-
PRX Quantum2021Efficiently estimating properties of large and strongly coupled quantum systems is a central focus in many-body physics and quantum information theory. While quantum computers promise speedups for many of these tasks, near-term devices are prone to noise that will generally reduce the accuracy of such estimates. Here, we propose a sample-efficient and noise-resilient protocol for learning properties of
-
Nature2021Realizing the potential of quantum computing requires sufficiently low logical error rates(1). Many applications call for error rates as low as 10⁻¹⁵ (refs. 2,3,4,5,6,7,8,9), but state-of-the-art quantum platforms typically have physical error rates near 10⁻³ (refs. 10,11,12,13,14). Quantum error correction(15,16,17) promises to bridge this divide by distributing quantum logical information across many
-
arXiv2021Forty years ago, Richard Feynman proposed harnessing quantum physics to build a more powerful kind of computer. Realizing Feynman's vision is one of the grand challenges facing 21st century science and technology. In this article, we'll recall Feynman's contribution that launched the quest for a quantum computer, and assess where the field stands 40 years later.
-
Physical Review Applied2021Cavity resonators are promising resources for quantum technology, while native nonlinear interactions for cavities are typically too weak to provide the level of quantum control required to deliver complex targeted operations. Here we investigate a scheme to engineer a target Hamiltonian for photonic cavities using ancilla qubits. By off resonantly driving dispersively coupled ancilla qubits, we develop
-
Computer Physics Communications2021Recently, there has been considerable interest in solving optimization problems by mapping these onto a binary representation, sparked mostly by the use of quantum annealing machines. Such binary representation is reminiscent of a discrete physical two-state system, such as the Ising model. As such, physics-inspired techniques—commonly used in fundamental physics studies—are ideally suited to solve optimization
Related content
-
July 16, 2021Dartmouth College professor is focusing on broader educational efforts with customers and other stakeholders.
-
February 04, 2021How an Amazon quantum computing scientist won the first-ever quantum chess tournament.
-
February 04, 2021Researchers affiliated with Amazon Web Services' Center for Quantum Computing are presenting their work this week at the Conference on Quantum Information Processing.
-
December 15, 2020New approach reduces the number of ancillary qubits required to implement the crucial T gate by at least an order of magnitude.
-
September 10, 2020The noted physicist answers 3 questions about the challenges of quantum computing and why he’s excited to be part of a technology development project.