Eugene Yan
Eugene Yan is an applied scientist at Amazon, but he’s also known for his personal site where he covers topics like machine learning systems, data science methodology, dealing with imposter syndrome, and building data science teams.
Courtesy of Eugene Yan

Eugene Yan and the art of writing about science

Why the Amazon applied scientist takes the time to break down his work for readers.  

Eugene Yan’s career path has taken some unusual turns, but his motivation has always been the same: understanding people so he can help them. A policy analyst turned data scientist, Yan is now an applied scientist at Amazon using customer-behavior data to help recommend the best products. In the world of machine learning, however, he’s best known for the way he writes it all down. On his personal site, Yan covers a range of professional and technical topics like machine learning systems, data science methodology, dealing with imposter syndrome, and building data science teams.

Eugene Yan started in 2020, focusing on general machine learning and career content. Initially it was for personal development, but then people started reading, and now writing posts takes up the majority of his leisure time.

He started the site for personal development, but then people started reading, his network started expanding, and now writing posts takes up the majority of his leisure time. “It snowballed,” he said. “Writing helps me learn better. And when I share it online, it attracts like-minded readers and helps me make new friends. ”

Born in Singapore, Yan studied psychology at Singapore Management University. “I was curious about people, how they perceive and how they behave,” he said. His college research focused on how competition affects people differently — motivating some and intimidating others. After college, he joined the Singapore government as a policy analyst sifting through legal cases and trade agreements. But it wasn’t long before he began to miss crunching numbers and following the data on human behavior. “I began to envy my colleagues in commodities who relied on numbers and worked with spreadsheets,” Yan said.

He decided to try and make the switch to a data science position based on some familiarity with the subject from his undergraduate research days. He landed a position at IBM in 2013, and from there he moved to data science roles at Lazada, a Southeast Asian e-commerce site, and then UCARE.AI, a healthcare startup.

A desire to help

“In every change in my career, what drives me is helping people,” Yan noted.

At IBM, it was helping people find new roles. At Lazada, it involved helping people find products they need. At UCARE.AI, it entailed predicting chronic diseases and preventing high insurance payouts. “This brings me way more satisfaction than dollars and cents,” he explained.

While at Lazada, Yan decided he needed more training in the fundamentals and pursued a master’s in computer science from the Georgia Institute of Technology. He graduated in 2019, and then he and his wife began considering a move overseas. He applied for a position at Amazon, drawn to the company’s leadership principles and the ability to help customers read more. He relocated to Seattle to join Amazon in 2020.

While Amazon has several ways to help readers find books, from Amazon Book Review to Amazon Charts, Yan is part of a team developing the recommendation systems that power the widgets behind the Amazon Store’s personalized book suggestions. “Customers tell us what they like based on what they do,” he explained. “They browse for a specific book, a genre or a topic.” His team uses those signals to help surface additional books a reader might like. Ultimately, Yan and his team want to make reading easier.

Writing it all down

Early in his transition to data science, Yan started interviewing mentors for advice, some of whom were “rock star data scientists.” He asked what skills he should cultivate to be successful. The one skill a majority of mentors suggested was communication. The people he spoke with emphasized how communication becomes more and more important as you rise in the ranks. “I was like, ‘Are you kidding me?’ But more and more mentors said the same thing,” he recalls. “I thought, ‘This can’t be right, but I'm just going to try it.’”

Yan started practicing his writing, first publishing to a WordPress site. He wrote dozens of posts unnoticed, but then in 2020 created and started writing more general machine learning and career content. His writing began to gain an audience. Posts like “Unpopular opinion — Data scientists should be more end-to-end” received more than 500 likes on Twitter. One post on note-taking received 35,000 unique views in a single day. Feedback and praise began to pour in, and his “practice” website swelled into something much bigger.

For a brief period, Yan tried to sustain this level of social engagement. He wrote to please a mass audience and get clicks. “That quickly became unfulfilling,” he said. Now he focuses his writing on topics he wants to learn and aims for an audience of people he’d hope to be friends or colleagues with. “I might have fewer readers now since I’m choosing more technical topics, but these readers comment, disagree, and email me. Each comment and real relationship are worth more than 10,000 likes,” he said.

The many benefits of good writing

Yan's decision to become a better communicator and writer is especially valuable at Amazon. “The writing culture is rigorous at Amazon,” he said.

Amazon’s working backward method starts with an individual or team imagining the product or service is ready to launch. The individual or team’s first step is to draft a press release announcing the product’s availability, and explaining its significance. Moreover, meetings often start with participants reading a six-page document about the meeting’s topic before discussion begins.

Finding your voice and niche doesn’t happen overnight — you have to write and share your work. So just start somewhere, anywhere, and keep writing.
Eugene Yan

“I write as many documents as I code,” Yan said. Recently he received feedback that one of his design documents was easy to understand and clearly laid out everything the reader needed to know. In this way, his writing skills complement his design and machine learning skills. He also started a new site, Applying ML, which includes interviews with machine learning practitioners.

Yan is often asked by aspiring writers for advice on how they can improve their skills. The number one piece of direction he offers is to write for yourself — what do you want to learn and clarify your thinking on? — rather than social engagement. The second piece of advice: “just write.” The best way to figure out your niche and your audience is to simply put fingers to keyboard and start practicing, he said. Maybe after a dozen — or a few dozen — pieces you find your voice, what you want to write about, or what resonates best with the people reading along.

“If you never start writing, how will you know? Just like Blue Origin’s motto ‘Gradatim Ferociter’, which means ‘Step by step, ferociously’. Finding your voice and niche doesn’t happen overnight — you have to write and share your work,” he said. “So just start somewhere, anywhere, and keep writing.”

Research areas

Related content

US, WA, Seattle
Are you excited about building high-performance robotic systems that can perceive, learn, and act intelligently alongside humans? The Robotics AI team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.The Amazon Robotics team is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. Come join us!
US, VA, Arlington
The Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. As Director for PXT Central Science Technology, you will be responsible for leading multiple teams through rapidly evolving complex demands and define, develop, deliver and execute on our science roadmap and vision. You will provide thought leadership to scientists and engineers to invent and implement scalable machine learning recommendations and data driven algorithms supporting flexible UI frameworks. You will manage and be responsible for delivering some of our most strategic technical initiatives. You will design, develop and operate new, highly scalable software systems that support Amazon’s efforts to be Earth’s Best Employer and have a significant impact on Amazon’s commitment to our employees and communities where we both serve and employ 1.3 million Amazonians. As Director of Applied Science, you will be part of the larger technical leadership community at Amazon. This community forms the backbone of the company, plays a critical role in the broad business planning, works closely with senior executives to develop business targets and resource requirements, influences our long-term technical and business strategy, helps hire and develop engineering leaders and developers, and ultimately enables us to deliver engineering innovations.This role is posted for Arlington, VA, but we are flexible on location at many of our offices in the US and Canada.
US, VA, Arlington
Employer: Services LLCPosition: Data Scientist IILocation: Arlington, VAMultiple Positions Available1. Manage and execute entire projects or components of large projects from start to finish including data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights and recommendations.2. Oversee the development and implementation of data integration and analytic strategies to support population health initiatives.3. Leverage big data to explore and introduce areas of analytics and technologies.4. Analyze data to identify opportunities to impact populations.5. Perform advanced integrated comprehensive reporting, consultative, and analytical expertise to provide healthcare cost and utilization data and translate findings into actionable information for internal and external stakeholders.6. Oversee the collection of data, ensuring timelines are met, data is accurate and within established format.7. Act as a data and technical resource and escalation point for data issues, ensuring they are brought to resolution.8. Serve as the subject matter expert on health care benefits data modeling, system architecture, data governance, and business intelligence tools. #0000
US, TX, Dallas
Employer: Services LLCPosition: Data Scientist II (multiple positions available)Location: Dallas, TX Multiple Positions Available:1. Assist customers to deliver Machine Learning (ML) and Deep Learning (DL) projects from beginning to end, by aggregating data, exploring data, building and validating predictive models, and deploying completed models to deliver business impact to the organization;2. Apply understanding of the customer’s business need and guide them to a solution using AWS AI Services, AWS AI Platforms, AWS AI Frameworks, and AWS AI EC2 Instances;3. Use Deep Learning frameworks like MXNet, PyTorch, Caffe 2, Tensorflow, Theano, CNTK, and Keras to help our customers build DL models;4. Research, design, implement and evaluate novel computer vision algorithms and ML/DL algorithms;5. Work with data architects and engineers to analyze, extract, normalize, and label relevant data;6. Work with DevOps engineers to help customers operationalize models after they are built;7. Assist customers with identifying model drift and retraining models;8. Research and implement novel ML and DL approaches, including using FPGA;9. Develop computer vision and machine learning methods and algorithms to address real-world customer use-cases; and10. Design and run experiments, research new algorithms, and work closely with engineers to put algorithms and models into practice to help solve customers' most challenging problems.11. Approximately 15% domestic and international travel required.12. Telecommuting benefits are available.#0000
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Manager III, Data ScienceLocation: Bellevue, WashingtonPosition Responsibilities:Manage a team of data scientists working to build large-scale, technical solutions to increase effectiveness of Amazon Fulfillment systems. Define key business goals and map them to the success of technical solutions. Aggregate, analyze and model data from multiple sources to inform business decisions. Manage and quantify improvement in the customer experience resulting from research outcomes. Develop and manage a long-term research vision and portfolio of research initiatives, with algorithms and models that to be integrated in production systems. Hire and mentor junior is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Arlington, VirginiaPosition Responsibilities:Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing Oracle, RedShift, and Spark storage systems. Build relationships with stakeholders and counterparts. Analyze data for trends and input validity by inspecting univariate distributions, exploring bivariate relationships, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build models using statistical modeling, mathematical modeling, econometric modeling, network modeling, social network modeling, natural language processing, machine learning algorithms, genetic algorithms, and neural networks. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, IL, Chicago
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist ILocation: Chicago, IllinoisPosition Responsibilities:Build the core intelligence, insights, and algorithms that support the real estate acquisition strategies for Amazon physical stores. Tackle cutting-edge, complex problems such as predicting the optimal location for new Amazon stores by bringing together numerous data assets, and using best-in-class modeling solutions to extract the most information out of them. Work with business stakeholders, software development engineers, and other data scientists across multiple teams to develop innovative solutions at massive is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, WA, Bellevue
How do you design and provide right incentives for millions of sellers that inbound and ship billions of customer orders? How do you measure sellers' response to /causal impacts of capacity control policies we implemented at Amazon using the state-of-the-art econometric techniques? How do you optimize Amazon’s third-party supply chain using new ideas never implemented at this scale to benefit millions of customers worldwide? How do you design and evaluate seller assistance to drive their success? If these type of questions get your mind racing, we want to hear from you.Supply Chain Optimization Technologies (SCOT) optimizes Amazon’s global supply chain end to end and build systems to deliver billions of products to our customers’ doorsteps faster every year while saving hundreds of millions of dollars using economics, operational research, machine learning, and scalable distributed software on the Cloud. Fulfillment by Amazon (FBA) is an Amazon service for our marketplace third party sellers, where our sellers leverage our world-class facilities and provide customers Prime delivery promise on all their goods.We are looking for the next outstanding economist to join our interdisciplinary team of data scientists, research scientists, applied scientists, economists. The ideal candidate combines econometric acumen with strong business judgment. You have versatile modeling skills and are comfortable extracting insights from observational and experimental data. You translate insights into action through proofs-of-concept and partnerships with engineers and data scientists to productionize. You are excited to learn from and alongside seasoned analysts, scientists, engineers, and business leaders. You are an excellent communicator and effectively translate business ideas and technical findings into business action (and customer delight).Key job responsibilitiesProvide data-driven guidance and recommendations on strategic questions facing the FBA leadershipDesign and implement V0 models and experiments to kickstart new initiatives, thinking, and drive system-level changes across AmazonHelp build a long-term research agenda to understand, break down, and tackle the most stubborn and ambiguous business challengesInfluence business leaders and work closely with other scientists at Amazon to deliver measurable progress and change
US, WA, Seattle
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve the employee and manager experience at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science!The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.We are seeking a senior Applied Scientist with expertise in more than one or more of the following areas: machine learning, natural language processing, computational linguistics, algorithmic fairness, statistical inference, causal modeling, reinforcement learning, Bayesian methods, predictive analytics, decision theory, recommender systems, deep learning, time series modeling. In this role, you will lead and support research efforts within all aspects of the employee lifecycle: from candidate identification to recruiting, to onboarding and talent management, to leadership and development, to finally retention and brand advocacy upon exit.The ideal candidate should have strong problem-solving skills, excellent business acumen, the ability to work independently and collaboratively, and have an expertise in both science and engineering. The ideal candidate is not methods-driven, but driven by the research question at hand; in other words, they will select the appropriate method for the problem, rather than searching for questions to answer with a preferred method. The candidate will need to navigate complex and ambiguous business challenges by asking the right questions, understanding what methodologies to employ, and communicating results to multiple audiences (e.g., technical peers, functional teams, business leaders).About the teamWe are a collegial and multidisciplinary team of researchers in People eXperience and Technology (PXT) that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We leverage data and rigorous analysis to help Amazon attract, retain, and develop one of the world’s largest and most talented workforces.
US, WA, Bellevue
Job summaryThe Global Supply Chain-ACES organization aims to raise the bar on Amazon’s customer experience by delivering holistic solutions for Global Customer Fulfillment that facilitate the effective and efficient movement of product through our supply chain. We develop strategies, processes, material handling and technology solutions, reporting and other mechanisms, which are simple, technology enabled, globally scalable, and locally relevant. We achieve this through cross-functional partnerships, listening to the needs of our customers and prioritizing initiatives to deliver maximum impact across the value chain. Within the organization, our Quality team balances tactical operation with operations partners with global engagement on programs to deliver improved inventory accuracy in our network. The organization is looking for an experienced Principal Research Scientist to partner with senior leadership to develop long term strategic solutions. As a Principal Scientist, they will lead critical initiatives for Global Supply Chain, leveraging complex data analysis and visualization to:a. Collaborate with business teams to define data requirements and processes;b. Automate data pipelines;c. Design, develop, and maintain scalable (automated) reports and dashboards that track progress towards plans;d. Define, track and report program success metrics.e. Serve as a technical science lead on our most demanding, cross-functional projects.