Alexa’s ASRU papers concentrate on extracting high-value training data

Related data selection techniques yield benefits for both speech recognition and natural-language understanding.

This year at the IEEE Automatic Speech Recognition and Understanding (ASRU) Workshop, Alexa researchers have two papers about training machine learning systems with minimal hand-annotated data. Both papers describe automated methods for producing training data, and both describe additional algorithms for extracting just the high-value examples from that data.

Each paper, however, gravitates to a different half of the workshop’s title: one is on speech recognition, or converting an acoustic speech signal to text, and the other is on natural-language understanding, or determining a text’s meaning.

The natural-language-understanding (NLU) paper is about adding new functions to a voice agent like Alexa when training data is scarce. It involves “self-training”, in which a machine learning model trained on sparse annotated data itself labels a large body of unannotated data, which in turn is used to re-train the model.

The researchers investigate techniques for winnowing down the unannotated data, to extract examples pertinent to the new function, and then winnowing it down even further, to remove redundancies.

The automatic-speech-recognition (ASR) paper is about machine-translating annotated data from a language that Alexa already supports to produce training data for a new language. There, too, the researchers report algorithms for identifying data subsets — both before and after translation — that will yield a more-accurate model.

Three of the coauthors on the NLU paper — applied scientists Eunah Cho and Varun Kumar and applied-scientist manager Bill Campbell — are also among the five Amazon organizers of the Life-Long Learning for Spoken-Language Systems workshop, which will take place on the first day of ASRU. The workshop focuses on the problem of continuously improving deployed conversational-AI systems.

Cho and her colleagues’ main-conference paper, “Efficient Semi-Supervised Learning for Natural Language Understanding by Optimizing Diversity”, addresses an instance of that problem: teaching Alexa to recognize new “intents”.

Enlarged intents

Alexa’s NLU models classify customer requests according to domain, or the particular service that should handle a request, and intent, or the action that the customer wants executed. They also identify the slot types of the entities named in the requests, or the roles those entities play in fulfilling the request. In the request “Play ‘Undecided’ by Ella Fitzgerald”, for instance, the domain is Music and the intent PlayMusic, and the names “Undecided” and “Ella Fitzgerald” fill the slots SongName and ArtistName.

Most intents have highly specific vocabularies (even when they’re large, as in the case of the PlayMusic intent), and ideally, the training data for a new intent would be weighted toward in-vocabulary utterances. But when Alexa researchers are bootstrapping a new intent, intent-specific data is scarce. So they need to use training data extracted from more-general text corpora.

As a first pass at extracting intent-relevant data from a general corpus, Cho and her colleagues use a simple n-gram-based linear logistic regression classifier, trained on whatever annotated, intent-specific data is available. The classifier breaks every input utterance into overlapping one-word, two-word, and three-word chunks — n-grams — and assigns each chunk a score, indicating its relevance to the new intent. The relevance score for an utterance is an aggregation of the chunks’ scores, and the researchers keep only the most relevant examples.

In an initial experiment, the researchers used sparse intent-specific data to train five different machine learning models to recognize five different intents. Then they fed unlabeled examples extracted by the regression classifier to each intent recognizer. The recognizers labeled the examples, which were then used to re-train the recognizers. On average, this reduced the recognizers’ error rates by 15%.

To make this process more efficient, Cho and her colleagues trained a neural network to identify paraphrases, which are defined as pairs of utterances that have the same domain, intent, and slot labels. So “I want to listen to Adele” is a paraphrase of “Play Adele”, but “Play Seal” is not.

Augmented-data embedding
The figure above depicts embeddings of NLU training data, or geometrical representations of the data such that utterances with similar meanings are grouped together. The brown points represent annotated data specific to a new intent; the blue points represent intent-relevant data extracted from a more general data set.

The researchers wanted their paraphrase detector to be as general as possible, so they trained it on data sampled from Alexa’s full range of domains and intents. From each sample, they produced a template by substituting slot types for slot values. So, for instance, “Play Adele in the living room” became something like “Play [artist_name] in the [device_location].” From those templates, they could generate as comprehensive a set of training pairs as they wanted — paraphrases with many different sentence structures and, as negative examples, non-paraphrases with the same sentence structures.

From the data set extracted by the logistic classifier, the paraphrase detector selects a small batch of examples that offer bad paraphrases of the examples in the intent-specific data set. The idea is that bad paraphrases will help diversify the data, increasing the range of inputs the resulting model can handle.

The bad paraphrases are added to the annotated data, producing a new augmented data set, and then the process is repeated. This method halves the amount of training data required to achieve the error rate improvements the researchers found in their first experiment.

Gained in translation

The other ASRU paper, “Language Model Bootstrapping Using Neural Machine Translation for Conversational Speech Recognition”, is from applied scientist Surabhi Punjabi, senior applied scientist Harish Arsikere, and senior manager for machine learning Sri Garimella, all of the Alexa Speech group. It investigates building an ASR system in a language — in this case, Hindi — in which little annotated training data is available.

ASR systems typically have several components. One, the acoustic model, takes a speech signal as input and outputs phonetic renderings of short speech sounds. A higher-level component, the language model, encodes statistics about the probabilities of different word sequences. It can thus help distinguish between alternate interpretations of the same acoustic signal (for instance, “Pulitzer Prize” versus “pullet surprise”).

Punjabi and her colleagues investigated building a Hindi language model by automatically translating annotated English-language training data into Hindi. The first step was to train a neural-network-based English-Hindi translator. This required a large body of training data, which matched English inputs to Hindi translations.

Here the researchers ran into a problem similar to the one that Cho and her colleagues confronted. By design, the available English-Hindi training sets were drawn from a wide range of sources and covered a wide range of topics. But the annotated English data that the researchers wanted to translate was Alexa-specific.

Punjabi and her colleagues started with a limited supply of Alexa-specific annotated data in Hindi, collected through Cleo, an Alexa skill that allows multilingual customers to help train machine learning models in new languages. Using an off-the-shelf statistical model, they embedded that data, or represented each sentence as a point in a geometric space, such that sentences with similar meanings clustered together.

Then they embedded Hindi sentences extracted from a large, general, English-Hindi bilingual corpus and measured their distance from the average embedding of the Cleo data. To train their translator, they used just those sentences within a fixed distance of the average — that is, sentences whose meanings were similar to those of the Cleo data.

In one experiment, they then used self-training to fine-tune the translator. After the translator had been trained, they used it to translate a subset of the English-only Alexa-specific data. Then they used the resulting English-Hindi sentence pairs to re-train the translator.

Like all neural translators, Punjabi and her colleagues’ outputs a list of possible translations, ranked according to the translator’s confidence that they’re accurate. In another experiment, the researchers used a simple language model, trained only on the Cleo data, to re-score the lists produced by the translator according to the probability of their word sequences. Only the top-ranked translation was added to the researchers’ Hindi data set.

In another experiment, once Punjabi and her colleagues had assembled a data set of automatically translated utterances, they used the weak, Cleo-based language model to winnow it down, discarding sentences that the model deemed too improbable. With the data that was left, they built a new, much richer language model.

Punjabi and her colleagues evaluated each of these data enrichment techniques separately, so they could measure the contribution that each made to the total error rate reduction of the resulting language model. To test each language model, they integrated it into a complete ASR system, whose performance they compared to that of an ASR system that used a language model trained solely on the Cleo data.

Each modification made a significant difference in its own right. In experiments involving a Hindi data set with 200,000 utterances, re-scoring translation hypotheses, for instance, reduced the ASR system’s error rate by as much as 6.28%, model fine-tuning by as much as 6.84%. But the best-performing language model combined all the modifications, reducing the error rate by 7.86%.

When the researchers reduced the size of the Hindi data set, to simulate the situation in which training data in a new language is particularly hard to come by, the gains were even greater. At 20,000 Hindi utterances, the error rate reduction was 13.18%, at 10,000, 15.65%.

Lifelong learning

In addition to Cho, Kumar, and Campbell, the seven organizers of the Life-Long Learning for Spoken-Language Systems Workshop include Hadrian Glaude, a machine learning scientist, and senior principal scientist Dilek Hakkani-Tür, both of the Alexa AI group.

The workshop, which addresses problems of continual improvement to conversational-AI systems, features invited speakers, including Nancy Chen, a primary investigator at Singapore’s Agency for Science, Technology, and Research (A*STAR), and Alex Waibel, a professor of computer science at Carnegie Mellon University and one of the workshop organizers. The poster session includes six papers, spanning topics from question answering to emotion recognition.

Related content

US, CA, Sunnyvale
At Amazon Fashion, we are obsessed with making Amazon Fashion the most loved fashion destinations globally. We're searching for Computer Vision pioneers who are passionate about technology, innovation, and customer experience, and who are enthusiastic about making a lasting impact on the industry. You'll be working with talented scientists, engineers, and product managers to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey and change the world of eCommerce forever Key job responsibilities As a Applied Scientist, you will be at the forefront to define, own and drive the science that span multiple machine learning models and enabling multiple product/engineering teams and organizations. You will partner with product management and technical leadership to identify opportunities to innovate customer facing experiences. You will identify new areas of investment and work to align product roadmaps to deliver on these opportunities. As a science leader, you will not only develop unique scientific solutions, but more importantly influence strategy and outcomes across different Amazon organizations such as Search, Personalization and more. This role is inherently cross-functional and requires a strong ability to communicate, influence and earn the trust of software engineers, technical and business leadership. We are open to hiring candidates to work out of one of the following locations: Sunnyvale, CA, USA
GB, Cambridge
Our team undertakes research together with multiple organizations to advance the state-of-the-art in speech technologies. We not only work on giving Alexa, the ground-breaking service that powers Echo, her voice, but we also develop cutting-edge technologies with Amazon Studios, the provider of original content for Prime Video. Do you want to be part of the team developing the latest technology that impacts the customer experience of ground-breaking products? Then come join us and make history. We are looking for a passionate, talented, and inventive Senior Applied Scientist with a background in Machine Learning to help build industry-leading Speech, Language and Video technology. As a Senior Applied Scientist at Amazon you will work with talented peers to develop novel algorithms and modelling techniques to drive the state of the art in speech and vocal arts synthesis. Position Responsibilities: - Participate in the design, development, evaluation, deployment and updating of data-driven models for digital vocal arts applications. - Participate in research activities including the application and evaluation and digital vocal and video arts techniques for novel applications. - Research and implement novel ML and statistical approaches to add value to the business. - Mentor junior engineers and scientists. We are open to hiring candidates to work out of one of the following locations: Cambridge, GBR
US, WA, Seattle
The Amazon Economics Team is hiring Economist Interns. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets to solve real-world business problems. Some knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL, UNIX, Sawtooth, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, data scientists and MBAʼs. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with future job market placement. Roughly 85% of interns from previous cohorts have converted to full-time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, NY, New York
Amazon is investing heavily in building a world-class advertising business, and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. We deliver billions of ad impressions and millions of clicks daily and break fresh ground to create world-class products. We are highly motivated, collaborative, and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. Our systems and algorithms operate on one of the world's largest product catalogs, matching shoppers with advertised products with a high relevance bar and strict latency constraints. Sponsored Products Detail Page Blended Widgets team is chartered with building novel product recommendation experiences. We push the innovation frontiers for our hundreds of millions of customers WW to aid product discovery while helping shoppers to find relevant products easily. Our team is building differentiated recommendations that highlight specific characteristics of products (either direct attributes, inferred or machine learned), and leveraging generative AI to provide interactive shopping experiences. We are looking for a Senior Applied Scientist who can delight our customers by continually learning and inventing. Our ideal candidate is an experienced Applied Scientist who has a track-record of performing deep analysis and is passionate about applying advanced ML and statistical techniques to solve real-world, ambiguous and complex challenges to optimize and improve the product performance, and who is motivated to achieve results in a fast-paced environment. The position offers an exceptional opportunity to grow your technical and non-technical skills and make a real difference to the Amazon Advertising business. As a Senior Applied Scientist on this team, you will: * Be the technical leader in Machine Learning; lead efforts within this team and collaborate across teams * Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, perform hands-on analysis and modeling of enormous data sets to develop insights that improve shopper experiences and merchandise sales * Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. * Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. * Research new and innovative machine learning approaches. * Promote the culture of experimentation and applied science at Amazon Team video https://youtu.be/zD_6Lzw8raE We are also open to consider the candidate in Seattle, or Palo Alto. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA
US, VA, Arlington
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! The Search Sourcing and Relevance team parses billions of ads to surface the best ad to show to Amazon shoppers. The team strives to understand customer intent and identify relevant ads that enable them to discover new and alternate products. This also enables sellers on Amazon to showcase their products to customers, which may, at times, be buried deeper in the search results. By showing the right ads to customers at the right time, this team improves the shopper experience, increase advertiser ROI, and improves long-term monetization. This is a talented team of machine learning scientists and software engineers working on complex solutions to understand the customer intent and present them with ads that are not only relevant to their actual shopping experience but also non-obtrusive. This area is of strategic importance to Amazon Retail and Marketplace business, driving long term growth. Key job responsibilities As a Senior Applied Scientist on this team, you will: - Be the technical leader in Machine Learning; lead efforts within this team and across other teams. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches. - Recruit Applied Scientists to the team and provide mentorship. About the team Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA
US, WA, Seattle
Amazon Advertising Impact Team is looking for a Senior Economist to help translate cutting-edge causal inference and machine learning research into production solutions. The individual will have the opportunity to shape the technical and strategic vision of a highly ambiguous problem space, and deliver measurable business impacts via cross-team and cross-functional collaboration. Amazon is investing heavily in building a world class advertising business. Our advertising products are strategically important to Amazon’s Retail and Marketplace businesses for driving long-term growth. The mission of the Advertising Impact Team is to make our advertising products the most customer-centric in the world. We specialize in measuring and modeling the short- and long-term customer behavior in relation to advertising, using state of the art econometrics and machine learning techniques. With a broad mandate to experiment and innovate, we are constantly advancing our experimentation methodology and infrastructure to accelerate learning and scale impacts. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. Key job responsibilities • Function as a technical leader to shape the strategic vision and the science roadmap of a highly ambiguous problem space • Develop economic theory and deliver econometrics and machine learning models to optimize advertising strategies on behalf of our customers • Design, execute, and analyze experiments to verify the efficacy of different scientific solutions in production • Partner with cross-team technical contributors (scientists, software engineers, product managers) to implement the solution in production • Write effective business narratives and scientific papers to communicate to both business and technical audience, including the most senior leaders of the company We are open to hiring candidates to work out of one of the following locations: New York, NY, USA | Seattle, WA, USA
US, WA, Seattle
Interested in using the latest, cutting edge machine learning and science to improve the Amazon employee experience? This role provides applied science leadership to the organization that develops and delivers data-driven insights, personalization, and nudges into Amazon's suite of talent management products to help managers, employees, and organizational leaders make better decisions and have better, more equitable outcomes. Key job responsibilities As the Principal Applied Scientist for GTMC SIERRA, you will be responsible for providing scientific thought leadership over multiple applied science and engineering teams. Each of these teams has rapidly evolving and complex demands to define, develop, and deliver scalable products that make work easier, more efficient, and more rewarding for Amazonians. These are some of Amazon’s most strategic technical investments in the people space and support Amazon’s efforts to be Earth’s Best Employer. In this role you will have a significant impact on 1.5 million Amazonians and the communities Amazon serves. You will also play a critical role in the organization's business planning, work closely with senior executives to develop goals and resource requirements, influence our long-term technical and business strategy, and help hire and develop engineering and science talent. You will provide science thought leadership and support to business partners, helping them use the best scientific methods and science-driven tools to solve current and upcoming challenges and deliver efficiency gains in a changing market. About the team Global Talent Management & Compensation (GTMC) SIERRA (Science, Insights, Experience, Research, Reporting & Analytics) is a horizontal, multi-disciplinary organization whose mission is to be a force multiplier for the broader GTMC organization and our key customer cohorts. We accomplish this by using our expertise in data analytics and science, economics, machine learning (ML), UX, I/O psychology, and engineering to build insights and experiences that raise the bar in understanding and shaping decision making at scale by integrating within and across talent journeys as well as through self-service tools and closed loop mechanisms outside of those journeys. Our portfolio of products spans foundational data sources, metrics, and research through to finished features and products that our end-customers interact with on a daily basis. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, VA, Arlington
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use reduced-form causal analysis and/or structural economic modeling methods to evaluate the impact of policies on employee outcomes, and examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA
US, WA, Seattle
We are expanding our Global Risk Management & Claims team and insurance program support for Amazon’s growing risk portfolio. This role will partner with our risk managers to develop pricing models, determine rate adequacy, build underwriting and claims dashboards, estimate reserves, and provide other analytical support for financially prudent decision making. As a member of the Global Risk Management team, this role will provide actuarial support for Amazon’s worldwide operation. Key job responsibilities ● Collaborate with risk management and claims team to identify insurance gaps, propose solutions, and measure impacts insurance brings to the business ● Develop pricing mechanisms for new and existing insurance programs utilizing actuarial skills and training in innovative ways ● Build actuarial forecasts and analyses for businesses under rapid growth, including trend studies, loss distribution analysis, ILF development, and industry benchmarks ● Design actual vs expected and other metrics dashboards to assist decision makings in pricing analysis ● Create processes to monitor loss cost and trends ● Propose and implement loss prevention initiatives with impact on insurance pricing in mind ● Advise underwriting decisions with analysis on driver risk profile ● Support insurance cost budgeting activities ● Collaborate with external vendors and other internal analytics teams to extract insurance insight ● Conduct other ad hoc pricing analyses and risk modeling as needed We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | New York, NY, USA | Seattle, WA, USA
US, WA, Seattle
The economics team within Recruiting Engine uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which uses a range of approaches to develop and deliver solutions that measurably achieve this goal. We are looking for an Economist who is able to provide structure around complex business problems, hone those complex problems into specific, scientific questions, and test those questions to generate insights. The ideal candidate will work with various science, engineering, operations and analytics teams to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. She/He/They will produce robust, objective research results and insights which can be communicated to a broad audience inside and outside of Amazon. Ideal candidates will work closely with business partners to develop science that solves the most important business challenges. She/He/They will work well in a team setting with individuals from diverse disciplines and backgrounds. She/He/They will serve as an ambassador for science and a scientific resource for business teams. Ideal candidates will own the development of scientific models and manage the data analysis, modeling, and experimentation that is necessary for estimating and validating the model. They will be customer-centric – clearly communicating scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Seattle, WA, USA