Science innovations power Alexa Conversations dialogue management

Dialogue simulator and conversations-first modeling architecture provide ability for customers to interact with Alexa in a natural and conversational manner.

Today we announced the public beta launch of Alexa Conversations dialogue management. Alexa developers can now leverage a state-of-the-art dialogue manager powered by deep learning to create complex, nonlinear experiences — conversations that go well beyond today's typical one-shot interactions, such as "Alexa, what's the weather forecast for today?" or "Alexa, set a ten-minute pasta timer".

Alexa’s natural-language-understanding models classify requests according to domain, or the particular service that should handle the intent that the customer wants executed. The models also identify the slot types of the entities named in the requests, or the roles those entities play in fulfilling the request. In the request “Play ‘Rise Up’ by Andra Day”, the domain is Music, the intent is PlayMusic, and the names “Rise Up” and “Andra Day” fill the slots SongName and ArtistName.

Also at today's Alexa Live event, Nedim Fresko, vice president of Alexa Devices and Developers, announced that Amazon scientists have begun applying deep neural networks to custom skills and are seeing increases in accuracy. Read more here.

Natural conversations don’t follow these kinds of predetermined dialogue paths and often include anaphoric references (such as referring to a previously mentioned song by saying “play it”), contextual carryover of entities, customer revisions of requests, and many other types of interactions.

Alexa Conversations enables customers to interact with Alexa in a natural and conversational manner. At the same time, it relieves developers of the effort they would typically need to expend in authoring complex dialogue management rules, which are hard to maintain and often result in brittle customer experiences. Our dialogue augmentation algorithms and deep-learning models address the challenge of designing flexible and robust conversational experiences.

Dialogue management for Alexa Conversations is powered by two major science innovations: a dialogue simulator for data augmentation that generalizes a small number of sample dialogues provided by a developer into tens of thousands of annotated dialogues, and a conversations-first modeling architecture that leverages the generated dialogues to train deep-learning-based models to support dialogues beyond just the happy paths provided by the sample dialogues.

The Alexa Conversations dialogue simulator

Building high-performing deep-learning models requires large and diverse data sets, which are costly to acquire. With Alexa Conversations, the dialogue simulator automatically generates diversity from a few developer-provided sample dialogues that cover skill functionality, and it also generates difficult or uncommon exchanges that could occur.

The inputs to the dialogue simulator include developer application programming interfaces (APIs), slots and associated catalogues for slot values (e.g. city, state), and response templates (Alexa’s responses in different situations, such as requesting a slot value from the customer). These inputs together with their input arguments and output values define the skill-specific schema of actions and slots that the dialogue manager will predict.

Alexa Conversations dialogue simulator
The Alexa Conversations dialogue simulator generates tens of thousands of annotated dialogue examples that are used to train conversational models.

The dialogue simulator uses these inputs to generate additional sample dialogues in two steps.

In the first step, the simulator generates dialogue variations that represent different paths a conversation can take, such as different sequences of slot values and divergent paths that arise when a customer changes her mind.

More specifically, we conceive a conversation as a collaborative, goal-oriented interaction between two agents, a customer and Alexa. In this setting, the customer has a goal she wants to achieve, such as booking an airplane flight, and Alexa has access to resources, such as APIs for searching flight information or booking flights, that can help the customer reach her goal.

The simulated dialogues are generated through the interaction of two agent simulators, one for the customer, the other for Alexa. From the sample dialogues provided by the developer, the simulator first samples several plausible goals that customers interacting with the skill may want to achieve.

Conditioned on a sample goal, we generate synthetic interactions between the two simulator agents. The customer agent progressively reveals its goal to the Alexa agent, while the Alexa agent gathers the customer agent’s information, confirms information, and asks follow-up questions about missing information, guiding the interaction toward goal completion.

In the second step, the simulator injects language variations into the dialogue paths. The variations include alternate expressions of the same customer intention, such as “recommend me a movie” versus “I want to watch a movie”. Some of these alternatives are provided by the sample conversations and Alexa response templates, while others are generated through paraphrasing.

The variations also include alternate slot values (such as “Andra Day” or “Alicia Keys” for the slot ArtistName), which are sampled from slot catalogues provided by the developer. Through these two steps, the simulator generates tens of thousands of annotated dialogue examples that are used for training the conversational models.

The Alexa Conversations modeling architecture

A natural conversational experience could follow any one of a wide range of nonlinear dialogue patterns. Our conversations-first modeling architecture leverages dialogue-simulator and conversational-modeling components to support dialogue patterns that include carryover of entities, anaphora, confirmation of slots and APIs, and proactively offering related functionality, as well as robust support for a customer changing her mind midway through a conversation.

We follow an end-to-end dialogue-modeling approach, where the models take into account the current customer utterance and context from the entire conversation history to predict the optimal next actions for Alexa. Those actions might include calling a developer-provided API to retrieve information and relaying that information to the customer; asking for more information from the customer; or any number of other possibilities.

The modeling architecture is built using state-of-the-art deep-learning technology and consists of three models: a named-entity-recognition (NER) model, an action prediction (AP) model, and an argument-filling (AF) model. The models are built by combining supervised training techniques on the annotated synthetic dialogues generated by the dialogue simulator and unsupervised pretraining of large Transformer-based components on text corpora.

Alexa Conversations modeling architecture
The Alexa Conversations modeling architecture uses state-of-the-art deep-learning technology and consists of three models: a named-entity-recognition model, an action prediction model, and an argument-filling model. The models are built by combining supervised training techniques on the annotated synthetic dialogues generated by the dialogue simulator and unsupervised pretraining of large Transformer-based components on text corpora.

First, the NER model identifies slots in each of the customer utterances, selecting from slots the developer defined as part of the build-time assets (date, city, etc.). For example, for the request “search for flights to Seattle tomorrow”, the NER model will identify “Seattle” as a city slot and “tomorrow” as a date slot.

The NER model is a sequence-tagging model built using a bidirectional LSTM layer on top of a Transformer-based pretrained sentence encoder. In addition to the current sentence, NER also takes dialogue context as input, which is encoded through a hierarchical LSTM architecture that captures the conversational history, including past slots and Alexa actions.

Next, the AP model predicts the optimal next action for Alexa to take, such as calling an API or responding to the customer to either elicit more information or complete a request. The action space is defined by the APIs and Alexa response templates that the developer provides during the skill-authoring process.

The AP model is a classification model that, like the NER model, uses a hierarchical LSTM architecture to encode the current utterance and past dialogue context, which ultimately passes to a feed-forward network to generate the action prediction.

Finally, the AF model fills in the argument values for the API and response templates by looking at the entire dialogue for context. Using an attention-based pointing mechanism over the dialogue context, the AF model selects compatible slots from all slot values that the NER model recognized earlier.

For example, suppose slot values “Seattle” and “tomorrow” exist in the dialogue context for city and date slots respectively, and the AP model predicted the SearchFlight API as the optimal next action. The AF model will fill in the API arguments with the appropriate values, generating a complete API call: SearchFlight (city=“Seattle”, date="tomorrow").

The AP and AF models may also predict and generate more than one action after a customer utterance. For example, they may decide to first call an API to retrieve flight information and then call an Alexa response template to communicate this information to the customer. Therefore, the AP and AF models can make sequential predictions of actions, including the decision to stop predicting more actions and wait for the next customer request.

The finer points

Consistency check logic ensures that the resulting predictions are all valid actions, consistent with developer-provided information about their APIs. For example, the system would not generate an API call with an empty input argument, if that input argument is required by the developer.

The inputs include the entire dialogue history, as well as the latest customer request, and the resulting model predictions are contextual, relevant, and not repetitive. For example, if a customer has already provided the date of a trip while searching for a flight, Alexa will not ask for the date when booking the flight. Instead, the date provided earlier will contextually carry over and pass to the appropriate API.

We leveraged large pretrained Transformer components (BERT) that encode current and past requests in the conversation. To ensure state-of-the-art model build-time and runtime latency, we performed inference architecture optimizations such as accelerating embedding computation on GPUs, implementing efficient caching, and leveraging both data- and model-level parallelism.

We are excited about the advances that enable Alexa developers to build flexible and robust conversational experiences that allow customers to have natural interactions with their devices. Developers interested in learning more about the "how" of building these conversational experiences should read our accompanying developer blog.

For more information about the technical advances behind Alexa Conversations, at right are relevant publications related to our work in dialogue systems, dialogue state tracking, and data augmentation.

Acknowledgments: The entire Alexa Conversations team for making the innovations highlighted here possible.

Research areas

Related content

IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!