This year's Day One Amazon Robotics Fellows are, top row, left to right: Omoruyi Atheka, Camille Anne Chungyoun, Asbel Fontanez, Zakar Handricken, Abubakarr Jaye, Christopher LeBlanc, and Janeth Meraz; bottom row, left to right: Jessie Mindel, Naana Obeng-Marnu, Kimberly Llajaruna Peralta, Priscila Rubio, Antonio Sanchez, Augustus ‘ Gus’ Teran, and Walter Williams.
This year's Day One Amazon Robotics Fellows are, top row, left to right: Omoruyi Atheka, Camille Anne Chungyoun, Asbel Fontanez, Zakar Handricken, Abubakarr Jaye, Christopher LeBlanc, and Janeth Meraz; bottom row, left to right: Jessie Mindel, Naana Obeng-Marnu, Kimberly Llajaruna Peralta, Priscila Rubio, Antonio Sanchez, Augustus ‘ Gus’ Teran, and Walter Williams.

Amazon Robotics expands Day One Fellowship Program and selects 14 recipients for 2022

Program empowers Black, Latinx, and Native American students to become industry leaders through scholarship, research, and career opportunities.

Amazon Robotics recently announced fourteen new recipients of the Amazon Robotics Day One Fellowship, a program established to support exceptionally talented students from diverse technical and multicultural backgrounds who are pursuing master of science degrees. The program was developed to support emerging leaders in science from backgrounds underrepresented in STEM, awarding scholarships, mentorship, and career opportunities.

Related content
The fellowships are aimed at helping students from underrepresented backgrounds establish careers in robotics, engineering, computer science, and related fields.

The fellowship program was launched last year with an inaugural class of six recipients across three universities. The program has expanded to support fourteen fellows across seven universities, including Brown University, Boston University, Harvard University, Massachusetts Institute of Technology, Northeastern University, Stanford University, and Worcester Polytechnic Institute.

Recipients receive fully funded fellowships in robotics, engineering, computer science, and related fields that will cover tuition, living expenses, and other costs.

Fellowship recipients also have the opportunity to participate in Amazon Robotics’ internship program. During their summer at Amazon Robotics, the Fellows connect with and receive mentorship from industry experts and members of leadership to gain hands-on experience in their chosen field. Fellows seeking full time industry positions also have the opportunity to join Amazon at the conclusion of their graduate studies.

Related content
Three of Amazon’s leading roboticists — Sidd Srinivasa, Tye Brady, and Philipp Michel — discuss the challenges of building robotic systems that interact with human beings in real-world settings.

“We have selected and invested in another outstanding class of future scientists and engineers to pursue some of the hardest problems in our field at some of the best academic institutions on the planet. We are excited to be a part of their journey to greatness,” said Tye Brady, chief technologist, Amazon Robotics.

The fourteen recipients of the 2022 Day One Amazon Robotics Fellowships are:

Omoruyi Atheka, Stanford University: Atheka will pursue his master's in mechanical engineering at Stanford University where he hopes to become an expert in robotics and develop his problem-solving skills and research independence. He will receive his bachelor’s at MIT in mechanical engineering with a concentration in optics, with a minor in design and political science. During his time at MIT, he has gained extensive knowledge relating to mechanical engineering, technology, and design.

Camille Anne Chungyoun, Stanford University: Chungyoun will pursue a master’s in robotics at Stanford University, where she hopes to conduct research in robotic locomotion and bio-inspired robotics, ultimately allowing her to work in an R&D industry position where she can use robotic locomotion to advance human health and well-being. She is currently finishing her bachelor’s in mechanical engineering, with a concentration in mechatronics, at the University of Washington.

Asbel Fontanez, Boston University: Fontanez is pursuing a master’s in robotics and autonomous systems at Boston University where he earned his bachelor’s in electrical engineering with a concentration in machine learning. In addition to spending more than 10 years participating in robotics competitions, he has also worked with engineers from Florida Power & Light, Motorola Solutions, and SpaceX. His experiences have given him a greater foundational understanding in many areas of engineering, including mechanical, electrical, and computer engineering.

Zakar Handricken, Northeastern University: Handricken is pursuing a master's in computer science at Northeastern in the Khoury College of Computer Sciences, Institute for Experiential Robotics, led by Taskin Padir. He earned his bachelor’s in computer science from Bridgewater State University where he participated in undergraduate research and worked as an intern at AcadiaSoft. He later joined Fidelity Investments as a software engineer, where he worked on projects under Fidelity's Center for Applied Technology and Data Warehouse. At Fidelity, he began his independent study of artificial intelligence to understand and research its application in robotics, data systems, and more within multidisciplinary areas.

Abubakarr Jaye, Brown: Jaye is pursuing a master’s of engineering with an emphasis on machine learning (ML) at Brown University. He received his bachelor’s in computer science and economics at the University of Illinois Urbana-Champaign. It was there he learned of ML through a friend who demonstrated an animal image neural net classifier built from scratch. His focus is currently on the application of machine learning in finance and economics.

Christopher LeBlanc, Northeastern University: LeBlanc will pursue a master's in artificial intelligence with a specialization in robotics and agent-based systems. He interned for the Louisiana Material Design Alliance, a group concerned with the innovation of novel manufacturing methods. LeBlanc obtained his bachelor's from Louisiana State University in computer science with a minor in chemistry. He decided to follow a career in artificial intelligence to satisfy his long-held curiosity about how a machine could learn. His research interests include robotics, reinforcement learning, and their applications in the automation of industrial systems.

Janeth Meraz, Brown: Meraz is pursuing a master’s degree in computer science at Brown. She earned dual bachelor's degrees in computer science and mathematics from the University of Texas at El Paso. She worked as a researcher studying the optimization of neural network weight-initialization in Diego Aguirre's Applied Intelligence Research Lab, and is a member of the Association for Computing Machinery. Meraz has also served as a mentor in the Computing Alliance for Hispanic Serving Institutions Allyship Program.

Jessie Mindel, MIT: Mindel will earn her bachelor’s in electrical engineering and computer science with an emphasis on new media at University of California, Berkeley. At the core of her work lies storytelling, placemaking, and community-centered design. She seeks to build embodied, empathetic, and narrative technologies that help people better understand themselves, more meaningfully connect with others, and more creatively explore their worlds.

Naana Obeng-Marnu, MIT: Obeng-Marnu will pursue a master’s in media arts and sciences at the MIT Media Lab under the Center for Constructive Communication. She graduated with honors from Brown University with a degree in English, nonfiction writing. She was a premier partner experience operations associate at Meta where she built frameworks and automated processes to better support creators and publishers. As secretary of the board of directors for Brown Broadcasting Service she works alongside industry leaders in new media to support and mentor Brown University students interested in media, design, and tech careers.

Kimberly Llajaruna Peralta, Harvard: Peralta will pursue a master’s degree in data science at Harvard University. She earned her bachelors from the University of Rochester in mechanical engineering and studio arts, where she also worked at Corning as a mechanical process engineer. She developed an interest in data driven decision making during her time at the Corning lens manufacturing facility while working on projects to determine optimal tolerances for manufacturing tools and to design tools that improve the precision of coaters.

Priscila Rubio, Boston University: Rubio will pursue a master’s of science in robotics and autonomous systems at Boston University. She previously interned at the National Institutes of Health, where she investigated the activation mechanism of A3 adenosine receptors. She later interned at Northrop Grumman where she worked to help design mechanical ground support equipment for the Minotaur rocket. She received her bachelors in mechanical engineering at the University of Maryland. There, she worked at US Medical Innovations and used her mechatronics knowledge to extend the capabilities of surgical instruments.

Antonio Sanchez, Worcester Polytechnic Institute: Sanchez will pursue a master’s in either soft robotics or human/robot interaction in the WPI Soft Robotics lab. He will receive his bachelor’s at Texas A&M in mechatronics, where, throughout his undergraduate career, he held several engineering internships. He is interested in embedded electronic systems, machine learning, and computer science.

Augustus ‘ Gus’ Teran, Worcester Polytechnic Institute: Teran is pursuing a master’s in robotics engineering with a focus on multi-robot systems at WPI, where he earned dual bachelor’s degrees in computer science and engineering. He was one of the authors of “Air-Releasable Soft Robots for Explosive Ordnance Disposal” which explored using soft robotics to assist in the de-mining of land mines. The paper was accepted by the IEEE International Conference on Soft Robotics.

Walter Williams, Harvard: Williams will pursue a master’s of engineering in computational science and engineering at Harvard University. He is currently finishing his bachelor's degree in computer science at University of Memphis. There he worked at the Cybersecurity Lab of the Center for Information Assurance, focusing on machine learning based applications in cybersecurity. He has also competed in machine learning competitions, finishing in the top 11% of Kaggle's 2020 Plant Pathology competition.

Read about the teams that are creating the next robotics innovations at Amazon, see job opportunities, and find out more about Amazon's participation at ICRA.

Research areas

Related content

US, WA, Bellevue
We are a part of Amazon Alexa organization where our mission is “delight customers through contextual and personalized proactive experiences that keep customers informed, engaged, and productive without cognitive burden”. We are developing advanced systems to deliver engaging, intuitive, and adaptive content recommendations across all Amazon surfaces. We aim to facilitate seamless reasoning and customer experiences, surpassing the capabilities of previous machine learning models. We are looking for a passionate, talented, and resourceful Senior Applied Scientist in the field of Natural Language Processing (NLP), Large Language Model (LLM), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware personal assistant. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, shipping solutions via rapid experimentation and then iterating on user feedback and interactions. Key job responsibilities As a Senior Applied Scientist, you will leverage your technical expertise and experience to demonstrate leadership in tackling large complex problems, setting the direction and collaborating with applied scientists and engineers to develop novel algorithms and modeling techniques to enable timely, relevant and delightful recommendations and conversations. Your work will directly impact our customers in the form of products and services that make use of various machine learing, deep learning and language model technologies. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in the state of art.
US, WA, Seattle
Amazon continues to invest heavily in building our world class advertising business. Our products are strategically important to our Retail and Marketplace businesses, driving long term growth. We deliver billions of ad impressions and millions of clicks daily, breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and strong bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The Sponsored Products Monetization team is broadly responsible for pricing of ads on Amazon search pages, balancing short-term and long-term ad revenue growth to drive sustainable marketplace health. As a Senior Applied Scientist on our team, you will be responsible for defining the science and technical strategy for one of our most impactful marketplace controls, creating lasting value for Amazon and our advertising customers. You will help to identify unique opportunities to create customized and delightful shopping experience for our growing marketplaces worldwide. Your job will be identify big opportunities for the team that can help to grow Sponsored Products business working with retail partner teams, Product managers, Software engineers and PMs. You will have opportunity to design, run and analyze A/B experiments to improve the experience of millions of Amazon shoppers while driving quantifiable revenue impact. More importantly, you will have the opportunity to broaden your technical skills in an environment that thrives on creativity, experimentation, and product innovation. Key job responsibilities - Lead science, tech and business strategy and roadmap for Sponsored Products Monetization - Drive alignment across multiple organizations for science, engineering and product strategy to achieve business goals - Lead and mentor scientists and engineers across teams to develop, test, launch and improve of science models designed to optimize the shopper experience and deliver long term value for Amazon and advertisers - Develop state of the art experimental approaches and ML models - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving - Research new and innovative machine learning approaches - Recruit Scientists to the team and provide mentorship
US, CA, East Palo Alto
The Applied Scientist will play a critical role in the research, develop, and implementation of solutions to key challenges in developing conversational AI systems that can understand and communicate with customers in a natural and contextually appropriate manner. This involves tackling complex problems in areas such as multi-turn dialogue management, knowledge grounding, and open-ended generation. Key job responsibilities 1. Research and development of LLM-based chatbots and conversational AI systems for customer service applications. 2. Design and implement state-of-the-art NLP and ML models for tasks such as language understanding, dialogue management, and response generation. 3. Collaborate with cross-functional teams, including data scientists, software engineers, and product managers, to integrate LLM-based solutions into Amazon's customer service platforms. 4. Develop and implement strategies for data collection, annotation, and model training to ensure high-quality and robust performance of the chatbots. 5. Conduct experiments and evaluations to measure the performance of the developed models and systems, and identify areas for improvement. 6. Stay up-to-date with the latest advancements in NLP, LLMs, and conversational AI, and explore opportunities to incorporate new techniques and technologies into Amazon's customer service solutions. 7. Collaborate with internal and external research communities, participate in conferences and publications, and contribute to the advancement of the field. A day in the life We thrive on solving challenging problems to innovate for our customers. By pushing the boundaries of technology, we create unparalleled experiences that enable us to rapidly adapt in a dynamic environment. Our decisions are guided by data, and we collaborate with engineering, science, and product teams to foster an innovative learning environment. If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! Benefits Summary: Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan About the team Join our team of scientists and engineers who develop and deploy LLM-based Conversational AI systems to enhance Amazon's customer service experience and effectiveness. We work on innovative solutions that help customers solve their issues and get their questions answered efficiently, and associate-facing products that support our customer service associate workforce.
US, WA, Seattle
The Alexa Smart Home team is focused on making Alexa the user interface for the home. From the simplest voice commands (turn on the lights, turn down the heat) to use cases spanning home security, home entertainment, and the home environment; we are evolving Alexa into an intelligent, indispensable companion that automates daily routines, simplifies interaction with appliances and electronics, and alerts when something unusual is detected. You can be part of a team delivering features that are highly anticipated by media and well received by our customers. As an Applied Scientist, you will work with other scientists and software developers to design and build the next generation of Smart Home voice control using the latest Large Language Models (LLMs). And, you will have the satisfaction of working on a product your friends and family can relate to, and want to use every day. Key job responsibilities - Develop new inference and training techniques to improve the performance of LLMs for Smart Home control and Automation - Develop robust techniques for synthetic data generation for training large models and maintaining model generalization - Mentoring junior scientists to improve their skills, knowledge, and their ability to get things done About the team We are a team of Scientists, Machine Learning Engineers, and Software Developers that work together to make Alexa more insightful and proactive through ambient intelligence, with features like Alexa Hunches that automatically control Smart Home devices. We are interdisciplinary and we act like it. We ask each other questions and value our different perspectives.
US, MA, Boston
As part of Alexa CAS team, our mission is to create a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Supervised Fine-Tuning (SFT), In-Context Learning (ICL), Learning from Human Feedback (LHF), etc. Your work will directly impact our customers in the form of novel products and services . Key job responsibilities . You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. . You will work on core LLM technologies, including developing best-in-class modeling, prompt optimization algorithms to enable Conversation AI use cases · Build and measure novel online & offline metrics for personal digital assistants and customer scenarios, on diverse devices and endpoints · Create, innovate and deliver deep learning, policy-based learning, and/or machine learning based algorithms to deliver customer-impacting results · Perform model/data analysis and monitor metrics through online A/B testing · Research and implement novel machine learning and deep learning algorithms and models.
US, CA, Santa Clara
The Geospatial science team solves problems at the interface of ML/AI and GIS for Amazon's last mile delivery programs. We have access to Earth-scale datasets and use them to solve challenging problems that affect hundreds of thousands of transporters. We are looking for strong candidates to join the transportation science team which owns time estimation, GPS trajectory learning, and sensor fusion from phone data. You will join a team of GIS and ML domain experts and be expected to develop ML models, present research results to stakeholders, and collaborate with SDEs to implement the models in production. Key job responsibilities - Understand business problems and translate them into science problems - Develop ML models - Present research results - Write and publish papers - Collaborate with other scientists
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and crush (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role: We are looking for an experienced Data Scientist to support our central analytics and finance disciplines at Twitch. Bringing to bear a mixture of data analysis, dashboarding, and SQL query skills, you will use data-driven methods to answer business questions, and deliver insights that deepen understanding of our viewer behavior and monetization performance. Reporting to the Head of Finance, Analytics, and Business Operations, your team will be located in San Francisco. While there is a preference for the San Francisco Bay Area. You Will: - Create actionable insights from data related to Twitch viewers, creators, advertising revenue, commerce revenue, and content deals. - Develop dashboards and visualizations to communicate points of view that inform business decision-making. - Create and maintain complex queries and data pipelines for ad-hoc analyses. - Author narratives and documentation that support conclusions. - Collaborate effectively with business partners, product managers, and data team members to align data science efforts with strategic goals.
US, WA, Seattle
The Private Brands Discovery team designs innovative machine learning solutions to enhance customer awareness of Amazon’s own brands and help customers find products they love. This interdisciplinary team of scientists and engineers incubates and develops disruptive solutions using cutting-edge technology to tackle some of the most challenging scientific problems at Amazon. To achieve this, the team utilizes methods from Natural Language Processing, deep learning, large language models (LLMs), multi-armed bandits, reinforcement learning, Bayesian optimization, causal and statistical inference, and econometrics to drive discovery throughout the customer journey. Our solutions are crucial to the success of Amazon’s private brands and serve as a model for discovery solutions across the company. This role presents a high-visibility opportunity for someone eager to make a business impact, delve into large-scale problems, drive measurable actions, and collaborate closely with scientists and engineers. As a team lead, you will be responsible for developing and coaching talent, guiding the team in designing and developing cutting-edge models, and working with business, marketing, and software teams to address key challenges. These challenges include building and improving models for sourcing, relevance, and CTR/CVR estimation, deploying reinforcement learning methods in production etc. In this role, you will be a technical leader in applied science research with substantial scope, impact, and visibility. A successful team lead will be an analytical problem solver who enjoys exploring data, leading problem-solving efforts, guiding the development of new frameworks, and engaging in investigations and algorithm development. You should be capable of effectively interfacing between technical teams and business stakeholders, pushing the boundaries of what is scientifically possible, and maintaining a sharp focus on measurable customer and business impact. Additionally, you will mentor and guide scientists to enhance the team's talent and expand the impact of your work.
IN, KA, Bangalore
AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services. Do you have proven analytical capabilities to identify business opportunities, develop predictive models and optimization algorithms to help us build state of the art Support organization? At Amazon, we are working to be the most customer-centric company on earth. To get there, we need exceptionally talented, bright, and driven people. We set big goals and are looking for people who can help us reach and exceed them. Amazon Web Services (AWS) is one of the world’s most comprehensive and broadly adopted cloud platform, offering over 200 fully featured services from data centers globally. Amazon Web Services, Inc. provides services for broad range of applications including compute, storage, databases, networking, analytics, machine learning and artificial intelligence (AI), Internet of Things (IoT), security, and application development, deployment, and management. Global AWS Support BizOPs team is looking for a passionate Data Scientist to model contact forecasting, discovering insights and identifying opportunities through the use of statistics, machine learning, and deep learning to drive business and operational improvements. A successful candidate must be passionate about building solutions that will help drive a more efficient operations network and optimize cost. In this role, you will partner with data engineering, Tooling team, operations, Training, Customer Service, Capacity planning and finance teams, driving optimization and prediction solutions across the network. Key job responsibilities We are looking for an experienced and motivated Sr.Data Scientist with proven abilities to build and manage modeling projects, identify data requirements, build methodology and tools that are statistically grounded The candidate will be an expert in the areas of data science, optimization, machine learning and statistics, and is comfortable facilitating ideation and working from concept through execution. The candidate is customer obsessed, innovative, independent, results-oriented and enjoys working in a fast-paced growing organization. An interest in operations, manufacturing or process improvement is helpful. The ability to embrace this ambiguity and work with a highly distributed team of experts is critical. As we scale up, there is opportunity to own globally impactful work and grow your career in technical, programmatic or people leadership. You will likely work with Python or R, though specific particular modelling language. Your problem-solving ability, knowledge of data models and ability to drive results through ambiguity are more important to us. A day in the life Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, MA, Boston
* Note: This job is located in Hudson, MA Amazon Dash Cart allows shoppers to checkout without lines — you just place the items in the cart and the cart will take care of the rest. Designed and custom-built by Amazonians, our Dash Cart uses a variety of technologies including computer vision, sensor fusion, and advanced machine learning. Check it out at https://www.amazon.com/b?ie=UTF8&node=21289116011. We are looking for an Applied Scientist to develop hardware solutions that require significant innovation for our Amazon Dash Cart team, located in Hudson, MA. As an Applied Scientist within the hardware development team, you will engage with a skilled and accomplished cross-disciplinary staff to conceive and evaluate innovative technologies. You will collaborate with internal and external stakeholders to drive key aspects of technology solution definition, execution and validation. Key job responsibilities - Evaluate or conceive of new cameras, sensors, and computer vision systems which push the limit of existing technologies and delight Dash Cart customers. - Design embedded compute architectures optimized for cost and power efficiency. - Propose hardware solutions and create working prototypes while working with hardware development engineers to bring those prototypes to production. - Develop computer vision algorithms including ISP optimization and video pipelines architectures. - Develop firmware device drivers for interfacing to a range of hardware components and sensors. - Work closely with an inter-disciplinary product development team including outside partners to bring prototypes into production. - Use machine learning, data mining, statistical techniques and others to create actionable, meaningful, and scalable solutions for the business' problems.