How Andreia Pierce utilizes her science background in her AWS business role

Being able to understand and relate to the needs of working scientists is key to her success.

As far back as she can remember, Andreia Pierce was fascinated by the human brain. “When I was a kid, I always used to say I wanted to be a neurosurgeon. I grew up in Brazil, and I grew up in a family where everyone is a doctor of sorts, whether it's a PhD, or an MD. So I knew I was going to be one. The MBA came later as my interests evolved.” At 17, she moved to Dallas, Texas, where she knew nobody, and spoke just “a few words” of English. 

Andreia Pierce, seen here sitting while smiling, is the head of business development and strategy in the research vertical for Amazon Web Services.
Andreia Pierce is the head of business development and strategy in the research vertical for Amazon Web Services. She has also worked as a professor, with her own lab, and as a medical science liaison and field director in the pharmaceuticals industry.
Courtesy of Andreia Pierce

Today, Pierce is the head of business development and strategy in the research vertical for Amazon Web Services, which might surprise her younger self. But by pursuing her original dream, and marrying it with self-understanding and plenty of real-world experience, she landed in her current role at the end of 2020. How she arrived there is a lesson in following your deeply held interests throughout your career journey.  

Since Pierce “always tried to do everything as quickly as I can” she finished her undergraduate degree at the University of North Texas in three years and pursued a career in clinical psychology, still thinking about how she could best get into brain research. 

She was working on her PhD studies when she discovered she missed the less clinical, more lab-based work of science. “I realized that I really wanted to be more in touch with the science and the biology. So I stopped that work and took some time away,” she says. 

Her “time away” wasn’t just a vacation.

She took a long break, leaving the US: “I went off to Israel and spent about nine months at a Jewish school for girls, learning Jewish philosophy and Jewish law,” she says. The sabbatical worked. “I figured out what I was going to do to get back on track doing the things that I loved. I joined the PhD program in biomedical sciences [at the University of North Texas Health Science Center] with a focus on neuroscience and pharmacology,” she says. There she got back into lab work, researching the structure and function of the 5-HT3A serotonin receptor. A postdoc at UT Southwestern Medical got her into doing more “initial discovery, and basic research” when she worked at a biophysics lab investigating the membrane bilayer.

From there she assumed she would go on to become a professor with her own lab, feeling “resigned” to that path. “I thought my career was all mapped out. And then I joined the Postdoc Association at UT Southwestern Medical as a member of the board. And somebody suggested that I lead the career development chapter of the association.” In helping other scientists figure out what they should do next, Pierce discovered a new path for herself. “That's when I realized that there were so many other things I could do with a PhD in basic sciences,” she says. 

She’d always loved lab work because of her passion for discovery, but it’s a long process, and the relevance of the work can take decades to come to light. “A few years down the road, it may be relevant to a therapeutic area of expertise somewhere and it may be something that is useful in drug development — or it may not,” Pierce says.

I like speed. I have been described by my husband as somebody who thrives on chaos. So I realized, ‘You know, I can actually be a scientist, a PhD, and a business person.'
Andreia Pierce

She realized she liked a faster-paced environment, closer to the end stage of discovery. “I like speed. I have been described by my husband as somebody who thrives on chaos. So I realized, ‘You know, I can actually be a scientist, a PhD, and a business person. There are other careers outside of academic research that would be very fast paced, where the impact to patients is much more immediate,’” she says. 

That's when Pierce decided to join the pharmaceutical industry. She realized the job of medical science liaison — a fast-paced job where Pierce noted the benefits to patients are more immediate — would allow her to leverage her scientific expertise. She took that position at King Pharmaceuticals, a small company that has since been acquired by Pfizer, followed by UCB, a multinational biopharmaceutical company. “I wasn't just talking about science, but I was talking about science with this added pressure of needing to deliver business results. So I loved it,” she says. 

She joined Teva Pharmaceuticals in 2014, eventually moving up the ranks to field director, where she was awarded a Manager of the Year award. In 2018 she moved to AstraZeneca leading the US field medical team, where she was named an outstanding manager. She was then given the opportunity to move into a global role still at AstraZeneca, developing medical strategy— for 67 different markets and multiple disease states — which enabled her to constantly challenge herself.

“It's interesting how I've specialized over the years in immunology and neurology, and neuro immunology. But I've also leveraged my knowledge of immunology to work in disease states like respiratory disorders, which is not neurology at all. It's that ability to flex, and the desire to always learn new things that was so great about that work. I like change. And switching to the business side allowed me to leverage science in a way that every two, three years, I'm having to learn something completely different,” she says.

Switching to the business side allowed me to leverage science in a way that every two, three years, I'm having to learn something completely different.
Andreia Pierce

As her career progressed, Pierce became more and more interested in the business strategy side, which she says “increasingly drives and interests me.” She used whatever time she could find in the evenings and weekends to acquire an MBA from the Southeastern Oklahoma State University, deepening her commitment to a business career. When she decided to open her LinkedIn profile to recruiters in 2019, Amazon reached out. Pierce was surprised.

“I remember looking at the email and going ‘Amazon, what am I going to do at Amazon?’” Then she took a closer look and discovered the company was interested in her leading a team of research subject matter experts on the business side of AWS. That’s when she realized, “Wow! This role was made for me,” she says. 

She loved that the job would give her the opportunity to be a business leader who draws on scientific insight. It gave her the opportunity to not only transition to a business-centric role, but to do it in a way that leveraged her science knowledge. “I didn’t feel like I was neglecting, giving up, or not using all those years that I had spent becoming good at science,” she says. And that experience — being able to understand and relate to the needs of working scientists — is key to her work today. 

Now she leads a team of PhDs who support account managers in the field, the enterprise sales team, as well as people who work internally repackaging AWS cloud computing solutions, creating sales plays and go-to-market plans, to meet the needs of researchers. 

“What my team does is really try to work all angles around helping researchers and academic institutions, federal agencies, and nonprofits to migrate their workloads to the cloud, with the objective of making things faster, easier, and more accurate so they can accelerate the timeline from raw data to results,” she says.

That includes working with a large variety of organizations including biomedical, digital agriculture, veterinary medicine, and on the non-medical side, digital humanities, engineering, applied physics, and even law. Those include University of California, Davis and New York University as well as national and international research agencies like National Aeronautics and Space Administration (NASA), National Science Foundation (NSF), and National Institutes of Health (NIH).

Think outside the box and ask people, ‘Hey, how'd you get to this role and what is it like’? And really try to understand what it is that you want to accomplish.
Andreia Pierce

For scientists interested in pursuing a business role, Pierce recommends talking to people. She suggests joining networking groups, serving on boards of different associations, and finding creative ways to meet new people. “Think outside the box and ask people, ‘Hey, how'd you get to this role and what is it like’? And really try to understand what it is that you want to accomplish,” she says. 

And, she advises, take those steps, even if you aren’t completely clear on specifics.

“I may not have known the titles I wanted to have. But by the time I switched to pharma I knew I wanted to lead a business. And I wanted to do it in a way that was very impactful, where I could create the strategy and have a seat at the table and implement change, not just change things once they have been rolled out to me, but be part of building it.”

Ultimately, she says her career has benefitted from deciding where she wanted to be and, in true Amazonian fashion, working backwards from there.

Pierce writes about how the Maryland Transportation Institute is tracking social distancing efforts with the AWS Cloud and big data.

Research areas

Related content

CA, ON, Toronto
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve associate, employee and manager experiences at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science! The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. Key job responsibilities As an Applied Scientist for People Experience and Technology (PXT) Central Science, you will be working with our science and engineering teams, specifically on re-imagining Generative AI Applications and Generative AI Infrastructure for HR. Applying Generative AI to HR has unique challenges such as privacy, fairness, and seamlessly integrating Enterprise Knowledge and World Knowledge and knowing which to use when. In addition, the team works on some of Amazon’s most strategic technical investments in the people space and support Amazon’s efforts to be Earth’s Best Employer. In this role you will have a significant impact on 1.5 million Amazonians and the communities Amazon serves and ample scope to demonstrate scientific thought leadership and scientific impact in addition to business impact. You will also play a critical role in the organization's business planning, work closely with senior leaders to develop goals and resource requirements, influence our long-term technical and business strategy, and help hire and develop science and engineering talent. You will also provide support to business partners, helping them use the best scientific methods and science-driven tools to solve current and upcoming challenges and deliver efficiency gains in a changing marke About the team The AI/ML team in PXTCS is working on building Generative AI solutions to reimagine Corp employee and Ops associate experience. Examples of state-of-the-art solutions are Coaching for Amazon employees (available on AZA) and reinventing Employee Recruiting and Employee Listening.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The Global Cross-Channel and Cross- Category Marketing (XCM) org are seeking an experienced Economist to join our team. XCM’s mission is to be the most measurably effective and creatively breakthrough marketing organization in the world in order to strengthen the brand, grow the business, and reduce cost for Amazon overall. We achieve this through scaled campaigning in support of brands, categories, and audiences which aim to create the maximum incremental impact for Amazon as a whole by driving the Amazon flywheel. This is a high impact role with the opportunities to lead the development of state-of-the-art, scalable models to measure the efficacy and effectiveness of a new marketing channel. In this critical role, you will leverage your deep expertise in causal inference to design and implement robust measurement frameworks that provide actionable insights to drive strategic business decisions. Key Responsibilities: Develop advanced econometric and statistical models to rigorously evaluate the causal incremental impact of marketing campaigns on customer perception and customer behaviors. Collaborate cross-functionally with marketing, product, data science and engineering teams to define the measurement strategy and ensure alignment on objectives. Leverage large, complex datasets to uncover hidden patterns and trends, extracting meaningful insights that inform marketing optimization and investment decisions. Work with engineers, applied scientists and product managers to automate the model in production environment. Stay up-to-date with the latest research and methodological advancements in causal inference, causal ML and experiment design to continuously enhance the team's capabilities. Effectively communicate analysis findings, recommendations, and their business implications to key stakeholders, including senior leadership. Mentor and guide junior economists, fostering a culture of analytical excellence and innovation.
US, WA, Seattle
The XCM (Cross Channel Cross-Category Marketing) team seeks an Applied Scientist to revolutionize our marketing strategies. XCM's mission is to build the most measurably effective, creatively impactful, and cross-channel campaigning capabilities possible, with the aim of growing "big-bet" programs, strengthening positive brand perceptions, and increasing long-term free cash flow. As a science team, we're tackling complex challenges in marketing incrementality measurement, optimization and audience segmentation. In this role, you'll collaborate with a diverse team of scientists and economists to build and enhance causal measurement, optimization and prediction models for Amazon's global multi-billion dollar fixed marketing budget. You'll also work closely with various teams to develop scientific roadmaps, drive innovation, and influence key resource allocation decisions. Key job responsibilities 1) Innovating scalable marketing methodologies using causal inference and machine learning. 2) Developing interpretable models that provide actionable business insights. 3) Collaborating with engineers to automate and scale scientific solutions. 4) Engaging with stakeholders to ensure effective adoption of scientific products. 5) Presenting findings to the Amazon Science community to promote excellence and knowledge-sharing.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, CA, San Diego
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Do you love using data to solve complex problems? Are you interested in innovating and developing world-class big data solutions? We have the career for you! EPP Analytics team is seeking an exceptional Data Scientist to recommend, design and deliver new advanced analytics and science innovations end-to-end partnering closely with our security/software engineers, and response investigators. Your work enables faster data-driven decision making for Preventive and Response teams by providing them with data management tools, actionable insights, and an easy-to-use reporting experience. The ideal candidate will be passionate about working with big data sets and have the expertise to utilize these data sets to derive insights, drive science roadmap and foster growth. Key job responsibilities - As a Data Scientist (DS) in EPP Analytics, you will do causal data science, build predictive models, conduct simulations, create visualizations, and influence data science practice across the organization. - Provide insights by analyzing historical data - Create experiments and prototype implementations of new learning algorithms and prediction techniques. - Research and build machine learning algorithms that improve Insider Threat risk A day in the life No two days are the same in Insider Risk teams - the nature of the work we do and constantly shifting threat landscape means sometimes you'll be working with an internal service team to find anomalous use of their data, other days you'll be working with IT teams to build improved controls. Some days you'll be busy writing detections, or mentoring or running design review meetings. The EPP Analytics team is made up of SDEs and Security Engineers who partner with Data Scientists to create big data solutions and continue to raise the bar for the EPP organization. As a member of the team you will have the opportunity to work on challenging data modeling solutions, new and innovative Quicksight based reporting, and data pipeline and process improvement projects. About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.