A quick guide to Amazon’s 40-plus papers at ICASSP

Topics such as code generation, commonsense reasoning, and self-learning complement the usual focus on speech recognition and acoustic-event classification.

As usual at the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), a plurality of Amazon’s accepted papers concentrate on automatic speech recognition — with, this year, a particular emphasis on personalized speech recognition. The topics of acoustic-event detection, keyword spotting, and signal processing are also well represented.

But as is also usual, some of the Amazon papers wander farther afield, to topics like commonsense reasoning, self-learning, query rewriting, and general machine learning techniques. Below is a quick guide to Amazon’s more than 40 papers at the conference.

Acoustic-event classification

FedRPO: Federated relaxed Pareto optimization for acoustic event classification
Meng Feng, Chieh-Chi Kao, Qingming Tang, Amit Solomon, Viktor Rozgic, Chao Wang

Multiscale audio spectrogram transformer for efficient audio classification
Wentao Zhu, Mohamed Omar

Transformer-based bioacoustic sound event detection on few-shot learning tasks
Liwen You, Erika Pelaez Coyotl, Suren Gunturu, Maarten Van Segbroeck

Weight-sharing supernet for searching specialized acoustic event classification networks across device constraints
Guan-Ting Lin, Qingming Tang, Chieh-Chi Kao, Viktor Rozgic, Chao Wang

Automatic speech recognition

Cross-utterance ASR rescoring with graph-based label propagation
Srinath Tankasala, Long Chen, Andreas Stolcke, Anirudh Raju, Shally Deng, Chander Chandak, Aparna Khare, Roland Maas, Venkatesh Ravichandran

Dynamic chunk convolution for unified streaming and non-streaming Conformer ASR
Xilai Li, Goeric Huybrechts, Srikanth Ronanki, Jeff Farris, Sravan Bodapati

Domain adaptation with external off-policy acoustic catalogs for scalable contextual end-to-end automated speech recognition
David M. Chan, Shalini Ghosh, Ariya Rastrow, Björn Hoffmeister

Gated contextual adapters for selective contextual biasing in neural transducers
Anastasios Alexandridis, Kanthashree Mysore Sathyendra, Grant Strimel, Feng-Ju (Claire) Chang, Ariya Rastrow, Nathan Susanj, Athanasios Mouchtaris

Mask the bias: Improving domain-adaptive generalization of CTC-based ASR with internal language model estimation
Nilaksh Das, Monica Sunkara, Sravan Bodapati, Jason Cai, Devang Kulshreshtha, Jeff Farris, Katrin Kirchhoff

On-the-fly text retrieval for end-to-end ASR adaptation
Bolaji Yusuf, Aditya Gourav, Ankur Gandhe, Ivan Bulyko

Robust acoustic and semantic contextual biasing in neural transducers for speech recognition
Xuandi Fu, Kanthashree Mysore Sathyendra, Ankur Gandhe, Jing Liu, Grant Strimel, Ross McGowan, Athanasios Mouchtaris

Code generation

Conversational text-to-SQL: An odyssey into state-of-the-art and challenges ahead
Sree Hari Krishnan Parthasarathi, Lu Zeng, Dilek Hakkani-Tür

Conversational text-to-SQL.png
A proposed text-to-SQL system has three parts: (a) multitasking on coherent tasks with discrete prompts; (b) constrained decoding; and (c) N-best list reranking with a query plan model and a schema linking algorithm. From "Conversational text-to-SQL: An odyssey into state-of-the-art and challenges ahead".

Commonsense reasoning

CLICKER: Attention-based cross-lingual commonsense knowledge transfer
Ruolin Su, Zhongkai Sun, Sixing Lu, Chengyuan Ma, Chenlei Guo

Continual learning

Quantifying catastrophic forgetting in continual federated learning
Christophe Dupuy, Jimit Majmudar, Jixuan Wang, Tanya Roosta, Rahul Gupta, Clement Chung, Jie Ding, Salman Avestimehr

Endpoint detection

Adaptive endpointing with deep contextual multi-armed bandits
Do June Min, Andreas Stolcke, Anirudh Raju, Colin Vaz, Di He, Venkatesh Ravichandran, Viet Anh Trinh

Towards accurate and real-time end-of-speech estimation
Yifeng Fan, Colin Vaz, Di He, Jahn Heymann, Viet Anh Trinh, Zhe Zhang, Venkatesh Ravichandran

Keyword spotting

Dual-attention neural transducers for efficient wake word spotting in speech recognition
Saumya Sahai, Jing Liu, Thejaswi Muniyappa, Kanthashree Mysore Sathyendra, Anastasios Alexandridis, Grant Strimel, Ross McGowan, Ariya Rastrow, Feng-Ju Chang, Athanasios Mouchtaris, Siegfried Kunzmann

Fixed-point quantization aware training for on-device keyword-spotting
Sashank Macha, Om Oza, Alex Escott, Francesco Caliva, Robbie Armitano, Santosh Kumar Cheekatmalla, Sree Hari Krishnan Parthasarathi, Yuzong Liu

Self-supervised speech representation learning for keyword-spotting with light-weight transformers
Chenyang Gao, Yue Gu, Francesco Caliva, Yuzong Liu

Small-footprint slimmable networks for keyword spotting
Zuhaib Akhtar, Mohammad Omar Khursheed, Dongsu Du, Yuzong Liu

Language learning

Phonetic RNN-transducer for mispronunciation diagnosis
Daniel Zhang, Soumya Saha, Sarah Campbell

Machine learning

Prune then distill: Dataset distillation with importance sampling
Anirudh Sundar, Gokce Keskin, Chander Chandak, I-Fan Chen, Pegah Ghahremani, Shalini Ghosh

Role of bias terms in dot-product attention
Mahdi Namazifar, Devamanyu Hazarika, Dilek Hakkani-Tür

Natural-language understanding

Distill-quantize-tune: Leveraging large teachers for low-footprint efficient multilingual NLU on edge
Pegah Kharazmi, Zhewei Zhao, Clement Chung, Samridhi Choudhary

Pyramid dynamic inference: Encouraging faster inference via early exit boosting
Ershad Banijamali, Pegah Kharazmi, Sepehr Eghbali, Jixuan Wang, Clement Chung, Samridhi Choudhary

Personalized speech recognition

Dialog act guided contextual adapter for personalized speech recognition
Feng-Ju (Claire) Chang, Thejaswi Muniyappa, Kanthashree Mysore Sathyendra, Kai Wei, Grant Strimel, Ross McGowan

PROCTER: Pronunciation-aware contextual adapter for personalized speech recognition in neural transducers
Rahul Pandey, Roger Ren, Qi Luo, Jing Liu, Ariya Rastrow, Ankur Gandhe, Denis Filimonov, Grant Strimel, Andreas Stolcke, Ivan Bulyko

Slot-triggered contextual biasing for personalized speech recognition using neural transducers
Sibo Tong, Philip Harding, Simon Wiesler

Query rewriting

KG-ECO: Knowledge graph enhanced entity correction for query rewriting
Jason Cai, Mingda Li, Ziyan Jiang, Eunah Cho, Zheng Chen, Yang Liu, Xing Fan, Chenlei Guo

Self-learning

Federated self-learning with weak supervision for speech recognition
Milind Rao, Gopinath Chennupati, Gautam Tiwari, Anit Kumar Sahu, Anirudh Raju, Ariya Rastrow, Jasha Droppo

Self-healing through error detection, attribution, and retraining
Ansel MacLaughlin, Anna Rumshisky, Rinat Khaziev, Anil Ramakrishna, Yuval Merhav, Rahul Gupta

Signal processing

A framework for unified real-time personalized and non-personalized speech enhancement
Zhepei Wang, Ritwik Giri, Devansh Shah, Jean-Marc Valin, Michael M. Goodwin, Paris Smaragdis

Augmentation robust self-supervised learning for human activity recognition
Cong Xu, Yuhang Li, Dae Lee, Andrew Park, Hongda Mao, Huyen Do, Jonathan Chung, Dinesh Nair

Retraction.png
The concept of retraction, mapping a point in the tangent space back to the manifold. From "Generative modeling based manifold learning for adaptive filtering guidance".

Generative modeling based manifold learning for adaptive filtering guidance
Karim Helwani, Paris Smaragdis, Michael M. Goodwin

SPADE: Self-supervised pretraining for acoustic disentanglement
John Harvill, Jarred Barber, Arun Nair, Ramin Pishehvar

Spoken-language understanding

End-to-end spoken language understanding using joint CTC loss and self-supervised, pretrained acoustic encoders
Jixuan Wang, Martin Radfar, Kai Wei, Clement Chung

Exploring subgroup performance in end-to-end speech models
Alkis Koudounas, Eliana Pastor, Giuseppe Attanasio, Vittorio Mazzia, Manuel Giollo, Thomas Gueudre, Luca Cagliero, Luca de Alfaro, Elena Baralis, Daniele Amberti

Multilingual end-to-end spoken language understanding for ultra-low footprint applications
Markus Mueller, Anastasios Alexandridis, Zach Trozenski, Joel Whiteman, Grant Strimel, Nathan Susanj, Athanasios Mouchtaris, Siegfried Kunzmann

Text-to-speech

Framewise WaveGAN: High speed adversarial vocoder in time domain with very low computational complexity
Ahmed Mustafa, Jean-Marc Valin, Jan Buethe, Paris Smaragdis, Mike Goodwin

Modelling low-resource accents without accent-specific TTS frontend
Georgi Tinchev, Marta Czarnowska, Kamil Deja, Kayoko Yanagisawa, Marius Cotescu

Video

ModEFormer: Modality-preserving embedding for audio-video synchronization using transformers
Akash Gupta, Rohun Tripathi, Wondong Jang

Multi-scale compositional constraints for representation learning on videos
Georgios Paraskevopoulos, Chandrashekhar Lavania, Lovish Chum, Shiva Sundaram

Voice communication

Low-bitrate redundancy coding of speech using a rate-distortion-optimized variational autoencoder
Jean-Marc Valin, Jan Buethe, Ahmed Mustafa

Research areas

Related content

US, NY, New York
Are you a passionate Applied Scientist (AS) ready to shape the future of digital content creation? At Amazon, we're building Earth's most desired destination for creators to monetize their unique skills, inspire the next generation of customers, and help brands expand their reach. We build innovative products and experiences that drive growth for creators across Amazon's ecosystem. Our team owns the entire Creator product suite, ensuring a cohesive experience, optimizing compensation structures, and launching features that help creators achieve both monetary and non-monetary goals. Key job responsibilities As an AS on our team, you will: - Handle challenging problems that directly impact millions of creators and customers - Independently collect and analyze data - Develop and deliver scalable predictive models, using any necessary programming, machine learning, and statistical analysis software - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Participate in design and implementation across teams to contribute to initiatives and develop optimal solutions that benefit the creators organization The successful candidate is a self-starter, comfortable with a dynamic, fast-paced environment, and able to think big while paying careful attention to detail. You have deep knowledge of an area/multiple areas of science, with a track record of applying this knowledge to deliver science solutions in a business setting and a demonstrated ability to operate at scale. You excel in a culture of invention and collaboration.
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Key job responsibilities You will contribute directly to AI agent development in an engineering management role: leading a software development team focused on our internal platform for acquiring agentic experience at large scale. You will help set direction, align the team’s goals with the broader lab, mentor team members, recruit great people, and stay technically involved. You will be hired as a Member of Technical Staff. About the team Our lab is a small, talent-dense team with the resources and scale of Amazon. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up!
GB, MLN, Edinburgh
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Key job responsibilities As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create technical roadmaps and drive production level projects that will support Amazon Science. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. About the team The Automated Performance Evaluation (APE) team is a hybrid team of Applied Scientists and Software Development Engineers who develop, deploy and own end-to-end machine learning services for use in the HR and Recruiting functions at Amazon.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
IN, KA, Bengaluru
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like the Kindle family of products, Fire Tablets, Fire TV, Health Wellness, Amazon Echo & Astro products. This is an exciting opportunity to join Amazon in developing state-of-the-art techniques that bring Gen AI on edge for our consumer products. We are looking for exceptional early career research scientists to join our Applied Science team and help develop the next generation of edge models, and optimize them while doing co-designed with custom ML HW based on a revolutionary architecture. Work hard. Have Fun. Make History. Key job responsibilities Key Job Responsibilities: • Understand and contribute to model compression techniques (quantization, pruning, distillation, etc.) while developing theoretical understanding of Information Theory and Deep Learning fundamentals • Work with senior researchers to optimize Gen AI models for edge platforms using Amazon's Neural Edge Engine • Study and apply first principles of Information Theory, Scientific Computing, and Non-Equilibrium Thermodynamics to model optimization problems • Assist in research projects involving custom Gen AI model development, aiming to improve SOTA under mentorship • Co-author research papers for top-tier conferences (NeurIPS, ICLR, MLSys) and present at internal research meetings • Collaborate with compiler engineers, Applied Scientists, and Hardware Architects while learning about production ML systems • Participate in reading groups and research discussions to build expertise in efficient AI and edge computing
US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to support the development of algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Principal Quantum Research Scientist. You will join a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers working at the forefront of quantum computing. You should have a deep and broad knowledge of experimental quantum computing and a track record of original scientific contributions. We are looking for candidates with strong engineering principles, resourcefulness and a bias for action, superior problem solving, and excellent communication skills. Working effectively within a team environment is essential. As principal research scientist you will be expected to lead new ideas and stay abreast of the field of experimental quantum computation. Key job responsibilities Key job responsibilities In this role, you will work on improvements in all components of SC qubits quantum hardware, from qubits and resonators to quantum-limited amplifiers. You will also work on their integration into multiqubit chips. This will require designing new experiments, collecting statistically significant data through automation, analyzing the results, and summarizing conclusions in written form. Finally, you will work with hardware engineers, material scientists, and circuit designers to advance the state of the art of SC qubits hardware. About the team About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, CA, Palo Alto
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Lead business, science and engineering strategy and roadmap for Sponsored Products Agentic Advertiser Guidance. - Design and build agents to guide advertisers in conversational and non-conversational experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.
US, NY, New York
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Design and build agents to guide advertisers in conversational and non-conversational experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.