This year's Day One Amazon Robotics Fellows are, top row, left to right: Omoruyi Atheka, Camille Anne Chungyoun, Asbel Fontanez, Zakar Handricken, Abubakarr Jaye, Christopher LeBlanc, and Janeth Meraz; bottom row, left to right: Jessie Mindel, Naana Obeng-Marnu, Kimberly Llajaruna Peralta, Priscila Rubio, Antonio Sanchez, Augustus ‘ Gus’ Teran, and Walter Williams.
This year's Day One Amazon Robotics Fellows are, top row, left to right: Omoruyi Atheka, Camille Anne Chungyoun, Asbel Fontanez, Zakar Handricken, Abubakarr Jaye, Christopher LeBlanc, and Janeth Meraz; bottom row, left to right: Jessie Mindel, Naana Obeng-Marnu, Kimberly Llajaruna Peralta, Priscila Rubio, Antonio Sanchez, Augustus ‘ Gus’ Teran, and Walter Williams.

Amazon Robotics expands Day One Fellowship Program and selects 14 recipients for 2022

Program empowers Black, Latinx, and Native American students to become industry leaders through scholarship, research, and career opportunities.

Amazon Robotics recently announced fourteen new recipients of the Amazon Robotics Day One Fellowship, a program established to support exceptionally talented students from diverse technical and multicultural backgrounds who are pursuing master of science degrees. The program was developed to suppprt emerging leaders in science from backgrounds underrepresented in STEM, awarding scholarships, mentorship, and career opportunities.

Related content
The fellowships are aimed at helping students from underrepresented backgrounds establish careers in robotics, engineering, computer science, and related fields.

The fellowship program was launched last year with an inaugural class of six recipients across three universities. The program has expanded to support fourteen fellows across seven universities, including Brown University, Boston University, Harvard University, Massachusetts Institute of Technology, Northeastern University, Stanford University, and Worcester Polytechnic Institute.

Recipients receive fully funded fellowships in robotics, engineering, computer science, and related fields that will cover tuition, living expenses, and other costs.

Fellowship recipients also have the opportunity to participate in Amazon Robotics’ internship program. During their summer at Amazon Robotics, the Fellows connect with and receive mentorship from industry experts and members of leadership to gain hands-on experience in their chosen field. Fellows seeking full time industry positions also have the opportunity to join Amazon at the conclusion of their graduate studies.

Related content
Three of Amazon’s leading roboticists — Sidd Srinivasa, Tye Brady, and Philipp Michel — discuss the challenges of building robotic systems that interact with human beings in real-world settings.

“We have selected and invested in another outstanding class of future scientists and engineers to pursue some of the hardest problems in our field at some of the best academic institutions on the planet. We are excited to be a part of their journey to greatness,” said Tye Brady, chief technologist, Amazon Robotics.

The fourteen recipients of the 2022 Day One Amazon Robotics Fellowships are:

Omoruyi Atheka, Stanford University: Atheka will pursue his master's in mechanical engineering at Stanford University where he hopes to become an expert in robotics and develop his problem-solving skills and research independence. He will receive his bachelor’s at MIT in mechanical engineering with a concentration in optics, with a minor in design and political science. During his time at MIT, he has gained extensive knowledge relating to mechanical engineering, technology, and design.

Camille Anne Chungyoun, Stanford University: Chungyoun will pursue a master’s in robotics at Stanford University, where she hopes to conduct research in robotic locomotion and bio-inspired robotics, ultimately allowing her to work in an R&D industry position where she can use robotic locomotion to advance human health and well-being. She is currently finishing her bachelor’s in mechanical engineering, with a concentration in mechatronics, at the University of Washington.

Asbel Fontanez, Boston University: Fontanez is pursuing a master’s in robotics and autonomous systems at Boston University where he earned his bachelor’s in electrical engineering with a concentration in machine learning. In addition to spending more than 10 years participating in robotics competitions, he has also worked with engineers from Florida Power & Light, Motorola Solutions, and SpaceX. His experiences have given him a greater foundational understanding in many areas of engineering, including mechanical, electrical, and computer engineering.

Zakar Handricken, Northeastern University: Handricken is pursuing a master's in computer science at Northeastern in the Khoury College of Computer Sciences, Institute for Experiential Robotics, led by Taskin Padir. He earned his bachelor’s in computer science from Bridgewater State University where he participated in undergraduate research and worked as an intern at AcadiaSoft. He later joined Fidelity Investments as a software engineer, where he worked on projects under Fidelity's Center for Applied Technology and Data Warehouse. At Fidelity, he began his independent study of artificial intelligence to understand and research its application in robotics, data systems, and more within multidisciplinary areas.

Abubakarr Jaye, Brown: Jaye is pursuing a master’s of engineering with an emphasis on machine learning (ML) at Brown University. He received his bachelor’s in computer science and economics at the University of Illinois Urbana-Champaign. It was there he learned of ML through a friend who demonstrated an animal image neural net classifier built from scratch. His focus is currently on the application of machine learning in finance and economics.

Christopher LeBlanc, Northeastern University: LeBlanc will pursue a master's in artificial intelligence with a specialization in robotics and agent-based systems. He interned for the Louisiana Material Design Alliance, a group concerned with the innovation of novel manufacturing methods. LeBlanc obtained his bachelor's from Louisiana State University in computer science with a minor in chemistry. He decided to follow a career in artificial intelligence to satisfy his long-held curiosity about how a machine could learn. His research interests include robotics, reinforcement learning, and their applications in the automation of industrial systems.

Janeth Meraz, Brown: Meraz is pursuing a master’s degree in computer science at Brown. She earned dual bachelor's degrees in computer science and mathematics from the University of Texas at El Paso. She worked as a researcher studying the optimization of neural network weight-initialization in Diego Aguirre's Applied Intelligence Research Lab, and is a member of the Association for Computing Machinery. Meraz has also served as a mentor in the Computing Alliance for Hispanic Serving Institutions Allyship Program.

Jessie Mindel, MIT: Mindel will earn her bachelor’s in electrical engineering and computer science with an emphasis on new media at University of California, Berkeley. At the core of her work lies storytelling, placemaking, and community-centered design. She seeks to build embodied, empathetic, and narrative technologies that help people better understand themselves, more meaningfully connect with others, and more creatively explore their worlds.

Naana Obeng-Marnu, MIT: Obeng-Marnu will pursue a master’s in media arts and sciences at the MIT Media Lab under the Center for Constructive Communication. She graduated with honors from Brown University with a degree in English, nonfiction writing. She was a premier partner experience operations associate at Meta where she built frameworks and automated processes to better support creators and publishers. As secretary of the board of directors for Brown Broadcasting Service she works alongside industry leaders in new media to support and mentor Brown University students interested in media, design, and tech careers.

Kimberly Llajaruna Peralta, Harvard: Peralta will pursue a master’s degree in data science at Harvard University. She earned her bachelors from the University of Rochester in mechanical engineering and studio arts, where she also worked at Corning as a mechanical process engineer. She developed an interest in data driven decision making during her time at the Corning lens manufacturing facility while working on projects to determine optimal tolerances for manufacturing tools and to design tools that improve the precision of coaters.

Priscila Rubio, Boston University: Rubio will pursue a master’s of science in robotics and autonomous systems at Boston University. She previously interned at the National Institutes of Health, where she investigated the activation mechanism of A3 adenosine receptors. She later interned at Northrop Grumman where she worked to help design mechanical ground support equipment for the Minotaur rocket. She received her bachelors in mechanical engineering at the University of Maryland. There, she worked at US Medical Innovations and used her mechatronics knowledge to extend the capabilities of surgical instruments.

Antonio Sanchez, Worcester Polytechnic Institute: Sanchez will pursue a master’s in either soft robotics or human/robot interaction in the WPI Soft Robotics lab. He will receive his bachelor’s at Texas A&M in mechatronics, where, throughout his undergraduate career, he held several engineering internships. He is interested in embedded electronic systems, machine learning, and computer science.

Augustus ‘ Gus’ Teran, Worcester Polytechnic Institute: Teran is pursuing a master’s in robotics engineering with a focus on multi-robot systems at WPI, where he earned dual bachelor’s degrees in computer science and engineering. He was one of the authors of “Air-Releasable Soft Robots for Explosive Ordnance Disposal” which explored using soft robotics to assist in the de-mining of land mines. The paper was accepted by the IEEE International Conference on Soft Robotics.

Walter Williams, Harvard: Williams will pursue a master’s of engineering in computational science and engineering at Harvard University. He is currently finishing his bachelor's degree in computer science at University of Memphis. There he worked at the Cybersecurity Lab of the Center for Information Assurance, focusing on machine learning based applications in cybersecurity. He has also competed in machine learning competitions, finishing in the top 11% of Kaggle's 2020 Plant Pathology competition.

Read about the teams that are creating the next robotics innovations at Amazon, see job opportunities, and find out more about Amazon's participation at ICRA.

Research areas

Related content

US, CA, Palo Alto
Amazon is looking for passionate, talented, and inventive Software Development Managers to help build industry-leading search technology. Our team's mission is to create the next generation of search infrastructure and science that will provide a delightful experience to Amazon’s customers. You will manage internationally recognized experts to develop large-scale, high-performing systems that will integrate with the state of the art in search, information retrieval, natural language understanding, graph neural networks, and other machine learning techniques. Your work will directly impact millions of our customers.
US, VA, Arlington
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics, as well as basic familiarity with Python (or R, Matlab, or equivalent) is necessary, and experience with SQL would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Virtual Contact Center-WA
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. About the team The Selling Partner Fees team owns the end-to-end fees experience for two million active third party sellers. We own the fee strategy, fee seller experience, fee accuracy and integrity, fee science and analytics, and we provide scalable technology to monetize all services available to third-party sellers. Within the Science team, our goal is to understand the impact of changing fees on Seller (supply) and Customers (demand) behavior (e.g. price changes, advertising strategy changes, introducing new selection etc.) as well as using this information to optimize our fee structure and maximizing our long term profitability.
US, WA, Seattle
This is a unique opportunity to build technology and science that millions of people will use every day. Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Deep Learning (DL)? We are embarking on a multi-year journey to improve the shopping experience for customers globally. Amazon Search team creates customer-focused search solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. As Amazon expands to new geographies, we are faced with the unique challenge of maintaining the bar on Search Quality due to the diversity in user preferences, multilingual search and data scarcity in new locales. We are looking for an applied researcher to work on improving search on Amazon using NLP, ML, and DL technology. As an Applied Scientist, you will lead our efforts in query understanding, semantic matching (e.g. is a drone the same as quadcopter?), relevance ranking (what is a "funny halloween costume"?), language identification (did the customer just switch to their mother tongue?), machine translation (猫の餌を注文する). This is a highly visible role with a huge impact on Amazon customers and business. As part of this role, you will develop high precision, high recall, and low latency solutions for search. Your solutions should work for all languages that Amazon supports and will be used in all Amazon locales world-wide. You will develop scalable science and engineering solutions that work successfully in production. You will work with leaders to develop a strategic vision and long term plans to improve search globally. We are growing our collaborative group of engineers and applied scientists by expanding into new areas. This is a position on Global Search Quality team in Seattle Washington. We are moving fast to change the way Amazon search works. Together with a multi-disciplinary team you will work on building solutions with NLP/ML/DL at its core. Along the way, you’ll learn a ton, have fun and make a positive impact on millions of people. Come and join us as we invent new ways to delight Amazon customers.
US, WA, Seattle
This is a unique opportunity to build technology and science that millions of people will use every day. Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Deep Learning (DL)? We are embarking on a multi-year journey to improve the shopping experience for customers globally. Amazon Search team creates customer-focused search solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. As Amazon expands to new geographies, we are faced with the unique challenge of maintaining the bar on Search Quality due to the diversity in user preferences, multilingual search and data scarcity in new locales. We are looking for an applied researcher to work on improving search on Amazon using NLP, ML, and DL technology. As an Applied Scientist, you will lead our efforts in query understanding, semantic matching (e.g. is a drone the same as quadcopter?), relevance ranking (what is a "funny halloween costume"?), language identification (did the customer just switch to their mother tongue?), machine translation (猫の餌を注文する). This is a highly visible role with a huge impact on Amazon customers and business. As part of this role, you will develop high precision, high recall, and low latency solutions for search. Your solutions should work for all languages that Amazon supports and will be used in all Amazon locales world-wide. You will develop scalable science and engineering solutions that work successfully in production. You will work with leaders to develop a strategic vision and long term plans to improve search globally. We are growing our collaborative group of engineers and applied scientists by expanding into new areas. This is a position on Global Search Quality team in Seattle Washington. We are moving fast to change the way Amazon search works. Together with a multi-disciplinary team you will work on building solutions with NLP/ML/DL at its core. Along the way, you’ll learn a ton, have fun and make a positive impact on millions of people. Come and join us as we invent new ways to delight Amazon customers.
US, WA, Seattle
The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals. We are seeking an experienced high-energy Economist to help envision, design and build the next generation of retail pricing capabilities. You will work at the intersection of economic theory, statistical inference, and machine learning to design new methods and pricing strategies to deliver game changing value to our customers. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities Amazon’s Pricing Science and Research team is seeking an Economist to help envision, design and build the next generation of pricing capabilities behind Amazon’s on-line retail business. As an economist on our team, you will work at the intersection of economic theory, statistical inference, and machine learning to design new methods and pricing strategies with the potential to deliver game changing value to our customers. This is an opportunity for a high-energy individual to work with our unprecedented retail data to bring cutting edge research into real world applications, and communicate the insights we produce to our leadership. This position is perfect for someone who has a deep and broad analytic background and is passionate about using mathematical modeling and statistical analysis to make a real difference. You should be familiar with modern tools for data science and business analysis. We are particularly interested in candidates with research background in applied microeconomics, econometrics, statistical inference and/or finance. A day in the life Discussions with business partners, as well as product managers and tech leaders to understand the business problem. Brainstorming with other scientists and economists to design the right model for the problem in hand. Present the results and new ideas for existing or forward looking problems to leadership. Deep dive into the data. Modeling and creating working prototypes. Analyze the results and review with partners. Partnering with other scientists for research problems. About the team The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals.
US, CA, San Francisco
The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon's on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon's goods and services are aligned with Amazon's corporate goals. We are seeking an experienced high-energy Economist to help envision, design and build the next generation of retail pricing capabilities. You will work at the intersection of statistical inference, experimentation design, economic theory and machine learning to design new methods and pricing strategies for assessing pricing innovations. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities Amazon's Pricing Science and Research team is seeking an Economist to help envision, design and build the next generation of pricing capabilities behind Amazon's on-line retail business. As an economist on our team, you will will have the opportunity to work with our unprecedented retail data to bring cutting edge research into real world applications, and communicate the insights we produce to our leadership. This position is perfect for someone who has a deep and broad analytic background and is passionate about using mathematical modeling and statistical analysis to make a real difference. You should be familiar with modern tools for data science and business analysis. We are particularly interested in candidates with research background in experimentation design, applied microeconomics, econometrics, statistical inference and/or finance. A day in the life Discussions with business partners, as well as product managers and tech leaders to understand the business problem. Brainstorming with other scientists and economists to design the right model for the problem in hand. Present the results and new ideas for existing or forward looking problems to leadership. Deep dive into the data. Modeling and creating working prototypes. Analyze the results and review with partners. Partnering with other scientists for research problems. About the team The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon's on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon's goods and services are aligned with Amazon's corporate goals.
United States, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning to help Amazon provide the best experience to our Selling Partners by automatically understanding and addressing their challenges, needs and opportunities? Do you want to build advanced algorithmic systems that are powered by state-of-art ML, such as Natural Language Processing, Large Language Models, Deep Learning, Computer Vision and Causal Modeling, to seamlessly engage with Sellers? Are you excited by the prospect of analyzing and modeling terabytes of data and creating cutting edge algorithms to solve real world problems? Do you like to build end-to-end business solutions and directly impact the profitability of the company and experience of our customers? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Selling Partner Experience Science team. Key job responsibilities Use statistical and machine learning techniques to create the next generation of the tools that empower Amazon's Selling Partners to succeed. Design, develop and deploy highly innovative models to interact with Sellers and delight them with solutions. Work closely with teams of scientists and software engineers to drive real-time model implementations and deliver novel and highly impactful features. Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. Research and implement novel machine learning and statistical approaches. Lead strategic initiatives to employ the most recent advances in ML in a fast-paced, experimental environment. Drive the vision and roadmap for how ML can continually improve Selling Partner experience. About the team Selling Partner Experience Science (SPeXSci) is a growing team of scientists, engineers and product leaders engaged in the research and development of the next generation of ML-driven technology to empower Amazon's Selling Partners to succeed. We draw from many science domains, from Natural Language Processing to Computer Vision to Optimization to Economics, to create solutions that seamlessly and automatically engage with Sellers, solve their problems, and help them grow. Focused on collaboration, innovation and strategic impact, we work closely with other science and technology teams, product and operations organizations, and with senior leadership, to transform the Selling Partner experience.
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.