optimization and capacity planning. They require superior logical thinkers who are able to quickly approach large ambiguous problems, turn high-level business requirements into mathematical models, identify the right solution approach, and contribute to the software development for production systems. • Invent and design new solutions for scientifically-complex problem areas and identify opportunities for invention in existing or new business initiatives. • Successfully deliver large or critical solutions to complex problems in the support of medium-to-large business goals. • Apply mathematical optimization techniques and algorithms to design optimal or near optimal solution methodologies to be used for labor planning. • Research, prototype, simulate, and experiment with these models and participate in the production level deployment in Python or Java. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Austin, TX, USA | Bellevue, WA, USA | Nashville, TN, USA | Seattle, WA, USA | Tempe, AZ, USA
US, NY, New York
Where will Amazon's growth come from in the next year? What about over the next five? Which product lines are poised to quintuple in size? Are we investing enough in our infrastructure, or too much? How do our customers react to changes in prices, product selection, or delivery times? These are among the most important questions at Amazon today. The Topline Forecasting team in the Supply Chain Optimization Technologies (SCOT) group is looking for innovative, passionate and results-oriented Economists to answer these questions. You will have an opportunity to own the long-run outlook for Amazon’s global consumer business and shape strategic decisions at the highest level. The successful candidate will be able to formalize problem definitions from ambiguous requirements, build econometrics models using Amazon’s world-class data systems, and develop cutting-edge solutions for non-standard problems. Key job responsibilities · Develop new econometric models or improve existing approaches using scalable techniques. · Extract data for analysis and model development from large, complex datasets. · Closely work with engineering teams to build scalable, efficient systems that implement prototypes in production. · Apply economic theory to solve business problems in a fast moving environment. · Distill problem definitions from informal business requirements and communicate technical solutions to senior business leaders. · Drive innovation and best practices in applied research across the Amazon research science community. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA
US, MD, Virtual Location - Maryland
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. This is a part time position, 29 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Virtual Location - MD
US, WA, Bellevue
We are seeking a passionate, talented, and inventive individual to join the Applied AI team and help build industry-leading technologies that customers will love. This team offers a unique opportunity to make a significant impact on the customer experience and contribute to the design, architecture, and implementation of a cutting-edge product. Key job responsibilities On our team you will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. We are seeking an experienced Scientist who combines superb technical, research, analytical and leadership capabilities with a demonstrated ability to get the right things done quickly and effectively. This person must be comfortable working with a team of top-notch developers and collaborating with our research teams. We’re looking for someone who innovates, and loves solving hard problems. You will be expected to have an established background in building highly scalable systems and system design, great communication skills, and a motivation to achieve results in a fast-paced environment. You should be somebody who enjoys working on complex problems, is customer-centric, and feels strongly about building good software as well as making that software achieve its operational goals. A day in the life You will be responsible for developing and maintaining the systems and tools that enable us to accelerate knowledge operations and work in the intersection of Science and Engineering. You will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. About the team The mission of the Applied AI team is to enable organizations within Worldwide Amazon.com Stores to accelerate the adoption of AI technologies across various parts of our business. We are looking for an Applied Scientist to join our Applied AI team to work on LLM-based solutions. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Bellevue
We are seeking a passionate, talented, and inventive individual to join the Applied AI team and help build industry-leading technologies that customers will love. This team offers a unique opportunity to make a significant impact on the customer experience and contribute to the design, architecture, and implementation of a cutting-edge product. The mission of the Applied AI team is to enable organizations within Worldwide Amazon.com Stores to accelerate the adoption of AI technologies across various parts of our business. We are looking for a Senior Applied Scientist to join our Applied AI team to work on LLM-based solutions. We are seeking an experienced Scientist who combines superb technical, research, analytical and leadership capabilities with a demonstrated ability to get the right things done quickly and effectively. This person must be comfortable working with a team of top-notch developers and collaborating with our research teams. We’re looking for someone who innovates, and loves solving hard problems. You will be expected to have an established background in building highly scalable systems and system design, excellent project management skills, great communication skills, and a motivation to achieve results in a fast-paced environment. You should be somebody who enjoys working on complex problems, is customer-centric, and feels strongly about building good software as well as making that software achieve its operational goals. Key job responsibilities You will be responsible for developing and maintaining the systems and tools that enable us to accelerate knowledge operations and work in the intersection of Science and Engineering. A day in the life On our team you will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
IN, KA, Bengaluru
Amazon strives to be Earth's most customer-centric company where people can find and discover virtually anything they want to buy online. By giving customers more of what they want - low prices, vast selection, and convenience - Amazon continues to grow and evolve as a world-class e-commerce platform. The AOP team is an integral part of this and strives to provide Analytical Capabilities to fulfil all customer processes in the IN-ECCF regions. We’re seeking a Data Scientist with expertise in a breadth of ML techniques. Your responsibilities will include developing, prototyping and productionizing innovative models using a range of techniques (Supervised/Unsupervised/Reinforcement). We are also looking for innovators capable of using generative AI to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities - Demonstrate thorough technical knowledge on feature engineering of massive datasets, effective exploratory data analysis, and model building using industry standard AI/ML models and working with Large Language Models - Proficiency in both Supervised(Linear/Logistic Regression) and UnSupervised algorithms(k means clustering) - Understand the business reality behind large sets of data and develop meaningful solutions comprising of analytics as well as marketing management. - Work closely with internal stakeholders like the business teams, engineering teams and partner teams and align them with respect to your focus area - Innovate by adapting new modeling techniques and procedures - Passionate about working with huge data sets ( training/fine tuning) and be someone who loves to bring datasets together to answer business questions. You should have deep expertise in creation and management of datasets - Exposure at implementing and operating stable, scalable data flow solutions from production systems into end-user facing applications/reports. These solutions will be fault tolerant, self-healing and adaptive. - Work with distributed machine learning and statistical algorithms to harness enormous volumes of data at scale to serve our customers We are open to hiring candidates to work out of one of the following locations: Bengaluru, KA, IND | Hyderabad, TS, IND
DE, Aachen
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers. We are open to hiring candidates to work out of one of the following locations: Aachen, DEU
US, WA, Bellevue
We are seeking a passionate, talented, and inventive individual to join the Applied AI team and help build industry-leading technologies that customers will love. This team offers a unique opportunity to make a significant impact on the customer experience and contribute to the design, architecture, and implementation of a cutting-edge product. The mission of the Applied AI team is to enable organizations within Worldwide Amazon.com Stores to accelerate the adoption of AI technologies across various parts of our business. We are looking for a Senior Applied Scientist to join our Applied AI team to work on LLM-based solutions. We are seeking an experienced Scientist who combines superb technical, research, analytical and leadership capabilities with a demonstrated ability to get the right things done quickly and effectively. This person must be comfortable working with a team of top-notch developers and collaborating with our research teams. We’re looking for someone who innovates, and loves solving hard problems. You will be expected to have an established background in building highly scalable systems and system design, excellent project management skills, great communication skills, and a motivation to achieve results in a fast-paced environment. You should be somebody who enjoys working on complex problems, is customer-centric, and feels strongly about building good software as well as making that software achieve its operational goals. Key job responsibilities You will be responsible for developing and maintaining the systems and tools that enable us to accelerate knowledge operations and work in the intersection of Science and Engineering. You will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA