Amazon Nova AI Challenge: Trusted Software Agents, Rules

The Amazon Nova AI Challenge: Trusted Software Agents (the “Competition”) is a university competition sponsored by Amazon.com Services LLC (“Sponsor”), in which 10 teams of college or university students compete to accelerate advances in artificial intelligence (“AI”). In this year’s Competition track student teams will focus on secure multi-turn development of web applications using coding assistants. Each team will take on the role of either a ‘model developer’ or ‘red team’. The model developer teams will focus on building LLM-driven coding assistants that can complete complex software engineering tasks to modify and extend full stack web applications. In addition to adding capabilities, coding assistants built by model developer teams must prevent accidental or purposeful introduction of security vulnerabilities into the application. To this end, model developer teams will also build bots that simulate malicious users. They will use these malicious user bots to test their systems and then use these same bots to test the resilience of opposing model developer teams during the Competition. 

Red teams, in contrast, will develop LLM-enabled bots capable of identifying and exploiting vulnerabilities found in the web applications generated by the model developer teams. In addition, red teams will build bots that simulate benign users that communicate with the coding assistants to complete software engineering tasks. 

See below for the Competition details.

By applying to or participating in the Competition, you agree to these Official Rules. Please read them carefully and completely.

COMPETITION CALENDAR

Applications to participate in the Competition can be submitted starting November 10, 2025,  through 11.59 PM PST December 7, 2025. The Competition will run from February  2026 through September 2026 (the "Competition Period"). The Competition phases are noted in the calendar below. The dates are approximate and are subject to change at the Sponsor’s sole discretion.

Phases

Starts on

Phase 1: Participant Application Period

11/10/2025

Phase 2: Sponsor Application Review Period

12/8/2025

Phase 3: Participant Notification Period and Onboarding

12/22/2025

Bootcamp

2/1/2026

Phase 4: Initial Build Period

2/4/2026

Phase 5: Tournament Period

March 2026

Phase 6: Finals Event

September 2026

Winners Announced

October 2026

COMPETITION OVERVIEW

Participating University or college teams will focus on advancing the capabilities of coding assistants, while improving their robustness with respect to security principles. Participating teams will aim to make coding assistants for full stack web development that are maximally capable and preclude vulnerabilities and cyber security threats. During the Competition, each team will focus either on building coding assistants (i.e. model developer teams) or developing automated red teaming techniques to identify potential exploits (i.e. red teams). In addition to building their coding assistant, each model developer team will also be responsible for developing a simulated malicious user that they can use for testing their coding assistant and then in tournaments use them to test the resilience of coding assistants built by other teams. In addition to building their red teaming system, each red team will also be responsible for developing a simulated benign user that will interactively prompt each competing coding assistant to complete a specified task. In applying to the competition, each team may choose to apply for either the red team role or the model developer role, or they may choose to apply for both roles and be assigned a role at the Sponsor’s discretion. Throughout the competition, red teams and model developer teams will participate in a series of tournaments. The tournaments will have two phases, in the first ‘build’ phase each of the model developer teams will be matched up with simulated benign and malicious users in multi-turn conversation directed toward completion of several specified tasks on one of more software repos. This phase will be evaluated through automatic testing of the functionality required to be added to the application in each task. In the second, ‘validation’ phase, each of the generated repos will be tested by the automated red teaming agents, which will seek out and exercise vulnerabilities in the applications. 

ELIGIBILITY

To be eligible to participate in the Competition, you must: (1) be enrolled as a full-time undergraduate or post-graduate student at an accredited college or university (other than colleges or universities located in any of the Restricted Jurisdictions defined below) (“Universities”) and remain a full-time student in good standing at such college or university while participating in the Competition; (2) be at or above the age of majority in your country, state, province or jurisdiction of residence at the time of entry into the Competition; and (3) not be a person or entity subject to U.S. export controls or sanctions, including citizens of any of the Restricted Jurisdictions . Competition is void in Cuba, Iran, Syria, North Korea, Sudan, the region of Crimea, the so-called Donetsk People’s Republic (DNR) or Luhansk People’s Republic (LNR), and where prohibited by law (each, a “Restricted Jurisdiction”). People who, during the Competition Period, are directors, officers, employees, interns, and contractors (“Personnel”) of Sponsor, its parents, subsidiaries, affiliates, and their respective advertising, promotion and public relations agencies, representatives, and agents (collectively, “Competition Entities”), immediate families members of such Personnel (parents, siblings, children, spouses, and life partners of each) and members of the households of such Personnel (whether related or not) are ineligible to participate in this Competition. Sponsor reserves the right to verify eligibility and to adjudicate any dispute at any time.
Entrants (“Entrants”) must enter as part of an “Entrant Team” consisting of one or more students from a single college or university. An Entrant is only permitted to be part of one Entrant Team. Any Entrant that is part of more than one Entrant Team may be disqualified, and the corresponding Entrant Teams may be disqualified at the sole discretion of Sponsor. Only one member of the Entrant Team may submit an application on behalf of an Entrant Team, but all those listed on the application are Entrants. All prize money payable to Entrant Teams will be split evenly among eligible Entrants of a winning Entrant Team (based on the pre-tax amount of prize money), as identified in the application, as updated as permitted by these Official Rules, and who maintain full-time student status in good standing at their college or university during the entire Competition Period.
Each team must select a faculty advisor, who, with respect to that team, will act as the official representative for the Entrant Team’s university or college (the “Faculty Advisor”). Each Entrant Team must have its own Faculty Advisor; Faculty Advisors may not represent multiple teams. Faculty Advisors are not members of the Entrant Team and will not receive any portion of any prize. Faculty Advisors must remain full-time employees of the Entrant Team university or college during the entire Competition Period. During the Competition Period, but no later than July 15, 2026, the Faculty Advisor may request to remove members from the Entrant Team or to add additional members to the Entrant Team. The Faculty Advisor must provide an explanation of the reason for the removal or addition, and any proposed new member must provide documentation requested by Sponsor and agree to comply with these Official Rules. Changes to the Entrant Team are subject to Sponsor’s approval in its sole discretion. If at any point during the Competition Period, the Entrant Team’s Faculty Advisor cannot continue to serve as a Faculty Advisor, the Entrant Team may submit a request to Sponsor to select a new Faculty Advisor. Changes to the Entrant Team’s Faculty Advisor are subject to Sponsor’s approval in its sole discretion. If an Entrant Team fails to have a Faculty Advisor at any point in time during the Competition, for any reason, the Entrant Team may be disqualified.
Each Entrant must be eligible to participate in this Competition and comply with these Official Rules or the Entrant, and the Entrant Team associated with that Entrant, may be disqualified. This Competition is subject to all applicable federal, state, territorial, provincial, and local laws. Competition is void where prohibited. By participating in the Competition, all Entrants accept and agree to comply with and abide by these Official Rules and the decisions of the Sponsor which will be final and binding, including the Sponsor’s right to verify eligibility, to interpret these Official Rules, and to resolve any disputes relating to this Competition at any time. Only Entrants may work on the Competition or their entries (e.g., developer systems, coding assistants, red-teaming systems, or user simulators), although employees of the Sponsor may provide support to the Entrant Team during the Competition Period, and the Faculty Advisor, and other students and faculty members at an Entrant Team’s university or college may provide support and advice to the Entrant Team and may co-author the Technical Article (as defined below) or other research papers.

ADDITIONAL REQUIREMENTS

During all phases of the Competition, Sponsor may in its sole discretion require Entrant Teams to provide periodic status updates, reports, or demonstrations of the developer systems, coding assistants, red-teaming system or user simulators. Sponsor may also require Entrant Teams to comply with additional rules, requirements, or procedures that Sponsor determines, in its sole discretion, are necessary for the administration of the Competition. Sponsor may in its sole discretion penalize teams for noncompliance with any rules, requirements, or procedures, including disqualification from the Competition.

Sponsor may provide Entrants selected to participate in the Competition access to generative AI models, software, software platform, software development kits, libraries, APIs, documentation, sample code, data sets, and related materials (“Program Materials ” and “Restricted Program Materials”) that may be used in connection with the Competition. If an Entrant uses any Program Materials or Restricted Program Materials, the Entrant is subject to and agrees to comply with Sponsor’s Program Materials License Agreement or a substantially similar alternative license that may be applied at Sponsor’s sole discretion. Program Materials and Restricted Program Materials may include APIs, data sets, models, model outputs, and other materials that are not public (“Non-Public Materials”).
Each Entrant and Faculty Advisor agrees that they will not disclose, distribute, or otherwise make available any Non-Public Materials to anyone other than other Entrants of their Entrant Team and the Entrant Team’s Faculty Advisor. Each Entrant (and each Faculty Advisor) agrees that they will use Non-Public Materials only in connection with the development of a developer systems, coding assistant, red-teaming system, or user simulator as part of the Competition and in compliance with these Official Rules. Entrants (and Faculty Advisors) may not use Non-Public Materials for any other purpose. Entrants (and Faculty Advisors) must return or destroy all Non-Public Materials (in any form and including, without limitation, all summaries, copies and excerpts of the same) promptly following any request from Sponsor, or if the Entrant Team discontinues the development or operation of its model or red-teaming system. If any Entrant or Faculty Advisor is disqualified from the Competition, leaves the university, or college or otherwise terminates their participation in the Competition, that individual must immediately return or destroy all Non-Public Materials in their possession. Sponsor reserves the right in its sole discretion to impose additional terms and conditions on the use of Program Materials, and to condition access to Program Materials on Entrants’ agreement to those terms and conditions.

Each Entrant Team and Faculty Advisor agrees that they will not copy, disclose, distribute, or otherwise use any output created by a generative AI model during this competition for any purpose other than the development or improvement of their systems as part of this Competition. Entrant Teams may not publish any model output or publish or deploy their systems for any purpose, including in connection with any paper submission, without prior review and approval by Sponsor.

DESCRIPTION OF COMPETITION PHASES

PHASE 1 “Participant Application Period”: Between November  10, 2025 and December 7, 2025, the student leader of each Entrant Team that wishes to enter the Competition may visit  amazon.science/nova-ai-challenge (the “Competition Site”) to submit their entry information via the YouNoodle, Inc. (“YouNoodle”) application portal, including but not limited to: complete names, contact information, and resumes of all Entrant Team members, proof of university or college enrolled status (e.g., verification of enrollment or an uploaded copy of Entrants’ student IDs), name and contact information of up to three sponsoring Faculty Advisor(s) from the Entrant Team’s university or college , and a bio for each Entrant Team member and Faculty advisor(s).

Sponsor will consider applications by multiple different teams from a single institution, but each Entrant Team must have their own Faculty Advisor, and there can be no overlap in the composition of the Entrant Teams or Faculty Advisors. If more than one Entrant Team is accepted from any university or college, the Entrant Teams will be expected to work independently, and any collaboration or coordination among Entrant Teams will be grounds for disqualification.

Entry Applications may be submitted at any time during the Participant Application Period. Only one individual per Entrant Team, preferably the team lead, may submit an Entry Application on behalf of their Entrant Team. Other members of the Entrant Team must accept the invitation to join the team via the YouNoodle application portal. All Entrants must create an account with YouNoodle if they have not done so already to submit an Entry Application or accept an invitation to join an Entrant Team and participate in the Competition. Creating and maintaining a YouNoodle account is free of charge. All Entry Applications must be complete when the Participant Application Period closes at 11:59 pm Pacific Time on the last day of the Participant Application Period. Entry Applications are not complete until all the online prompts and instructions to upload the Entry Application have been properly followed, the Official Rules have been accepted, and all Entrant Team members and the Faculty Advisors have accepted their invitations to join the Entrant Team via the YouNoodle application portal. Entry Applications may not be revised once submitted. Once submitted, Entry Applications will not be returned and become the property of the Sponsor.

Entry terms: Determination of eligibility and compliance with these Official Rules and any other requirements imposed by Sponsor will be in the sole discretion of the Sponsor. By entering, Entrants represent that all information and materials submitted to Sponsor in connection with the Competition:

  1. are the original work of the Entrant Team or an update to an original work of the Entrant Team;
  2. do not infringe or violate the rights of any third party, including but not limited to copyrights, trademarks or copyrighted material not owned by the Entrant Team, contract and licensing rights, rights of publicity or privacy, moral rights, or any other intellectual property rights; and
  3. are not subject to any third-party agreements, and that Sponsor will not be required to pay or incur any sums to any person or entity as a result of its exercise of any rights granted under these Official Rules.

As referenced above, each Entrant Team will be required to apply for at least one role (i.e., either the red-team role or model developer role). Alternatively, Entrant Teams can choose to apply for both roles and Sponsor will assign one of the two roles to a team based on the Entry Application in Sponsor’s sole discretion.

PHASE 2 “Sponsor Application Review Period”: All eligible Entry Applications will be reviewed by the Sponsor. Sponsor will select up to ten (10) Entrant Teams for the Competition in its sole discretion, based on the following criteria:

  • The technical merit of the approach;
  • The novelty of the idea; and
  • An assessment of the Entrant Team’s ability to execute their plan.

PHASE 3 “Participant Notification Period”: Entrant Teams selected by Sponsor to participate in the Competition will be notified by email at the email address provided in the application portal. Entrant Teams acknowledge that some Entrant Teams may include Entrants and Faculty Advisors who participated in prior competitions and other promotions offered by Sponsor.

Stipends: Each Entrant Team selected to participate in the Initial Build Period will be eligible to receive a restricted research grant of $250,000 U.S. dollars (paid in any number of installments as determined by Sponsor in its sole discretion, subject to Entrant Team’s continued participation in and eligibility for the Competition). These restricted research grants will be awarded to the universities and not the Entrant Teams or any individual Entrant, and will be subject to the university or college signing and returning any agreements or other documents required by Sponsor (including IRS forms W-9 and/or W-8), and to the university or college agreeing in writing that no more than 35% of the research grants may be allocated to administrative fees. Entrant Teams will not be eligible to begin participating in the Competition until all required agreements and other documentation have been completed by the respective university or college. The grants are intended to support two full-time students or the equivalent of two full-time students during the Competition and one month of the Faculty Advisor’s salary. Each university or college will be responsible for allocating and managing the funds within these guidelines and for payment and reporting of any required taxes, withholdings, fees, or duties. Sponsor is not responsible for managing the funds, including their allocation or distribution by the university or college, after they are paid to the university or college. Each member of an Entrant Team whose university or college receives a stipend award, and its Faculty Advisor, will also receive free AWS services to support the development of their model or red-teaming system (subject to reasonable limitations set by Sponsor), and support from the Sponsor as determined by Sponsor.

Stipends are non-transferable except as directed by Sponsor. No stipend substitutions or cash redemptions are allowed except as designated by Sponsor. Except where prohibited by law, all federal, state, provincial, or other tax liabilities or withholdings are the responsibility of the university or college and the Sponsor will not be responsible for any tax deductions which may be necessary, except that Sponsor may withhold taxes as required by law. Universities are responsible for any costs and expenses associated with stipend acceptance and use. If an Entrant Team withdraws from the Competition or does not remain compliant with these Official Rules, Sponsor will be relieved of any obligation to pay any remaining portion of the stipend to the Entrant Team’s university or college All details relating to the stipend not specified herein shall be determined solely by Sponsor.

Boot Camp: Selected Entrant Teams will be invited to a Competition Boot Camp (“Boot Camp”), which Sponsor intends to hold in February 2026 at Sponsor’s headquarters in Seattle, Washington or alternative location as determined by Sponsor. Entrant Teams will be expected to use the stipend towards any uncovered costs associated with the Boot Camp. Faculty Advisors and at least 1 student team member are expected to attend the Boot Camp. In the event that Sponsor is unable to hold a Boot Camp, Sponsor may reschedule or cancel the Boot Camp at its sole discretion, and Sponsor is not required to reimburse any expenses incurred by Entrant Teams.

PHASE 4 “Initial Build Period”: Selected Entrant Teams will develop their model or red-teaming system. Sponsor will provide each Entrant Team with certain Program Materials or Restricted Program Materials by the beginning of the Initial Build Period.

PHASE 5 “Tournament Period”: The Tournament Period will include a series of tournaments. The number of individual tournament rounds, and the exact start and end dates of each of the tournaments will be announced prior to the start of the first tournament. On the start date of each of the tournaments, red teams will submit their red-teaming systems and benign user simulator to the sponsor. On the start date of each of the tournaments. model developer teams will submit their coding assistant and malicious user simulator to the Sponsor. The Sponsor will then execute the build phase of the tournament, matching the different benign user simulators and malicious user simulators with each of the relevant coding assistants. Utility performance will be determined through automated tests associated with each development task. Following the build phase, in the validation phase, the Sponsor will match up each red teaming system with each relevant created applications and use a combination of automated testing and human evaluation to score the identified vulnerabilities and exploits in the applications. Red teams and model developer teams will be ranked separately. Overall ranking of model developer teams will be based on a combination of utility performance on the specified task and defense success in being resilient to exploits attempted by the red teaming bots. Overall ranking of red teams will be based on a combination of utility performance on the specified tasks and attack success in identification and execution of exploits by the red teaming bots.
 Evaluation results may be provided to the Entrant Teams, as determined by Sponsor in its sole discretion. Both red teams and model developer teams may improve their systems in between tournament rounds, after the Sponsor notifies them that a tournament round is complete. Teams may not modify their model or red-teaming systems while the tournament round is ongoing. To move to the Finals Event, teams must meet minimum success criteria that will be established and provided to Entrant Teams during the Tournament Period. Teams that do not meet the criteria at the end of the last tournament may be eliminated following the end of the current Tournament Period. 

Summit: Sponsor at its sole discretion may choose to hold a summit at the end of the Competition where participants discuss their findings and announce the winners of the Competition. Sponsor may elect to provide each finalist Entrant Team reimbursement for the cost of airline tickets (non-refundable coach class booked through Sponsor at least 14 days in advance) to the site of the Summit where Entrant teams will present their innovations from the competition, and the provision of hotel rooms at the site of the Summit or such other event, to permit members of each Entrant Team (up to a maximum number of members determined by Sponsor) and the Faculty Advisor to attend the Summit or such other event. Travel expense subsidies and access to the event may be subject to tax information reporting and withholding to the extent required by law.

Disclosure of Third-Party Funding. If any Entrant Team receives any third-party funding to facilitate its participation in this Competition, such funding must be disclosed to Sponsor no later than the last date of the Tournament Period, along with any requirements imposed on the Entrant Team in connection with the funding. Entrant Teams may not accept or use any third-party funding if acceptance or use of that funding, or any requirements imposed in connection with that funding, conflicts with these Official Rules.

Technical Publication: No later than the first day of the final tournament round in the Tournament period or any other date determined by the Sponsor, all participating Entrant Teams must submit to Sponsor a technical article including (a) the technical approach for their developer systems, coding assistant, red-teaming system, and user simulator, and (b) any comparative experiments performed by the Entrant Team and results of those experiments (a “Technical Article”). Entrant Team’s Technical Article must include sufficient detail to permit other researchers to replicate the work. However, Technical Articles may not include any Non-Public Materials or other confidential information of Sponsor or its affiliates. If a Technical Article does not provide sufficient detail to replicate the work, Sponsor may require the Entrant Team to provide Sponsor any additional information needed to replicate the work. Sponsor will publish the Technical Articles in connection with the Finals Event. Prior to the publication, Sponsor will not disclose Technical Articles to third parties. Entrant Teams may update their Technical Articles prior to the Finals Event.

In addition to the required Technical Articles, Entrants may publish other technical articles describing their work (“Additional Articles”). However, prior to submitting any technical articles to any publication, conference, or other venue for publication, Entrant Teams must obtain Sponsor’s written approval. Additional Articles may not include any Non-Public Materials or other confidential information of Sponsor or its affiliates. Entrants must submit any Additional Articles to Sponsor for review and comment at least two weeks prior to the submission deadline and must make, prior to submission, any changes or deletions requested by Sponsor to protect confidential or other sensitive information.

PHASE 6 “Finals Event”: Sponsor will hold a multi-day Finals Event that will be structured as follows. Sponsor will recruit a panel of coding and cybersecurity experts to serve as judges. These human judges will come onsite to the Sponsor’s campus (Entrant teams will not be onsite during the Finals Event) for the Finals Event. Expert human judges will evaluate both red teams and model developer teams’ success in finals. 

Human judges will work with model developer team’s coding assistants as both malicious and benign users and evaluate their effectiveness and ease of use. Human judges will also observe interaction between user simulator and coding assistants and inspect the results of automated security teaming bots. Human judges will conduct manual red teaming of generated applications. The final ranking and determination of winners for model developers will depend on 1) ease of use of coding assistant to complete tasks 2) quality of solution and 3) resistance of the resulting solution to attempted exploits. The final ranking and determination of winners for red teams will depend on 1) effectiveness in automated identification of exploits 2) quality of user simulation. 

Winners Announcement Event: Sponsor may elect to provide each finalist Entrant Team reimbursement for the cost of airline tickets (non-refundable coach class booked through Sponsor at least 14 days in advance) to the site of the event announcing the winners of the Competition, and the provision of hotel rooms at the site of the Event or such other event, to permit members of each finalist Entrant Team (up to a maximum number of members determined by Sponsor) and the Faculty Advisor to attend the Event or such other event. Travel expense subsidies and access to the event may be subject to tax information reporting and withholding to the extent required by law.

PHOTO, UNIVERSITY LOGO AND TEAM WRITE-UP REQUIREMENTS
Each selected Entrant Team must provide a team photo including all the team members and faculty advisor within 15 days of selection. No photo collage of individual pictures will be accepted. The team photos must be rectangular or square. Entrant Team photos that are strongly horizontal or vertical will not be accepted. The Entrant Team must provide a 50-word write-up about each individual team member and faculty advisor(s) within 15 days of selection. The write-up must be written in the third person. Every subsequent reference to the member must be a pronoun or last name. e.g.,: “Tom Smith is a computer science PhD student at ABC university, he/Smith is studying..” When requested by Sponsor, Entrant Teams must provide a high-quality university logo that the Sponsor is free to use for any marketing or promotional content for the Amazon Nova AI Challenge program.

PRIZES

Overall Performance Prize
Following the Finals Event, the two finalist red-teaming systems that attain the two highest ranks among the finalist red-teaming systems and the two finalist coding assistants that attains the two highest ranks among the finalist coding assistants will be the First-Place and Second-Place winners of the Overall Performance prizes. If there is a tie in the scores for any prize, Sponsor will rank the systems based on their Tournament Period performance. Sponsor’s decisions are final and binding in all matters relating to this Competition, including the determination of prize winners.

First-Place Overall Performance Model (1 winner): The Entrant Team that receives the highest rank for a coding assistant will receive $250,000 U.S. dollars awarded in the form of checks divided equally among all members of that Entrant Team.
Second-Place Overall Performance Model (1 winner): The Entrant Team that receives the second highest rank for a coding assistant will receive $100,000 U.S. dollars awarded in the form of checks divided equally among all members of that Entrant Team.
First-Place Overall Performance Red-Teaming System (1 winner): The Entrant Team that receives the highest rank for a red-teaming system will receive $250,000 U.S. dollars awarded in the form of checks divided equally among all members of that Entrant Team.
Second-Place Overall Performance Red-Teaming System (1 winner): The Entrant Team that receives the second highest rank for a red-teaming system will receive $100,000 U.S. dollars awarded in the form of checks divided equally among all members of that Entrant Team.

Prize Conditions: Prizes are non-transferable except as directed by Sponsor. No prize substitutions are allowed. Except where prohibited by law, all federal, state, provincial, or other tax liabilities are the responsibility of the prize winners, Sponsor will not be responsible for any tax deductions which may be necessary, and Sponsor reserves the right to withhold taxes as required by law. Prize winners will be responsible for paying all costs and expenses related to the prize that are not specifically mentioned, including, but not limited to, taxes, withholdings, and any other expenses that might reasonably be incurred by the winner in receiving or using the prize. All prizes awarded will be subject to any taxes Sponsor is required by law to withhold as well as applicable sales, use, gross receipts, goods and service, or similar transaction-based taxes. IF TAXES ARE APPLICABLE TO THE PRIZE(S), IT IS THE RESPONSIBILITY OF THE WINNER TO PAY TO THE APPROPRIATE AUTHORITIES. PAYMENTS TO COMPETITION WINNERS ARE SUBJECT TO THE EXPRESS REQUIREMENT THAT THE WINNER SUBMIT TO SPONSOR ALL DOCUMENTATION REQUESTED BY SPONSOR (INCLUDING FORMS W-9 OR W-8BEN AS REQUESTED BY SPONSOR) TO PERMIT COMPLIANCE WITH ALL APPLICABLE STATE, FEDERAL, LOCAL AND FOREIGN (INCLUDING PROVINCIAL) TAX REPORTING AND WITHHOLDING REQUIREMENTS. Prize winners are responsible for ensuring that the tax documentation submitted to Sponsor complies with all applicable tax laws and requirements. If a winner fails to provide the documentation or submits incomplete documentation, the prize may be forfeited and Sponsor may, in its sole discretion, select an alternate winner. Sponsor will divide all awards that are payable to any Entrant Team evenly among the Entrant Team members and distribute accordingly. Designation as a prize winner is subject to Entrant’s proof of compliance with these Official Rules, maintaining compliance with these Official Rules and approval by Sponsor. All details of prizes not specified herein shall be determined solely by Sponsor.

PRIVACY: Entrants and Faculty Advisors acknowledge and agree that Sponsor may collect, store, share, and otherwise use personally identifiable information provided during the application process and the Competition, including, but not limited to, name, mailing address, phone number, and email address. All personally identifiable information collected is subject to and will be used in accordance with Sponsor’s Privacy Notice ( www.amazon.com/privacy) and YouNoodle’s Privacy Policy ( www.younoodle.com/privacy), including for administering the Competition and verifying Entrants’ and Faculty Advisors’ identities, addresses, and telephone numbers in the event an entry qualifies for a prize. YouNoodle’s servers are located in the United States. By participating in this Competition, Entrants and Faculty Advisors authorize the transfer of personal data to the United States for purposes of administering the Competition, conducting publicity about the Competition, and additional purposes consistent with Sponsor’s goals or the Competition goals. By entering the Competition, Entrants and Faculty Advisors consent to Sponsor’s and YouNoodle’s collection, and Sponsor’s use and disclosure of entrants’ personally identifiable information for these purposes. The data controller for information collected by Sponsor is Amazon.com Services LLC, 410 Terry Ave North, Seattle, Washington 98109, USA.

INTELLECTUAL PROPERTY: By entering the Competition, each Entrant and Entrant Team represents and warrants that he or she has obtained all of the rights, licenses, and permissions in writing that are otherwise necessary for the Entrant Team to operate or distribute the model or red-teaming system and to grant to Sponsor the licenses set forth in these Official Rules and in the Developer Agreement. Entrants MAY NOT submit models or red-teaming systems created by any person other than themselves or their Entrant Team members.
As between Sponsor and Entrant Teams, models or red-teaming systems created by Entrant Teams will remain the property of the respective Entrant Teams or their university or college, excluding any Program Materials or Restricted Program Materials incorporated in the systems, which will remain the property of Sponsor. All output generated by any model or red-teaming system during the course of the Competition will be the property of Sponsor, and Entrant Teams will have limited rights to use the output for the sole purpose of improving or training their modes or systems for the purpose of this Competition. By submitting a model or red-teaming system in this Competition, each Entrant and Entrant Team represents and warrants that they own, or otherwise have the right to use and license, all of the intellectual property and other rights in and to the model or red-teaming system. Each Entrant and Entrant Team hereby grants Sponsor and its affiliates a non-exclusive, perpetual, irrevocable, worldwide, and royalty-free license to make, have made, use, sell, offer for sale, import, export, license, exploit, promote, reproduce, make available, publicly display, publicly perform, create derivative works of, and otherwise exercise all intellectual property and other rights in and to any concepts, works, inventions, information, designs, programs, software, or other materials that the Entrant or Entrant Team develops or submits in connection with the Competition or the creation of the model or red-teaming system, including any of the foregoing included or described in any Technical Article or other materials provided to Sponsor. In addition, upon Sponsor’s request, all Entrants and Entrant Teams must provide Sponsor all source code, datasets and algorithms developed in connection with the Competition. Each Entrant agrees to do or perform, or cause to be done and performed, all such further acts and things, and execute and deliver all such other agreements, certificates, instruments, and documents as Sponsor may reasonably request in order to carry out the intent and accomplish the purposes of the foregoing license.
Except where prohibited, each Entrant and Entrant Team further consents (and agrees to sign any additional documents required by Sponsor to formalize, effect, or perfect such consent) to Competition Entities’ model or red-teaming systems pursuant to these Official Rules and the use of any Entrant or Entrant Team names, likeness, biographical information, and voice in advertising, publicity, trade, and other marketing and promotional materials (including video, audio, and print through all means of distribution) worldwide without compensation, notice, or approval, and disclaims any ownership rights to the content of such materials.

Waiver, Release, and Limitation of Liability
EACH ENTRANT ACCEPTS THE CONDITIONS STATED IN THESE OFFICIAL RULES, AGREES TO BE BOUND BY THE DECISIONS OF SPONSOR, WARRANTS THAT THE ENTRANT IS ELIGIBLE TO PARTICIPATE IN THIS COMPETITION, AND AGREES TO RELEASE, INDEMNIFY, AND HOLD HARMLESS THE COMPETITION ENTITIES AND THE PERSONNEL OF EACH FROM AND AGAINST ANY AND ALL CLAIMS, LOSSES, LIABILITY, AND DAMAGES OF ANY KIND (INCLUDING REASONABLE ATTORNEYS’ FEES AND EXPENSES) ASSERTED AGAINST ANY OF THEM, INCURRED OR SUSTAINED IN CONNECTION WITH OR ARISING OUT OF ENTRANT’S PARTICIPATION IN THIS COMPETITION OR ANY TRAVEL OR OTHER ACTIVITY RELATED THERETO, USE OF ANY MODEL OR RED-TEAMING SYSTEM OR RIGHTS THEREIN, OR BREACH OF ANY AGREEMENT OR WARRANTY ASSOCIATED WITH THE COMPETITION, INCLUDING THESE OFFICIAL RULES. ANY ATTEMPT TO DELIBERATELY DAMAGE ANY WEBSITE OR UNDERMINE THE LEGITIMATE OPERATION OF THE COMPETITION MAY BE A VIOLATION OF CRIMINAL AND CIVIL LAWS AND, SHOULD SUCH AN ATTEMPT BE MADE, THE COMPETITION ENTITIES AND EACH OF THEIR LICENSEES RESERVE THE RIGHT TO SEEK ANY AND ALL REMEDIES AVAILABLE FROM ANY PERSONS RESPONSIBLE FOR ANY SUCH ATTEMPT TO THE FULLEST EXTENT PERMITTED BY LAW.

Each Entrant hereby acknowledges and agrees that the relationship between themselves and the Competition Entities is not a confidential, fiduciary, or other special relationship, and that the Entrant’s decision to provide the entry to Sponsor for purposes of the Competition does not place the Competition Entities in a position that is any different from the position held by members of the general public with regard to elements of the entry, other than as set forth in these Official Rules. Each Entrant understands and acknowledges that the Competition Entities have wide access to the models, technology, designs, and other materials, and that new ideas are constantly being submitted to them or being developed by their own employees. Each Entrant also acknowledges that many ideas may be competitive with, similar to, or identical to the model or red-teaming system submission in theme, idea, format, or other respects. Each Entrant acknowledges and agrees that such Entrant will not be entitled to any compensation as a result of Competition Entities' use of any such similar or identical material that has or may come to Competition Entities, or any of them, from other sources. Entrants acknowledge that other Entrants and Entrant Teams may have created ideas and concepts contained in their model or red-teaming system's design that may have familiarities or similarities to their system's design, and that they will not be entitled to any compensation or right to negotiate with the Competition Entities because of these familiarities or similarities.

Entrants further agree that the Competition Entities are not responsible for the following: (a) electronic transmissions, model or red-teaming system, entries, or notifications that are lost, late, stolen, incomplete, damaged, garbled, destroyed, misdirected, or not received by Sponsor or their agents for any reason; (b) any problems or technical malfunctions, errors, omissions, interruptions, deletions, defects, delays in operation or transmission, communication failures, and/or human error that may occur in the transmission, shipping errors or delays, receipt or processing of entries or related materials; or for destruction of or unauthorized access to, or alteration of, entries or related material; (c) failed or unavailable hardware, network, software, or telephone transmissions, damage to Entrants’ or any person’s computer and/or its contents related to or resulting from participation in this Competition; (d) causes that jeopardize the administration, security, fairness, integrity, or proper conduct of this Competition; (e) any entries submitted in a manner that is not expressly allowed under these Official Rules (all such entries will be disqualified); or (f) any printing errors in these Official Rules or in any advertisements or correspondence in connection with this Competition or the tabulation of Interaction Ratings or scores. Sponsor reserves the right, in its sole discretion, to cancel or suspend this Competition should virus, bugs, fraud, hacking, or other causes corrupt the administration, security, or proper play of the Competition, or in the event Sponsor does not receive a minimum of two qualified entries from separate eligible Entrant Teams. Sponsor further reserves the right, in its sole discretion, to cancel or suspend this Competition or to reschedule or reformat events, including without limitation the Summit or Finals Event, should Sponsor be prevented, in any manner whatsoever, from holding this Competition or any event due to any present or future law (whether or not valid); any act of God, earthquake, fire, flood, epidemic (including, without limitation, any pandemic), accident, explosion or casualty; any civil disturbance or armed conflict; or any other cause of any similar nature outside of Sponsor’s control. In all such cases, notice to this effect will be posted on the Competition Site and prizes to the extent awarded will be awarded as determined by Sponsor prior to cancellation. If, in Sponsor’s opinion, there is any suspected or actual evidence of electronic or non-electronic tampering with any portion of the Competition or if technical difficulties compromise the integrity of the Competition, the Sponsor reserves the right to void suspect entries and/or terminate the Competition and determine whether to award prizes in its sole discretion. Sponsor reserves the right, in its sole discretion, to disqualify any individual found by Sponsor to have tampered with the entry process or entry materials, otherwise interfered with the proper administration of the Competition, or violated these Official Rules.

DISPUTES: Except where prohibited, you agree that: (1) any and all disputes, claims, and causes of action arising out of or connected with this Competition or any prize awarded shall be resolved individually, without resort to any form of class action; (2) any and all claims, judgments, and awards shall be limited to actual out-of-pocket costs incurred, including costs associated with entering this Competition, but in no event attorneys’ fees; (3) the Competition Entities shall not be liable for, under no circumstances will you be permitted to obtain awards for, and you hereby waive all rights to claim, indirect, punitive, incidental, and consequential damages and any other damages (other than for actual out-of-pocket expenses), and any and all rights to have damages multiplied or otherwise increased. All issues and questions concerning the construction, validity, interpretation, and enforceability of these Official Rules, or the rights and obligations of the Entrant and Sponsor in connection with the Competition, shall be governed by, and construed in accordance with, the laws of the State of Washington without giving effect to any choice of law or conflict of law rules (whether of the State of Washington or any other jurisdiction), which would cause the application of the laws of any jurisdiction other than the State of Washington. You irrevocably submit to venue and exclusive personal jurisdiction in the federal and state courts in Seattle, King County, Washington, USA, for any dispute arising under these Official Rules or in connection with the Competition, and you waive all objections to jurisdiction and venue of such courts.

SPONSOR: Amazon.com Services LLC, 410 Terry Ave North, Seattle, Washington 98109, USA.

US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Principal Applied Scientist with a strong deep learning and generative AI background, to focus on the development of software development skills of Nova foundational models. As a Principal Applied Scientist, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. You solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location. You scrutinize and review experimental design, modeling, verification and other research procedures. You probe assumptions, illuminate pitfalls, and foster shared understanding. You align teams toward coherent strategies. You educate, keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. You help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically strong and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Applied Scientist, to support the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning through human feedback and complex reasoning; with a focus across text, image, and video modalities. As an Applied Scientist, you will play a critical role in supporting the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI Design and execute experiments to evaluate the performance of different algorithms (PT, SFT, RL) and models, and iterate quickly to improve results Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports About the team We are passionate scientists dedicated to pushing the boundaries of innovation in Gen AI with focus on Software Development use cases.
US, VA, Arlington
Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. Key job responsibilities As a Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Seattle
Have you ever wondered what it takes to transform millions of manual network planning decisions into AI-powered precision? Network Planning Solutions is looking for scientific innovators obsessed with building the AI/ML intelligence that makes orchestrating complex global operations feel effortless. Here, you'll do more than just build models; you'll create 'delight' by discovering and deploying the science that delivers exactly what our customers need, right when they need it. If you're ready to transform complex data patterns into breakthrough AI capabilities that power intuitive human experiences, you've found your team. Network Planning Solutions architects and orchestrates Amazon's customer service network of the future. By building AI-native solutions that continuously learn, predict and optimize, we deliver seamless customer experiences and empower associates with high-value work—driving measurable business impact at a global scale. As a Sr. Manager, Applied Science, you will own the scientific innovation and research initiatives that make this vision possible. You will lead a team of applied scientists and collaborate with cross-functional partners to develop and implement breakthrough scientific solutions that redefine our global network. Key job responsibilities Lead AI/ML Innovation for Network Planning Solutions: - Develop and deploy production-ready demand forecasting algorithms that continuously sense and predict customer demand using real-time signals - Build network optimization algorithms that automatically adjust staffing as conditions evolve across the service network - Architect scalable AI/ML infrastructure supporting automated forecasting and network optimization capabilities across the system Drive Scientific Excellence: - Build and mentor a team of applied scientists to deliver breakthrough AI/ML solutions - Design rigorous experiments to validate hypotheses and quantify business impact - Establish scientific excellence mechanisms including evaluation metrics and peer review processes Enable Strategic Transformation: - Drive scientific innovation from research to production - Design and validate next-generation AI-native models while ensuring robust performance, explainability, and seamless integration with existing systems. - Partner with Engineering, Product, and Operations teams to translate AI/ML capabilities into measurable business outcomes - Navigate ambiguity through experimentation while balancing innovation with operational constraints - Influence senior leadership through scientific rigor, translating complex algorithms into clear business value A day in the life Your day will be a dynamic blend of scientific innovation and strategic problem-solving. You'll collaborate with cross-functional teams, design AI algorithms, and translate complex data patterns into intuitive solutions that drive meaningful business impact. About the team We are Network Planning Solutions, a team of scientific innovators dedicated to reshaping how global service networks operate. Our mission is to create AI-native solutions that continuously learn, predict, and optimize customer experiences. We empower our associates to tackle high-value challenges and drive transformative change at a global scale.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing businesses. Amazon's advertising portfolio helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! The Creative X team within Amazon Advertising time aims to democratize access to high-quality creatives (audio, images, videos, text) by building AI-driven solutions for advertisers. To accomplish this, we are investing in understanding how best users can leverage Generative AI methods such as latent-diffusion models, large language models (LLM), generative audio (music and speech synthesis), computer vision (CV), reinforced learning (RL) and related. As an Applied Scientist you will be part of a close-knit team of other applied scientists and product managers, UX and engineers who are highly collaborative and at the top of their respective fields. We are looking for talented Applied Scientists who are adept at a variety of skills, especially at the development and use of multi-modal Generative AI and can use state-of-the-art generative music and audio, computer vision, latent diffusion or related foundational models that will accelerate our plans to generate high-quality creatives on behalf of advertisers. Every member of the team is expected to build customer (advertiser) facing features, contribute to the collaborative spirit within the team, publish, patent, and bring SOTA research to raise the bar within the team. As an Applied Scientist on this team, you will: - Drive the invention and development of novel multi-modal agentic architectures and models for the use of Generative AI methods in advertising. - Work closely and integrate end-to-end proof-of-concept Machine Learning projects that have a high degree of ambiguity, scale and complexity. - Build interface-oriented systems that use Machine Learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Curate relevant multi-modal datasets. - Perform hands-on analysis and modeling of experiments with human-in-the-loop that eg increase traffic monetization and merchandise sales, without compromising the shopper experience. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Mentor and help recruit Applied Scientists to the team. - Present results and explain methods to senior leadership. - Willingness to publish research at internal and external top scientific venues. - Write and pursue IP submissions. Key job responsibilities This role is focused on developing new multi-modal Generative AI methods to augment generative imagery and videos. You will develop new multi-modal paradigms, models, datasets and agentic architectures that will be at the core of advertising-facing tools that we are launching. You may also work on development of ML and GenAI models suitable for advertising. You will conduct literature reviews to stay on the SOTA of the field. You will regularly engage with product managers, UX designers and engineers who will partner with you to productize your work. For reference see our products: Enhanced Video Generator, Creative Agent and Creative Studio. A day in the life On a day-to-day basis, you will be doing your independent research and work to develop models, you will participate in sprint planning, collaborative sessions with your peers, and demo new models and share results with peers, other partner teams and leadership. About the team The team is a dynamic team of applied scientists, UX researchers, engineers and product leaders. We reside in the Creative X organization, which focuses on creating products for advertisers that will improve the quality of the creatives within Amazon Ads. We are open to hiring candidates to work out of one of the following locations: UK (London), USA (Seattle).
US, WA, Bellevue
The Amazon Fulfillment Technologies (AFT) Science team is seeking an exceptional Applied Scientist with strong operations research and optimization expertise to develop production solutions for one of the most complex systems in the world: Amazon's Fulfillment Network. At AFT Science, we design, build, and deploy optimization, statistics, machine learning, and GenAI/LLM solutions that power production systems running across Amazon Fulfillment Centers worldwide. We tackle a wide range of challenges throughout the network, including labor planning and staffing, pick scheduling, stow guidance, and capacity risk management. Our mission is to develop innovative, scalable, and reliable science-driven production solutions that exceed the published state of the art, enabling systems to run optimally and continuously (from every few minutes to every few hours) across our large-scale network. Key job responsibilities As an Applied Scientist, you will collaborate with scientists, software engineers, product managers, and operations leaders to develop optimization-driven solutions that directly impact process efficiency and associate experience in the fulfillment network. Your key responsibilities include: - Develop deep understanding and domain knowledge of operational processes, system architecture, and business requirements - Dive deep into data and code to identify opportunities for continuous improvement and disruptive new approaches - Design and develop scalable mathematical models for production systems to derive optimal or near-optimal solutions for existing and emerging challenges - Create prototypes and simulations for agile experimentation of proposed solutions - Advocate for technical solutions with business stakeholders, engineering teams, and senior leadership - Partner with software engineers to integrate prototypes into production systems - Design and execute experiments to test new or incremental solutions launched in production - Build and monitor metrics to track solution performance and business impact About the team Amazon Fulfillment Technology (AFT) designs, develops, and operates end-to-end fulfillment technology solutions for all Amazon Fulfillment Centers (FCs). We harmonize the physical and virtual worlds so Amazon customers can get what they want, when they want it. The AFT Science team brings expertise in operations research, optimization, statistics, machine learning, and GenAI/LLM, combined with deep domain knowledge of operational processes within FCs and their unique challenges. We prioritize advancements that support AFT tech teams and focus areas rather than specific fields of research or individual business partners. We influence each stage of innovation from inception to deployment, which includes both developing novel solutions and improving existing approaches. Our production systems rely on a diverse set of technologies, and our teams invest in multiple specialties as the needs of each focus area evolve.
US, WA, Seattle
We are looking for an exceptional applied scientist to join the AWS Applied AI Life Sciences organization. You will invent, implement, and deploy state of the art machine learning algorithms and intelligent AI systems to solve complex problems in healthcare and life sciences area, making a meaningful impact on patient lives. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Key job responsibilities - Design, develop, and deploy novel Agentic systems and ML solutions for complex healthcare and life sciences challenges - Navigate ambiguity and create clarity in early-stage product development - Collaborate with product managers, engineers, and domain experts to transform research into production-quality features - Mentor junior scientists and participate in tactical and strategic planning A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. About the team We are a multidisciplinary team of product managers, engineers, scientists, and domain experts working at the intersection of AI/ML and healthcare. We leverage AWS's expertise in secure, scalable cloud computing and applied AI to solve complex challenges in healthcare and life sciences. Our team values customer obsession, technical excellence, innovation, and a commitment to improving patient outcomes through technology.
US, WA, Seattle
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Demand Utilization team with Sponsored Products and Brands owns finding the appropriate ads to surface to customers when they search for products on Amazon. We strive to understand our customers’ intent and identify relevant ads which enable them to discover new and alternate products. This also enables sellers on Amazon to showcase their products to customers, which may at times be buried deeper in the search results. Our systems and algorithms operate on one of the world's largest product catalogs, matching shoppers with products - with a high relevance bar and strict latency constraints. We are a team of machine learning scientists and software engineers working on complex solutions to understand the customer intent and present them with ads that are not only relevant to their actual shopping experience, but also non-obtrusive. This area is of strategic importance to Amazon Retail and Marketplace business, driving long term-growth. We are looking for an Applied Scientist II, with a strong background in Machine Learning and Generative AI to optimize serving ads on billions of product pages. The solutions you create would drive step increases in coverage of sponsored ads across the retail website and ensure relevant ads are served to Amazon's customers. You will directly impact our customers' shopping experience while helping our sellers get the maximum ROI from advertising on Amazon. You will be expected to demonstrate strong ownership and should be curious to learn and leverage the rich textual, image, and other contextual signals. This role will challenge you to utilize innovative machine learning techniques in the domain of predictive modeling, natural language processing (NLP), deep learning, reinforcement learning, query understanding, vector search, image recognition, and multi-modal AI to deliver significant impact for the business. In addition, you will be at the forefront of leveraging Generative AI (GenAI) technologies, including Large Language Models (LLMs) and foundation models, to drive advanced language understanding, creative ad content generation, and retrieval-augmented generation (RAG). You will also design and build agentic AI systems capable of autonomous, multi-step reasoning, tool use, and chain-of-thought decision-making, while applying techniques such as prompt engineering, fine-tuning, RLHF (Reinforcement Learning from Human Feedback), and embedding-based retrieval to develop scalable, production-grade solutions. Ideal candidates will have hands-on experience fine-tuning, evaluating, and deploying LLMs at scale, along with a strong understanding of emerging GenAI paradigms including agentic workflows and responsible AI practices. You should be able to work cross-functionally across multiple stakeholders, synthesize the science needs of our business partners, develop models to solve business needs, and implement solutions in production. In addition to being a strongly motivated IC, you will also be responsible for mentoring junior scientists, guiding them to deliver high-impact products and services for Amazon customers and sellers, and fostering a culture of innovation around the latest advancements in Generative AI and LLM technologies. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video https://youtu.be/zD_6Lzw8raE Key job responsibilities As an Applied Scientist II on this team, you will: - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in deploying your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches.
US, CA, Sunnyvale
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. We leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics foundation models that: - Enable unprecedented generalization across diverse tasks - Integrate multi-modal learning capabilities (visual, tactile, linguistic) - Accelerate skill acquisition through demonstration learning - Enhance robotic perception and environmental understanding - Streamline development processes through reusable capabilities The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. As an Applied Scientist, you will develop and improve machine learning systems that help robots perceive, reason, and act in real-world environments. You will leverage state-of-the-art models (open source and internal research), evaluate them on representative tasks, and adapt/optimize them to meet robustness, safety, and performance needs. You will invent new algorithms where gaps exist. You’ll collaborate closely with research, controls, hardware, and product-facing teams, and your outputs will be used by downstream teams to further customize and deploy on specific robot embodiments. Key job responsibilities - Leverage state-of-the-art models for targeted tasks, environments, and robot embodiments through fine-tuning and optimization. - Execute rapid, rigorous experimentation with reproducible results and solid engineering practices, closing the gap between sim and real environments. - Build and run capability evaluations/benchmarks to clearly profile performance, generalization, and failure modes. - Contribute to the data and training workflow: collection/curation, dataset quality/provenance, and repeatable training recipes. - Write clean, maintainable, well commented and documented code, contribute to training infrastructure, create tools for model evaluation and testing, and implement necessary APIs - Stay current with latest developments in foundation models and robotics, assist in literature reviews and research documentation, prepare technical reports and presentations, and contribute to research discussions and brainstorming sessions. - Work closely with senior scientists, engineers, and leaders across multiple teams, participate in knowledge sharing, support integration efforts with robotics hardware teams, and help document best practices and methodologies.
US, NY, New York
Advertising at Amazon is growing incredibly fast and we are responsible for defining and delivering a collection of advertising products that drive discovery and sales. Amazon Business Ads is equally growing fast ($XXXMs to $XBs) and owns engineering and science for the AB WW ad experience. We build business-to-business (“B2B”) specific ad solutions distributed across retail and ad systems for shopper and advertiser experiences. Some include new ad placements or widgets, creatives, sourcing techniques, ad campaign management capabilities and much more! We consider unique AB qualities which are differentiated from the consumer experience such as varying shopper role types, purchasing complexities based on business size and industry (eg education vs healthcare), AB specific features (eg business discounts, buying policies to restrict and prefer products), and AB buyer behaviors (eg buying in bulk). We are seeking a scientific leader who can drive innovation in complex problem areas and new business initiatives. The ideal candidate will: Technical & Research Requirements: * Demonstrate fluency in Python, R, Matlab or other statistical languages and familiarity with deep learning frameworks like PyTorch, TensorFlow * Lead end-to-end solution development from research to prototyping and experimentation * Write and deploy significant parts of scientifically novel software solutions into production Leadership & Influence: * Drive team's scientific agenda by proposing new initiatives and securing management buy-in including PM, SDM * Mentor colleagues and contribute to their professional development * Build consensus on large projects and influence decisions across different teams in Ads Key Leadership Principles: * Dive Deep: Uncover non-obvious insights in data * Deliver Results: Create solutions aligned with customer and product needs * Learn and Be Curious: Demonstrate self-driven desire to explore new research areas * Earn Trust: Build relationships with stakeholders through understanding business needs