Alexa’s ASRU papers concentrate on extracting high-value training data

Related data selection techniques yield benefits for both speech recognition and natural-language understanding.

This year at the IEEE Automatic Speech Recognition and Understanding (ASRU) Workshop, Alexa researchers have two papers about training machine learning systems with minimal hand-annotated data. Both papers describe automated methods for producing training data, and both describe additional algorithms for extracting just the high-value examples from that data.

Each paper, however, gravitates to a different half of the workshop’s title: one is on speech recognition, or converting an acoustic speech signal to text, and the other is on natural-language understanding, or determining a text’s meaning.

The natural-language-understanding (NLU) paper is about adding new functions to a voice agent like Alexa when training data is scarce. It involves “self-training”, in which a machine learning model trained on sparse annotated data itself labels a large body of unannotated data, which in turn is used to re-train the model.

The researchers investigate techniques for winnowing down the unannotated data, to extract examples pertinent to the new function, and then winnowing it down even further, to remove redundancies.

The automatic-speech-recognition (ASR) paper is about machine-translating annotated data from a language that Alexa already supports to produce training data for a new language. There, too, the researchers report algorithms for identifying data subsets — both before and after translation — that will yield a more-accurate model.

Three of the coauthors on the NLU paper — applied scientists Eunah Cho and Varun Kumar and applied-scientist manager Bill Campbell — are also among the five Amazon organizers of the Life-Long Learning for Spoken-Language Systems workshop, which will take place on the first day of ASRU. The workshop focuses on the problem of continuously improving deployed conversational-AI systems.

Cho and her colleagues’ main-conference paper, “Efficient Semi-Supervised Learning for Natural Language Understanding by Optimizing Diversity”, addresses an instance of that problem: teaching Alexa to recognize new “intents”.

Enlarged intents

Alexa’s NLU models classify customer requests according to domain, or the particular service that should handle a request, and intent, or the action that the customer wants executed. They also identify the slot types of the entities named in the requests, or the roles those entities play in fulfilling the request. In the request “Play ‘Undecided’ by Ella Fitzgerald”, for instance, the domain is Music and the intent PlayMusic, and the names “Undecided” and “Ella Fitzgerald” fill the slots SongName and ArtistName.

Most intents have highly specific vocabularies (even when they’re large, as in the case of the PlayMusic intent), and ideally, the training data for a new intent would be weighted toward in-vocabulary utterances. But when Alexa researchers are bootstrapping a new intent, intent-specific data is scarce. So they need to use training data extracted from more-general text corpora.

As a first pass at extracting intent-relevant data from a general corpus, Cho and her colleagues use a simple n-gram-based linear logistic regression classifier, trained on whatever annotated, intent-specific data is available. The classifier breaks every input utterance into overlapping one-word, two-word, and three-word chunks — n-grams — and assigns each chunk a score, indicating its relevance to the new intent. The relevance score for an utterance is an aggregation of the chunks’ scores, and the researchers keep only the most relevant examples.

In an initial experiment, the researchers used sparse intent-specific data to train five different machine learning models to recognize five different intents. Then they fed unlabeled examples extracted by the regression classifier to each intent recognizer. The recognizers labeled the examples, which were then used to re-train the recognizers. On average, this reduced the recognizers’ error rates by 15%.

To make this process more efficient, Cho and her colleagues trained a neural network to identify paraphrases, which are defined as pairs of utterances that have the same domain, intent, and slot labels. So “I want to listen to Adele” is a paraphrase of “Play Adele”, but “Play Seal” is not.

Augmented-data embedding
The figure above depicts embeddings of NLU training data, or geometrical representations of the data such that utterances with similar meanings are grouped together. The brown points represent annotated data specific to a new intent; the blue points represent intent-relevant data extracted from a more general data set.

The researchers wanted their paraphrase detector to be as general as possible, so they trained it on data sampled from Alexa’s full range of domains and intents. From each sample, they produced a template by substituting slot types for slot values. So, for instance, “Play Adele in the living room” became something like “Play [artist_name] in the [device_location].” From those templates, they could generate as comprehensive a set of training pairs as they wanted — paraphrases with many different sentence structures and, as negative examples, non-paraphrases with the same sentence structures.

From the data set extracted by the logistic classifier, the paraphrase detector selects a small batch of examples that offer bad paraphrases of the examples in the intent-specific data set. The idea is that bad paraphrases will help diversify the data, increasing the range of inputs the resulting model can handle.

The bad paraphrases are added to the annotated data, producing a new augmented data set, and then the process is repeated. This method halves the amount of training data required to achieve the error rate improvements the researchers found in their first experiment.

Gained in translation

The other ASRU paper, “Language Model Bootstrapping Using Neural Machine Translation for Conversational Speech Recognition”, is from applied scientist Surabhi Punjabi, senior applied scientist Harish Arsikere, and senior manager for machine learning Sri Garimella, all of the Alexa Speech group. It investigates building an ASR system in a language — in this case, Hindi — in which little annotated training data is available.

ASR systems typically have several components. One, the acoustic model, takes a speech signal as input and outputs phonetic renderings of short speech sounds. A higher-level component, the language model, encodes statistics about the probabilities of different word sequences. It can thus help distinguish between alternate interpretations of the same acoustic signal (for instance, “Pulitzer Prize” versus “pullet surprise”).

Punjabi and her colleagues investigated building a Hindi language model by automatically translating annotated English-language training data into Hindi. The first step was to train a neural-network-based English-Hindi translator. This required a large body of training data, which matched English inputs to Hindi translations.

Here the researchers ran into a problem similar to the one that Cho and her colleagues confronted. By design, the available English-Hindi training sets were drawn from a wide range of sources and covered a wide range of topics. But the annotated English data that the researchers wanted to translate was Alexa-specific.

Punjabi and her colleagues started with a limited supply of Alexa-specific annotated data in Hindi, collected through Cleo, an Alexa skill that allows multilingual customers to help train machine learning models in new languages. Using an off-the-shelf statistical model, they embedded that data, or represented each sentence as a point in a geometric space, such that sentences with similar meanings clustered together.

Then they embedded Hindi sentences extracted from a large, general, English-Hindi bilingual corpus and measured their distance from the average embedding of the Cleo data. To train their translator, they used just those sentences within a fixed distance of the average — that is, sentences whose meanings were similar to those of the Cleo data.

In one experiment, they then used self-training to fine-tune the translator. After the translator had been trained, they used it to translate a subset of the English-only Alexa-specific data. Then they used the resulting English-Hindi sentence pairs to re-train the translator.

Like all neural translators, Punjabi and her colleagues’ outputs a list of possible translations, ranked according to the translator’s confidence that they’re accurate. In another experiment, the researchers used a simple language model, trained only on the Cleo data, to re-score the lists produced by the translator according to the probability of their word sequences. Only the top-ranked translation was added to the researchers’ Hindi data set.

In another experiment, once Punjabi and her colleagues had assembled a data set of automatically translated utterances, they used the weak, Cleo-based language model to winnow it down, discarding sentences that the model deemed too improbable. With the data that was left, they built a new, much richer language model.

Punjabi and her colleagues evaluated each of these data enrichment techniques separately, so they could measure the contribution that each made to the total error rate reduction of the resulting language model. To test each language model, they integrated it into a complete ASR system, whose performance they compared to that of an ASR system that used a language model trained solely on the Cleo data.

Each modification made a significant difference in its own right. In experiments involving a Hindi data set with 200,000 utterances, re-scoring translation hypotheses, for instance, reduced the ASR system’s error rate by as much as 6.28%, model fine-tuning by as much as 6.84%. But the best-performing language model combined all the modifications, reducing the error rate by 7.86%.

When the researchers reduced the size of the Hindi data set, to simulate the situation in which training data in a new language is particularly hard to come by, the gains were even greater. At 20,000 Hindi utterances, the error rate reduction was 13.18%, at 10,000, 15.65%.

Lifelong learning

In addition to Cho, Kumar, and Campbell, the seven organizers of the Life-Long Learning for Spoken-Language Systems Workshop include Hadrian Glaude, a machine learning scientist, and senior principal scientist Dilek Hakkani-Tür, both of the Alexa AI group.

The workshop, which addresses problems of continual improvement to conversational-AI systems, features invited speakers, including Nancy Chen, a primary investigator at Singapore’s Agency for Science, Technology, and Research (A*STAR), and Alex Waibel, a professor of computer science at Carnegie Mellon University and one of the workshop organizers. The poster session includes six papers, spanning topics from question answering to emotion recognition.

Research areas

Related content

NL, Amsterdam
Are you a MS or PhD student interested in a 2025 Internship in the field of machine learning, deep learning, speech, robotics, computer vision, optimization, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact, visionary person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain, UAE, and UK). Please note these are not remote internships.
US, WA, Seattle
Come be a part of a rapidly expanding $35 billion-dollar global business. At Amazon Business, a fast-growing startup passionate about building solutions, we set out every day to innovate and disrupt the status quo. We stand at the intersection of tech & retail in the B2B space developing innovative purchasing and procurement solutions to help businesses and organizations thrive. At Amazon Business, we strive to be the most recognized and preferred strategic partner for smart business buying. Bring your insight, imagination and a healthy disregard for the impossible. Join us in building and celebrating the value of Amazon Business to buyers and sellers of all sizes and industries. Unlock your career potential. The AB Sales Analytics, Data, Product and Tech (ADAPTech) team uses CRM, data, product, and science to improve Sales productivity and performance. It has four pillars: 1) SalesTech maintains Salesforce to enable Sales workflows, and supports >2K users in nine countries; 2) Product and Science builds tools embedded with bespoke Machine Learning (ML) and GenAI large language models to enable sales reps to prioritize top accounts, position the right Amazon Business (AB) product features, and take actions based on critical customer events; 3) Sales Data Management (SDM) and Sales Account Management (SAM) enrich customer profiles and business hierarchies while improving productivity through automation and integration of internal/external tools; and 4) Business Intelligence (BI) enables self-service reporting simplifying access to key insights through WBRs and dashboards. Sales teams leverage these products to identify which customers to target, what features to target them with, and when to target them, in order to capture their share of wallet. A successful Applied Scientist at Amazon demonstrates bias for action and operates in a startup environment, with outstanding leadership skills, and proven ability to build and manage medium-scale modeling projects, identify data requirements, build methodology and tools that are statistically grounded. We need great leaders to think big and design new solutions to solve complex problems using machine learning (ML) and Generative AI techniques to improve our customers’ experience when using AB. You have hands-on experience making the right decisions about technology, models and methodology choices. Key job responsibilities As an Applied Scientist, you will primarily leverage machine learning techniques and generative AI to outreach customers based on their life cycle stage, behavioral patterns, and purchase history. You may also perform text mining and insight analysis of real-time customer conversations and make the model learn and recommend the solutions. Your work will directly impact the trust customers place in Amazon Business. You will partner with product management and technical leadership to identify opportunities to innovate customer journey experiences. You will identify new areas of investment and work to align product roadmaps to deliver on these opportunities. As a science leader, you will not only develop unique scientific solutions, but also play a crucial role in shaping strategies. Additional responsibilities include: -Design, implement, test, deploy and maintain innovative data and machine learning solutions to further the customer experience. -Create experiments and prototype implementations of new learning algorithms and prediction techniques -Develop algorithms for new capabilities and trace decisions in the data and assess how proposed changes could potentially impact business metrics to cater needs of Amazon Business Sales -Build models that measure incremental value, predict growth, define and conduct experiments to optimize engagement of AB customers, and communicate insights and recommendations to product, sales, and finance partners. A day in the life In this role, you will be a technical expert with significant scope and impact. You will work with Technical Product Managers, Data Engineers, other Scientists, and Salesforce developers, to build new and enhance existing ML models to optimize customer experience. You will prototype and test new ideas, iterate quickly, and deploy models to production. Also, you will conduct in-depth data analysis and feature engineering to build robust ML models.
US, WA, Bellevue
Amazon Web Services (AWS) offers a broad set of global compute, storage, database, analytics, application, and deployment services that help organizations move faster, lower IT costs, and scale applications. These services are trusted by the largest enterprises and the hottest start-ups to power a wide variety of workloads including web and mobile applications, data processing and warehousing, storage, archive, and many others. We are looking for an applied scientist to help us define and build a new enterprise application. AWS Applications is building services in Supply Chain Management and is looking for a scientist to tackle complex science problems in Supply Chain including demand planning, supply planning and sustainability which will be used by our customers across a wide range of industries. We operate a fast growing business and our journey has only started. Our mission is to build the most efficient and optimal supply chain software on the planet, using our science and technology as our biggest advantage. We aim to leverage cutting edge technologies in optimization, operations research, and machine learning to grow our businesses. As an Applied Scientist, you’ll design, model, develop and implement state-of-the-art models and solutions used by users worldwide. As part of your role you will regularly interact with software engineering teams and business leadership. The focus of this role is to research, develop, and deploy models to improve state-of-the-art for time series. You will have the opportunity to work on our assistant solution allowing our users to ask data questions in natural language and get intelligent insights and exceptions. Key job responsibilities Lead and partner with the engineering to drive modeling and technical design for complex business problems. Develop accurate and scalable machine learning models to solve our hardest supply chain problems. Lead complex modeling analyses to aid management in making key business decisions and set product direction. A day in the life Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, WA, Seattle
We are building GenAI based shopping assistant for Amazon. We reimage Amazon Search with an interactive conversational experience that helps you find answers to product questions, perform product comparisons, receive personalized product suggestions, and so much more, to easily find the perfect product for your needs. We’re looking for the best and brightest across Amazon to help us realize and deliver this vision to our customers right away. This will be a once in a generation transformation for Search, just like the Mosaic browser made the Internet easier to engage with three decades ago. If you missed the 90s—WWW, Mosaic, and the founding of Amazon and Google—you don’t want to miss this opportunity.
US, WA, Seattle
Our team's mission is to improve Shopping experience for customers interacting with Amazon devices via voice. We work with Alexa and multiple other teams to research and develop advanced state-of-the-art speech technologies. Do you want to be part of the team developing the latest technology that impacts the customer experience of ground-breaking products? Then come join us and make history. Key job responsibilities We are looking for a passionate, talented, and inventive Research Scientist with a background in Machine Learning to help build industry-leading Speech and Language technology. As a Research Scientist at Amazon you will work with talented peers to develop novel algorithms and modelling techniques to drive the state of the art in speech synthesis. Position Responsibilities: * Participate in the design, development, evaluation, deployment and updating of data-driven models for Speech and Language applications. * Participate in research activities including the application and evaluation of Speech and Language techniques for novel applications. * Research and implement novel ML and statistical approaches to add value to the business.
US, WA, Seattle
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve associate, employee and manager experiences at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science! The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. Key job responsibilities As an Applied Scientist for People Experience and Technology (PXT) Central Science, you will be working with our science and engineering teams, specifically on re-imagining Generative AI Applications and Generative AI Infrastructure for HR. Applying Generative AI to HR has unique challenges such as privacy, fairness, and seamlessly integrating Enterprise Knowledge and World Knowledge and knowing which to use when. In addition, the team works on some of Amazon’s most strategic technical investments in the people space and support Amazon’s efforts to be Earth’s Best Employer. In this role you will have a significant impact on 1.5 million Amazonians and the communities Amazon serves and ample scope to demonstrate scientific thought leadership and scientific impact in addition to business impact. You will also play a critical role in the organization's business planning, work closely with senior leaders to develop goals and resource requirements, influence our long-term technical and business strategy, and help hire and develop science and engineering talent. You will also provide support to business partners, helping them use the best scientific methods and science-driven tools to solve current and upcoming challenges and deliver efficiency gains in a changing marke About the team The AI/ML team in PXTCS is working on building Generative AI solutions to reimagine Corp employee and Ops associate experience. Examples of state-of-the-art solutions are Coaching for Amazon employees (available on AZA) and reinventing Employee Recruiting and Employee Listening.
CA, BC, Vancouver
Alexa Daily Essentials is hiring an Applied Scientist to research and implement large language model innovations to enhance Alexa's language understanding, knowledge representation, reasoning and generation capabilities. The Alexa Daily Essentials team delivers experiences critical to how customers interact with Alexa as part of daily life. We drive over 40 billion+ actions annually across 60 million+ monthly customers, who engage with our products across experiences connected to Timers, Alarms, Calendars, Food, and News. Our experiences include critical time saving techniques, ad-supported news audio and video, and in-depth kitchen guidance aimed at serving the needs of the family from sunset to sundown. Our upcoming launches are at the forefront of innovation, delivering step-function improvements in experiences that stretch across the customer journey, and new AI technologies that will enable customers to send Alexa information for future recall and conversation. We collaborate closely with partners such as Amazon.com, Whole Foods, Spotify, CNN, Fox, NPR, BBC, Discovery, and Food Network to deliver our vision. If you are passionate about redefining the personal assistant experience and leveraging innovative technology to improve daily life, we’d love to hear from you. This is an opportunity to make a tangible impact at the heart of the Alexa ecosystem. As an applied scientist, you will advance state of the art techniques in ML and LLM, and work closely with product and engineering teams to build the next generation of the Alexa smart assistant. Key job responsibilities - Rapidly prototype ML/LLM solutions, evaluate feasibility, and drive projects to production deployment - Continuously monitor and improve model performance through retraining, parameter tuning, and architecture refinements - Develop new training and inference techniques to improve model performance - Work cross-functionally across engineering, product, and business teams to understand customer needs, scope science work, and drive science solutions from conception to customer delivery - Research and develop LLM innovations, and lead paper publications. - Code proficiently in Python (required) and Java (preferred); optimize systems for high performance at scale; contribute code directly into production services - Innovate and develop science and engineering solutions that optimize team operations and increase team effectiveness. - Clearly communicate complex technical concepts to non-technical stakeholders and leadership
US, MA, North Reading
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers who work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling, and fun. Amazon Robotics empowers a smarter, faster, more consistent customer experience through automation. Amazon Robotics automates fulfillment center operations using various methods of robotic technology including autonomous mobile robots, sophisticated control software, language perception, power management, computer vision, depth sensing, machine learning, object recognition, and semantic understanding of commands. Amazon Robotics has a dedicated focus on research and development to continuously explore new opportunities to extend its product lines into new areas. Key job responsibilities We are seeking an enthusiastic Data Scientist to: - Design and implement state-of-the-art solutions for never-before-solved problems. - Collaborate closely with other research and robotics experts to design and run experiments, research new algorithms, and find new ways to improve Amazon Robotics analytics to optimize the Customer experience. - Partner with technology and product leaders to solve business problems using scientific approaches. - Build new tools and invent business insights that surprise and delight our customers. - Work to quantify system performance at scale, and to expand the breadth and depth of our analysis to increase the ability of software components and warehouse processes. - Work to evolve our library of key performance indicators and construct experiments that efficiently root cause emergent behaviors. - Engage with software development teams and warehouse design engineers to drive the evolution of the Amazon Robotics system, as well as the simulation engine that supports our work. A day in the life As a member of the Software Research and Data Science (SWRDS) team, there are multiple different paths you can take. For example, you may conduct deep dive analysis of both structured and unstructured robotics field analyses. Some of our team members focus on modeling, pipelines and tooling work, while others focus more on analytic work. We also have team members working on early-concept solution analysis (leveraging simulations, ML-based models, experimenting with new solutions). About the team The Amazon Robotics Software Research and Data Science (SWRDS) team builds and runs simulation experiments and delivers analyses that are central to understanding the performance of the entire Amazon Robotics system. This includes operational and software scaling characteristics, bottlenecks, and robustness to “chaos monkey” stresses -- we inform critical engineering and business decisions about Amazon’s approach to robotic fulfillment.
GB, London
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center at AWS is a new strategic team that helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, data scientists, engineers, and solution architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Data Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities - Collaborate with AI/ML scientists and architects to Research, design, develop, and evaluate cutting-edge generative AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team ABOUT AWS: Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, MA, North Reading
The Amazon Robotics (AR) Software Research and Science team builds and runs simulation experiments and delivers analyses that are central to understanding the performance of the entire AR system. This includes operational and software scaling characteristics, bottlenecks, and robustness to “chaos monkey” stresses -- we inform critical engineering and business decisions about Amazon’s approach to robotic fulfillment. We are seeking a Data Scientist to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. The Scientist will work closely with other research and robotics experts to design and run experiments, research new algorithms, and find new ways to improve Amazon Robotics analytics to optimize the Customer experience. They will partner with technology and product leaders to solve business problems using scientific approaches. They will build new tools and invent business insights that surprise and delight our customers. They will work to quantify system performance at scale, and to expand the breadth and depth of our analysis to increase the ability of software components and warehouse processes. They will work to evolve our library of key performance indicators and construct experiments that efficiently root cause emergent behaviors. They will engage with software development teams and warehouse design engineers to drive the evolution of the AR system, as well as the simulation engine that supports our work. Key job responsibilities We are seeking an enthusiastic Data Scientist to design and implement state-of-the-art solutions for never-before-solved problems. The DS will collaborate closely with other research and robotics experts to design and run experiments, research new algorithms, and find new ways to improve Amazon Robotics analytics to optimize the Customer experience. They will collaborate with technology and product leaders to solve business problems using scientific approaches. They will build new tools and invent business insights that surprise and delight our customers. They will work to quantify system performance at scale, and to expand the breadth and depth of our analysis to increase the ability of software components and warehouse processes. They will work to evolve our library of key performance indicators and construct experiments that efficiently root cause emergent behaviors. They will collaborate with software development teams and warehouse design engineers to drive the evolution of the AR system, as well as the simulation engine that supports our work. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!