Samuel L. Jackson speaking into a microphone in a studio.
The Samuel L. Jackson celebrity voice just got easier to use. Now Alexa users can simply say "Hey Samuel" to ask for jokes, weather, and more. After purchasing the voice, customers can choose whether they want Samuel to use explicit language or not.

Samuel L. Jackson celebrity voice for Alexa gets an update

How Amazon conducted customer-obsessed science research and engineering to release a vastly improved experience.

“Alexa, ask Samuel L. Jackson for the weather.”

Samuel L. Jackson: “It’s cloudy with a chance of me.”

Amazon released the Samuel L. Jackson celebrity voice in December 2019. The new voice allowed Alexa’s customers to get the news, weather, jokes, and more from the legendary actor.

“The Samuel L. Jackson celebrity voice was an important milestone in seeing our multi-persona vision come to life,” says Sai Rupanagudi, senior product manager for the Alexa wake word team.

Sai Rupanagudi
Sai Rupanagudi, Alexa senior product manager

However, while customers enjoyed the interaction with Jackson’s voice, many found the initial experience burdensome.

You have to ask Alexa to ask Samuel everything. I was under the impression I could have Alexa speak to me in Samuel's voice rather than the female voice we currently have. Nope, only if I ask Alexa to ask Samuel. Who wants to add more steps than you already have to take to get a response. I don't get it,” said one reviewer.

Another reviewer said: “While it’s a neat novelty to show friends when they visit...the fact that you have to specifically ask Alexa to ask Sam to do something gets old really fast.”

Rupanagudi and other team members paid close attention to the initial feedback, as did the Alexa text-to-speech team which also addressed customer feedback by further improving the naturalness of Samuel L. Jackson’s voice, so that it more closely matches the lively personality of the actor and producer.

“Customer obsession is central to everything we do at Amazon,” says Remus Mois, senior software development manager within the Alexa text-to-speech team. “We take the feedback of our customers seriously. We decided to improve the Samuel L. Jackson celebrity voice by allowing users to invoke Sam Jackson with a new wake word.”

The concept of multiple personas or voice agents working on the same device is an important milestone for the Voice Interoperability Initiative launched by Amazon last year. The initiative’s principal tenet: different services should work seamlessly alongside one another on a single device, and voice-enabled products should be designed to support multiple simultaneous wake words.

Bollywood star is Amazon's next celebrity voice

Learn more about how customers in India will be able to interact with the iconic voice of Amitabh Bachchan.

“At Alexa, we believe that customers should be able to access their favorite agent or persona directly, be it Alexa, another agent, or a celebrity voice,” says Mois.

The response from beta customers to the new experience was overwhelmingly positive.

“Sam’s voice synthesis is actually amazing, and it no longer feels awkward to invoke him,” said one beta customer. “THANK YOU so much for the custom, and simultaneously active wake word.”

Added another beta user, “It’s great to get Sam’s voice without awkwardly asking ‘Alexa, ask Sam to…’ like I had to before.”

Still another beta user added, “Celebrity voice was fun to use. Wake word was intuitive and easy to use. Enjoyed the personality that comes through with the celebrity voice.”

The task of getting the “Hey Samuel” wake word to coexist with the “Alexa” wake word presented formidable research and engineering challenges. With today’s announcement, Alexa customers can interact with Samuel L. Jackson’s voice directly, simply by saying, “Hey Samuel.”

The research challenges

An interaction with Alexa begins with her name. Only when a device detects Alexa’s wake word does it begin streaming voice data to the cloud.

Shiv Vitaladevuni
Shiv Vitaladevuni, Alexa senior machine learning manager

Developing machine-learning models for the new “Hey Samuel” wake word is one of the more challenging problems Shiv Vitaladevuni and his team have encountered since he joined the Alexa organization in 2013. Vitaladevuni, an Alexa senior machine learning manager, leads the wake word team.

“The Alexa wake word has billions of interactions every week,” says Vitaladevuni. “However, there was a paucity of training data for the ‘Hey Samuel’ wake word. To develop a multi-wake-word model for ‘Hey Samuel’ and Alexa, we had to develop new training and data modeling techniques, while drawing on learnings from the past.”

However, drawing from this past experience came with its own unique set of challenges. Researchers had to train the algorithm to recognize the new wake word (“Hey Samuel”), while also concurrently detecting the other primary wake words – “Alexa”, “Echo”, “Amazon”, and “Computer”.

Instead of training a model for each wake word separately, Alexa’s scientists leveraged multi-target learning, where multiple learning tasks are carried out concurrently by leaning on similarities across tasks. In multi-target learning, one input is used to predict multiple outputs. By its very nature, multi-target training is inherently more complex, given the large number of variables, and the speeds at which they must be processed.

“Multi-target training isn’t an easy task,” says Vitaladevuni, “especially when you are contending with wake words that are a single word (“Alexa”, “Amazon”, “Echo” and “Computer”) and a phrase (“Hey Samuel”). The team had to innovate in a number of areas to solve for this problem. To give just one example, we had to conduct extensive research on developing new data preparation and training techniques to balance the data sets for each word. We have made significant progress in the difficult task of ensuring multi-target training performs with the same accuracy we expect from our devices, and we are continually working to improve."

How to add Samuel L. Jackson's voice to your echo

The team also had to innovate to deal with the issue of false rejects. A false reject refers to an instance where a customer says “Hey Samuel” or “Alexa”, but the wake word goes unrecognized. With no audio sent to the cloud, the team doesn’t have any data to help reduce false rejects.

To get around this obstacle, Alexa’s scientists utilized transfer learning techniques to train their new multi-wake word model to accept a wide spectrum of nuances in pronunciations, thereby reducing false rejects. Transfer learning allows the algorithm to take skills learned on one domain and transfer the learnings to another domain. In this instance, the team trained a baseline model on a medium vocabulary recognition task and then adapted the model to recognize the “Hey Samuel” wake word more efficiently, utilizing minimal amounts of training data.

The engineering challenges


The wake word detector, unlike Alexa’s other machine learning systems, must run on-device. This on-device computing resource is far more limited than what’s available in the cloud for Alexa’s other components.

We’re excited to see how customers respond to this updated experience, and how we will continue to improve the experience for our customers.
Sai Rupanagudi

As a result, Alexa scientists and engineers had to develop wake word solutions that could carry out the complex task of detecting two wake words without exceeding CPU, memory and other resources. To complicate matters, the multi-wake word functionality must run on both old and newer Echo devices.

Amazon’s engineering team also developed inference algorithms that are able to adjust to varying prefixes and their corresponding lengths for wake words that might be used in the future. This will be particularly useful as additional partner agents and personas come online with different lengths and prefixes, and will allow the team to stay true to its vision outlined in the Voice Interoperability Initiative.

While the updated Samuel L. Jackson skill has been released today, it’s still Day One for the wake word team. Now that the team has added one new wake word, it is continuing to break ground in research related to how to add new wake words to a multi-target model, using minimal training data, and without degrading the accuracy of existing wake words.

“With this new ability to develop wake words with little to no prior data, we have the opportunity to support much richer customer experiences on Alexa-enabled devices,” says Rupanagudi. “We’re excited to see how customers respond to this updated experience, and how we will continue to improve the experience for our customers.”

Related content

US, WA, Seattle
The Global Media Entertainment Science team uses state of the art economics and machine learning models to provide Amazon’s entertainment businesses guidance on strategically important questions. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Product Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. Our Search Relevance team works to maximize the quality and effectiveness of the search experience for visitors to Amazon websites worldwide. The Search Relevance team focuses on several technical areas for improving search quality. In this role, you will invent universally applicable signals and algorithms for training machine-learned ranking models. The relevance improvements you make will help millions of customers discover the products they want from a catalog containing millions of products. You will work on problems such as predicting the popularity of new products, developing new ranking features and algorithms that capture unique characteristics, and analyzing the differences in behavior of different categories of customers. The work will span the whole development pipeline, including data analysis, prototyping, A/B testing, and creating production-level components. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world’s leading Internet companies. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California. Please visit https://www.amazon.science for more information
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. Do you have a strong machine learning background and want to help build new speech and language technology? Amazon is looking for PhD students who are ready to tackle some of the most interesting research problems on the leading edge of natural language processing. We are hiring in all areas of spoken language understanding: NLP, NLU, ASR, text-to-speech (TTS), and more! A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will develop and implement novel scalable algorithms and modeling techniques to advance the state-of-the-art in technology areas at the intersection of ML, NLP, search, and deep learning. You will work side-by-side with global experts in speech and language to solve challenging groundbreaking research problems on production scale data. The ideal candidate must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Amazon has positions available for Natural Language Processing & Speech Intern positions in multiple locations across the United States. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. Please visit our website to stay updated with the research our teams are working on: https://www.amazon.science/research-areas/conversational-ai-natural-language-processing
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. The Research team at Amazon works passionately to apply cutting-edge advances in technology to solve real-world problems. Do you have a strong machine learning background and want to help build new speech and language technology? Do you welcome the challenge to apply optimization theory into practice through experimentation and invention? Would you love to help us develop the algorithms and models that power computer vision services at Amazon, such as Amazon Rekognition, Amazon Go, Visual Search, etc? At Amazon we hire research science interns to work in a number of domains including Operations Research, Optimization, Speech Technologies, Computer Vision, Robotics, and more! As an intern, you will be challenged to apply theory into practice through experimentation and invention, develop new algorithms using mathematical programming techniques for complex problems, implement prototypes and work with massive datasets. Amazon has a culture of data-driven decision-making, and the expectation is that analytics are timely, accurate, innovative and actionable. Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Amazon Scientist use our working backwards method to enrich the way we live and work. For more information on the Amazon Science community please visit https://www.amazon.science.
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. The Research team at Amazon works passionately to apply cutting-edge advances in technology to solve real-world problems. Do you have a strong machine learning background and want to help build new speech and language technology? Do you welcome the challenge to apply optimization theory into practice through experimentation and invention? Would you love to help us develop the algorithms and models that power computer vision services at Amazon, such as Amazon Rekognition, Amazon Go, Visual Search, etc? At Amazon we hire research science interns to work in a number of domains including Operations Research, Optimization, Speech Technologies, Computer Vision, Robotics, and more! As an intern, you will be challenged to apply theory into practice through experimentation and invention, develop new algorithms using mathematical programming techniques for complex problems, implement prototypes and work with massive datasets. Amazon has a culture of data-driven decision-making, and the expectation is that analytics are timely, accurate, innovative and actionable. Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Amazon Scientist use our working backwards method to enrich the way we live and work. For more information on the Amazon Science community please visit https://www.amazon.science.
CA, ON, Toronto
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. Are you a Masters student interested in machine learning, natural language processing, computer vision, automated reasoning, or robotics? We are looking for skilled scientists capable of putting theory into practice through experimentation and invention, leveraging science techniques and implementing systems to work on massive datasets in an effort to tackle never-before-solved problems. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Our scientists use our working backwards method to enrich the way we live and work. For more information on the Amazon Science community please visit https://www.amazon.science.
CA, ON, Toronto
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. Are you a PhD student interested in machine learning, natural language processing, computer vision, automated reasoning, or robotics? We are looking for skilled scientists capable of putting theory into practice through experimentation and invention, leveraging science techniques and implementing systems to work on massive datasets in an effort to tackle never-before-solved problems. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Our scientists use our working backwards method to enrich the way we live and work. For more information on the Amazon Science community please visit https://www.amazon.science.
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. We are looking for Masters or PhD students excited about working on Automated Reasoning or Storage System problems at the intersection of theory and practice to drive innovation and provide value for our customers. AWS Automated Reasoning teams deliver tools that are called billions of times daily. Amazon development teams are integrating automated-reasoning tools such as Dafny, P, and SAW into their development processes, raising the bar on the security, durability, availability, and quality of our products. AWS Automated Reasoning teams are changing how computer systems built on top of the cloud are developed and operated. AWS Automated Reasoning teams work in areas including: Distributed proof search, SAT and SMT solvers, Reasoning about distributed systems, Automating regulatory compliance, Program analysis and synthesis, Security and privacy, Cryptography, Static analysis, Property-based testing, Model-checking, Deductive verification, compilation into mainstream programming languages, Automatic test generation, and Static and dynamic methods for concurrent systems. AWS Storage Systems teams manage trillions of objects in storage, retrieving them with predictable low latency, building software that deploys to thousands of hosts, achieving 99.999999999% (you didn’t read that wrong, that’s 11 nines!) durability. AWS storage services grapple with exciting problems at enormous scale. Amazon S3 powers businesses across the globe that make the lives of customers better every day, and forms the backbone for applications at all scales and in all industries ranging from multimedia to genomics. This scale and data diversity requires constant innovation in algorithms, systems and modeling. AWS Storage Systems teams work in areas including: Error-correcting coding and durability modeling, system and distributed system performance optimization and modeling, designing and implementing distributed, multi-tenant systems, formal verification and strong, practical assurances of correctness, bits-IOPS-Watts: the interplay between computation, performance, and energy, data compression - both general-purpose and domain specific, research challenges with storage media, both existing and emerging, and exploring the intersection between storage and quantum technologies. As an Applied Science Intern, you will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment who is comfortable with ambiguity. Amazon believes that scientific innovation is essential to being the world’s most customer-centric company. Our ability to have impact at scale allows us to attract some of the brightest minds in Automated Reasoning and related fields. Our scientists work backwards to produce innovative solutions that delight our customers. Please visit https://www.amazon.science (https://www.amazon.science/) for more information.
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. We are looking for PhD students excited about working on Automated Reasoning or Storage System problems at the intersection of theory and practice to drive innovation and provide value for our customers. AWS Automated Reasoning teams deliver tools that are called billions of times daily. Amazon development teams are integrating automated-reasoning tools such as Dafny, P, and SAW into their development processes, raising the bar on the security, durability, availability, and quality of our products. AWS Automated Reasoning teams are changing how computer systems built on top of the cloud are developed and operated. AWS Automated Reasoning teams work in areas including: Distributed proof search, SAT and SMT solvers, Reasoning about distributed systems, Automating regulatory compliance, Program analysis and synthesis, Security and privacy, Cryptography, Static analysis, Property-based testing, Model-checking, Deductive verification, compilation into mainstream programming languages, Automatic test generation, and Static and dynamic methods for concurrent systems. AWS Storage Systems teams manage trillions of objects in storage, retrieving them with predictable low latency, building software that deploys to thousands of hosts, achieving 99.999999999% (you didn’t read that wrong, that’s 11 nines!) durability. AWS storage services grapple with exciting problems at enormous scale. Amazon S3 powers businesses across the globe that make the lives of customers better every day, and forms the backbone for applications at all scales and in all industries ranging from multimedia to genomics. This scale and data diversity requires constant innovation in algorithms, systems and modeling. AWS Storage Systems teams work in areas including: Error-correcting coding and durability modeling, system and distributed system performance optimization and modeling, designing and implementing distributed, multi-tenant systems, formal verification and strong, practical assurances of correctness, bits-IOPS-Watts: the interplay between computation, performance, and energy, data compression - both general-purpose and domain specific, research challenges with storage media, both existing and emerging, and exploring the intersection between storage and quantum technologies. As an Applied Science Intern, you will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment who is comfortable with ambiguity. Amazon believes that scientific innovation is essential to being the world’s most customer-centric company. Our ability to have impact at scale allows us to attract some of the brightest minds in Automated Reasoning and related fields. Our scientists work backwards to produce innovative solutions that delight our customers. Please visit https://www.amazon.science (https://www.amazon.science/) for more information.
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. Help us develop the algorithms and models that power computer vision services at Amazon, such as Amazon Rekognition, Amazon Go, Visual Search, and more! We are combining computer vision, mobile robots, advanced end-of-arm tooling and high-degree of freedom movement to solve real-world problems at huge scale. As an intern, you will help build solutions where visual input helps the customers shop, anticipate technological advances, work with leading edge technology, focus on highly targeted customer use-cases, and launch products that solve problems for Amazon customers. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. You will own the design and development of end-to-end systems and have the opportunity to write technical white papers, create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Amazon Scientist use our working backwards method to enrich the way we live and work. For more information on the Amazon Science community please visit https://www.amazon.science