Johns_Hopkins_campus.jpg
Amazon and Johns Hopkins University announced the first recipients of PhD fellowships and faculty research awards as part of the JHU + Amazon Initiative for Interactive AI. The initiative is focused on driving ground-breaking AI advances with an emphasis on machine learning, computer vision, natural language understanding, and speech processing.

Johns Hopkins and Amazon announce six fellows and nine faculty research awards

Inaugural recipients named as part of the JHU + Amazon Initiative for Interactive AI (AI2AI).

Amazon and Johns Hopkins University (JHU) today announced the first recipients of PhD fellowships and faculty research awards as part of the JHU + Amazon Initiative for Interactive AI (AI2AI).

The AI2AI initiative, launched in April and housed in JHU’s Whiting School of Engineering, is focused on driving ground-breaking AI advances with an emphasis on machine learning, computer vision, natural language understanding, and speech processing.

Related content
The JHU + Amazon Initiative for Interactive AI (AI2AI) will be housed in the Whiting School of Engineering.

“We are delighted by the high quality of proposals and PhD fellowship nominations from JHU faculty and students," said Prem Natarajan, vice president of Alexa AI. “There is no question this initiative will drive new advances in the state-of-the-art in interactive and multimodal AI.”

As part of the initiative, annual Amazon fellowships are awarded to PhD students enrolled in the Whiting School of Engineering. Amazon also funds research projects led by JHU faculty in collaboration with post-doctoral researchers, undergraduate and graduate students, and research staff. This year’s recipients mark the inaugural class.

“We are excited that our students and faculty have a chance to partner with Amazon in an area important as interactive AI,” said Larry Nagahara, Johns Hopkins University Whiting School of Engineering’s Vice Dean for Research and Translation. “Leveraging our collective expertise in this area will advance AI and bring many beneficial aspects to our society.”

Below is a list of the fellows, and their research, followed by the faculty award recipients and their research projects.

Amazon Fellows

Top row, left to right, Kelly Marchisio, Arya McCarthy, and Carolina Pacheco Oñate; and bottom row, left to right, Desh Raj, Anshul Shah, and Jeya Maria Jose Valanarasu
Top row, Kelly Marchisio, Arya McCarthy, and Carolina Pacheco Oñate; and bottom row, Desh Raj, Anshul Shah, and Jeya Maria Jose Valanarasu are the inaugural recipients of fellowships awarded to PhD students enrolled in the Whiting School of Engineering.

Kelly Marchisio is pursuing a PhD in computer science, studying under Philipp Koehn, a professor of computer science.

“Word embedding spaces are a critical component of modern natural language processing systems. My work focuses on understanding and exploiting embedding space geometry, with the goal of creating spaces that are smaller, more useful, and more universally applicable across languages and domains.”

Arya McCarthy is pursuing a PhD in computer science, studying under David Yarowsky, a professor of computer science.

“I call my vision for natural language processing, kilolanguage processing: not only modeling thousands of languages but also letting their collective evidence and commonality reinforce each other. To make it happen, I’ve created neural machine translation models; morphological lemmatizers, taggers, and inflectors; and even a thorough analysis of color terminology spanning thousands of languages, aiming to push those frontiers further. This vision is driven by the realities of speaker needs and how NLP fails to meet them today. There are about 7000 identified languages in the world, at least 4000 of which have a book-length digitized written presence. Despite this availability of data, standard NLP tools are available for often far fewer than 100.”

Carolina Pacheco Oñate is pursuing a PhD in biomedical engineering, studying under René Vidal, an Amazon Scholar and the Herschel Seder Professor of Biomedical Engineering.

“I am interested in advancing computer vision to domains with limited availability of data or annotations, which is relevant not only in long-tail events within traditional computer vision tasks, but also in other socially impactful areas such as biomedical sciences. I believe that the combination of deep learning with probabilistic models and domain knowledge can provide the right balance between capacity and structure, enabling learning from limited amounts of data in self- and weakly-supervised regimes.”

Desh Raj is pursuing a PhD in computer science, studying under Sanjeev Khudanpur, associate professor of electrical and computer engineering.

“Since the first automatic speech recognition systems were built more than 30 years ago, improvement in voice technology has enabled applications such as automated customer support and language learning. Through years of research on speech enhancement and robust speech processing, these systems are now deployed in diverse settings such as on home speakers and vehicle controls. Nevertheless, these present systems are passive listeners which transcribe single-speaker utterances and feed into downstream language understanding components. Conversational intelligence of the future is expected to comprise systems that can actively participate in human conversations. While such systems would require intelligence in diverse modalities — dialog systems for context handling, emotion recognition from speech and video, common sense reasoning, to name a few — their ability to recognize free-flowing multi-party conversations is a core component that needs to be solved.”

Anshul Shah is pursuing a PhD in computer science, studying under Rama Chellappa, Bloomberg Distinguished Professor in electrical and computer engineering and biomedical engineering.

“My current research is broadly in the area of pose-based action recognition, video understanding, self-supervised learning and multimodal learning. My research tries to make fundamental contributions to these research areas, obtains new insights and pushes the state of the art. My interests closely align with AI2AI’s focus in areas of interactive AI technologies specifically in the areas of computer vision and multimodal AI.”

Jeya Maria Jose Valanarasu is pursuing a PhD in electrical and computer engineering, studying under Vishal M. Patel, associate professor of electrical and computer engineering.

“Deep learning methods for computer vision have made remarkable progress in field visual recognition. One major reason for its success is the amount of data these models are trained on. Annotating new ground truths for every new problem or application is very inefficient. Also, current vision systems perform poorly on data distribution that it has not seen during training. This problem is called domain adaptation and is important to solve for deploying models in real-time. Also, when the model is adapted to new data during inference, the adaptation needs to be fast and it does not make sense to train the model at test-time. Thus, we need to focus on few-shot or better zero-shot learning for adaptation.”

Faculty research awards

Top row, Mark Dredze, Philipp Koehn, and Kenton Murray; second row, Anqi Liu, Jesus Antonio Villalba López, and Soledad Villar; bottom row, Laureano Moro-Velazquez, Mahsa Yarmohammadi, and Alan Yuille
Top row, Mark Dredze, Philipp Koehn, and Kenton Murray; second row, Anqi Liu, Jesus Antonio Villalba López, and Soledad Villar; bottom row, Laureano Moro-Velazquez, Mahsa Yarmohammadi, and Alan Yuille are inaugural recipients of faculty research awards as part of the JHU + Amazon Initiative for Interactive AI.

Mark Dredze, John C. Malone Associate Professor of Computer Science: “Integrating Knowledge Representation of LLMs with Information Extraction Systems

“In the past few years, new types of AI models that capture patterns in language have become very good at learning information from language. This project explores how we can use information learned by these models to inform practical applications on language data, such as identifying important features or characteristics of products in product reviews. This award will allow us to push the limits of language modeling by exploring how we can use recent advances to help improve various applications of language technologies.”

Philipp Koehn, professor of computer science, and Kenton Murray, research scientist in the Human Language Technology Center of Excellence: “Evaluating the Multilinguality of Multilingual Machine Translation

“The proliferation of deep neural networks into artificial intelligence has allowed researchers and engineers to build systems that can automatically translate between large groups of languages without having to build separate models. However, the limitations of having one large, general model are not well understood. We aim to investigate the cutting-edge frontiers of this class of AI models.”

Anqi Liu, assistant professor of computer science: “Online Domain Adaptation via Distributionally Robust Learning

“This project aims to enable fast and robust adaptation for AI algorithms via modeling uncertainty. This award makes it possible for me to work on fundamental research questions that have the potential for real-world impact.”

Jesus Antonio Villalba López, assistant research professor of electrical and computer engineering, “Generalist Speech Processing Models

“This project will investigate how to efficiently extract the information contained in speech using large-scale AI models. The outcome will be a generalist model able to transcribe speech into text, and determine the speaker’s identity, language, and emotional state, among others.”

Soledad Villar, assistant professor of applied mathematics and statistics: “Green AI: Powerful and Lightweight Machine Learning via Exploiting Symmetries

“In this project we investigate the use of symmetries and low-dimensional structures in the design of machine learning models. Enforcing these mathematical structures will allow us to reduce the energy consumption, time, and amounts of data required for training and evaluating machine learning models while preserving (or even improving) their performance.”

Laureano Moro-Velazquez, assistant research professor, Center for Language and Speech Processing: “Improving Spoken Language Understanding for People with Atypical Speech

“In this project we will create a new dataset and develop new speech technologies meant to improve the lives of individuals with atypical speech and speech impairment. There are almost no publicly available datasets containing atypical speech, and these are necessary to create new assistive technologies for the affected population. This award will allow us to create such dataset which will be useful for us and for many other groups researching atypical speech.”

Mahsa Yarmohammadi, assistant research scientist, Center for Language and Speech Processing: “Rapid Multilingual Dataset Creation with Automatic Projection and Human Supervision

“Artificial intelligence in general, and natural language processing in particular, require a massive scale of data to learn strong models. Such data might not be available in languages other than high-resource ones such as English. In this project, we study the rapid creation of multilingual datasets by automatically translating and aligning an available dataset in one language into multiple other languages. We will also study the impact of human supervision in improving data quality. Once we have created these resources, we intend to use them to co-train single multilingual models for cross-lingual NLP tasks.”

Alan Yuille, Bloomberg Distinguished Professor of Cognitive Science and Computer Science, “Weakly-Supervised Multi-Modal Transformers for Few-Shot Learning with Generalization to Novel Domains and Fine-Grained Tasks

“Self-supervised and weakly supervised transformers have been shown to be highly effective for a variety of vision, language, and vision-language tasks. This proposal targets three challenges. First, to improve performance on standard tasks, particularly on fine-grained tasks (e.g., object attributes and parts), which have received little study. Second, to develop tokenizer approaches to enable few-shot, and ideally zero-shot, learning. Third, to adapt these approaches so that they are able to generalize to novel domains and to out-of-distribution situations. We propose five strategies to achieve these goals which include extending the tokenizer-based approaches, modifying the transformer structure, increasing the text-annotations to help these difficult tasks, and techniques for enabling the algorithms to generalize out-of-domain and out-of-distribution.”

For more information on the JHU and Amazon initiative, including opportunities and events, visit the official site.

Related content

US, CA, Santa Clara
The AWS AI team has a world-leading team of researchers and academics, and we are looking for world-class colleagues to join us and make the AI revolution happen. Our team of scientists develops the algorithms and models that have powered AWS SageMaker, SageMaker JumpStart, SageMaker Clarify, AWS Bedrock, AWS Ground Truth, Amazon Rekognition, Amazon Textract, and Amazon Lookout for Vision. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. AWS is the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems which will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
IN, KA, Bangalore
Are you excited about delighting millions of customers by driving the most relevant marketing initiatives? Do you thrive in a fast-moving, large-scale environment that values data-driven decision making and sound scientific practices? Amazon is seeking a Data Scientist . This team is focused on driving key priorities of a)core shopping that elevates the shopping CX for all shoppers in all lifecycle stages, b) developing ways to accelerate lifecycle progression and build foundational capabilities to address the shopper needs and c)Alternate shopping models We are looking for a Data Scientist to join our efforts to support the next generation of analytics systems for measuring consumer behavior using machine learning and econometrics at big data scale at Amazon. You will work machine learning and statistical algorithms across multiple platforms to harness enormous volumes of online data at scale to define customer facing products and measure customer responses to various marketing initiatives. The Data Scientist will be a technical player in a team working to build custom science solutions to drive new customers, engage existing customers and drive marketing efficiencies by leveraging approaches that optimize Amazon’s systems using cutting edge quantitative techniques. The right candidate needs to be fluid in: · Data warehousing and EMR (Hive, Pig, R, Python). · Feature extraction, feature engineering and feature selection. · Machine learning, causal inference, statistical algorithms and recommenders. · Model evaluation, validation and deployment. · Experimental design and testing.
US, WA, Bellevue
AMZL Global Fleet and Products (GFP) organization is responsible for fleet programs and capacity for Last Mile deliveries. The Fleet Planning team is looking for a Data Scientist to drive the most efficient use of fleet. Last Mile fleet planning is a complex resource allocation problem. The goal of fleet allocation planning is to optimize the size and mix of fleet allocated to DSPs through various programs to improve branded fleet utilization. Changes in routes, last mile network, exiting DSPs and new DSP onboarding create continuous need for re-allocation of fleet to maintain an efficient network capacity. This requires allocation to adhere to various operational limits (repair network, EV range, Station Charging capability) and also match route’s cube need to vehicles capacity. As a Data Scientist on the Fleet Planning team (GFP), you will be responsible for building new science models (linear programs, statistical and ML models) and enhancing existing models for changing business needs. You would work with program managers in planning, procurement, redeployment, deployment, remarketing, variable fleet and infrastructure programs to build models that would support the requirements of all programs in a coherent plan. Key job responsibilities • Build models and automation for planners for generating vehicle allocation plans • Partner with program teams to test and measure success of implemented model • Lead reviews with senior leadership, deep dive model outputs and explain implications of model recommendations.
US, CA, Santa Clara
Machine learning (ML) has been strategic to Amazon from the early years. We are pioneers in areas such as recommendation engines, product search, eCommerce fraud detection, and large-scale optimization of fulfillment center operations. The Generative AI team helps AWS customers accelerate the use of Generative AI to solve business and operational problems and promote innovation in their organization. As an applied scientist, you are proficient in designing and developing advanced ML models to solve diverse problems and opportunities. You will be working with terabytes of text, images, and other types of data to solve real-world problems. You'll design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for talented scientists capable of applying ML algorithms and cutting-edge deep learning (DL) and reinforcement learning approaches to areas such as drug discovery, customer segmentation, fraud prevention, capacity planning, predictive maintenance, pricing optimization, call center analytics, player pose estimation, event detection, and virtual assistant among others. Key job responsibilities The primary responsibilities of this role are to: - Design, develop, and evaluate innovative ML models to solve diverse problems and opportunities across industries - Interact with customer directly to understand their business problems, and help them with defining and implementing scalable Generative AI solutions to solve them - Work closely with account teams, research scientist teams, and product engineering teams to drive model implementations and new solution About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, CA, Santa Clara
About Amazon Health Amazon Health’s mission is to make it dramatically easier for customers to access the healthcare products and services they need to get and stay healthy. Towards this mission, we (Health Storefront and Shared Tech) are building the technology, products and services, that help customers find, buy, and engage with the healthcare solutions they need. Job summary We are seeking an exceptional Senior Applied Scientist to join a team of experts in the field of machine learning, and work together to break new ground in the world of healthcare to make personalized and empathetic care accessible, convenient, and cost-effective. We leverage and train state-of-the-art large-language-models (LLMs) and develop entirely new experiences to help customers find the right products and services to address their health needs. We work on machine learning problems for intent detection, dialogue systems, and information retrieval. You will work in a highly collaborative environment where you can pursue both near-term productization opportunities to make immediate, meaningful customer impacts while pursuing ambitious, long-term research. You will work on hard science problems that have not been solved before, conduct rapid prototyping to validate your hypothesis, and deploy your algorithmic ideas at scale. You will get the opportunity to pursue work that makes people's lives better and pushes the envelop of science. #everydaybetter Key job responsibilities - Translate product and CX requirements into science metrics and rigorous testing methodologies. - Invent and develop scalable methodologies to evaluate LLM outputs against metrics and guardrails. - Design and implement the best-in-class semantic retrieval system by creating high-quality knowledge base and optimizing embedding models and similarity measures. - Conduct tuning, training, and optimization of LLMs to achieve a compelling CX while reducing operational cost to be scalable. A day in the life In a fast-paced innovation environment, you work closely with product, UX, and business teams to understand customer's challenges. You translate product and business requirements into science problems. You dive deep into challenging science problems, enabling entirely new ML and LLM-driven customer experiences. You identify hypothesis and conduct rapid prototyping to learn quickly. You develop and deploy models at scale to pursue productizations. You mentor junior science team members and help influence our org in scientific best practices. About the team We are the Health AI team at HST (Health Store and Technology). The team consists of exceptional ML Scientists with diverse background in healthcare, robotics, customer analytics, and communication. We are committed to building and deploying the most advanced scientific capabilities and solutions for the products and services at Amazon Health.
US, CA, Santa Clara
As a Senior Scientist at AWS AI/ML leading the Personalization and Privacy AI teams, you will have deep subject matter expertise in the areas of recommender systems, personalization, generative AI and privacy. You will provide thought leadership on and lead strategic efforts in the personalization of models to be used by customer applications across a wide range of customer use cases. Particular new directions regarding personalizing the output of LLM and their applications will be at the forefront. You will work with product, science and engineering teams to deliver short- and long-term personalization solutions that scale to large number of builders developing Generative AI applications on AWS. You will lead and work with multiple teams of scientists and engineers to translate business and functional requirements into concrete deliverables. Key job responsibilities You will be a hands on contributor to science at Amazon. You will help raise the scientific bar by mentoring, educating, and publishing in your field. You will help build the scientific roadmap for personalization, privacy and customization for generative AI. You will be a technical leader in your domain. You will be a strong mentor and lead for your team. About the team The DS3 org encompasses scientists who work closely with different AWS AI/ML product services, innovating on the behalf of our customers customers. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, WA, Bellevue
At AWS, we use Artificial Intelligence to be able to identify every need of a customer across all AWS services before they have to tell us about it and help customers adopt best practices while architecting on the cloud. We are looking for Applied Scientists to drive innovation with Gen AI to bring paradigm shift to how the business operates and build “best in the world” experience that customers will love! Some of the science challenges we work on include fine-tuning Large language models, Reinforcement Learning, Auto-generating code from natural language and generating strategic insights and recommendations from very large datasets. You will have an opportunity to lead, invent, and design tech that will directly impact every customer across all AWS services. We are building industry-leading technology that cuts across a wide range of ML techniques from Natural Language Processing to Deep Learning and Generative Artificial Intelligence. You will be a key driver in taking something from an idea to an experiment to a prototype and finally to a live production system. Our team packs a punch with principal level product, science, engineering, and leadership talent. We are a results focused team and you have the opportunity to lead and establish a culture for the big things to come. We combine the culture of a startup, the innovation and creativity of a R&D Lab, the work-life balance of a mature organization, and technical challenges at the scale of AWS. We offer a playground of opportunities for builders to build, have fun, and make history! AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Key job responsibilities - Deliver real world production systems at AWS scale. - Work closely with the business to understand the problem space, identify the opportunities and formulate the problems. - Use machine learning, data mining, statistical techniques, Generative AI and others to create actionable, meaningful, and scalable solutions for the business problems. - Analyze and extract relevant information from large amounts of data and derive useful insights. - Work with software engineering teams to deliver production systems with your ML models - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation A day in the life Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, WA, Bellevue
At AWS, we use Artificial Intelligence to be able to identify every need of a customer across all AWS services before they have to tell us about it and help customers adopt best practices while architecting on the cloud. We are looking for Applied Scientists to drive innovation with Gen AI to bring paradigm shift to how the business operates and build “best in the world” experience that customers will love! Some of the science challenges we work on include fine-tuning Large language models for domain specific use cases, Reinforcement Learning, Auto-generating code from natural language and generating strategic insights and recommendations from very large datasets. You will have an opportunity to lead, invent, and design tech that will directly impact every customer across all AWS services. We are building industry-leading technology that cuts across a wide range of ML techniques from Natural Language Processing to Deep Learning and Generative Artificial Intelligence. You will be a key driver in taking something from an idea to an experiment to a prototype and finally to a live production system. Our team packs a punch with principal level product, science, engineering, and leadership talent. We are a results focused team and you have the opportunity to lead and establish a culture for the big things to come. We combine the culture of a startup, the innovation and creativity of a R&D Lab, the work-life balance of a mature organization, and technical challenges at the scale of AWS. We offer a playground of opportunities for builders to build, have fun, and make history! AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Key job responsibilities - Deliver real world production systems at AWS scale. - Work closely with the business to understand the problem space, identify the opportunities and formulate the problems. - Use machine learning, data mining, statistical techniques, Generative AI and others to create actionable, meaningful, and scalable solutions for the business problems. - Analyze and extract relevant information from large amounts of data and derive useful insights. - Work with software engineering teams to deliver production systems with your ML models - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation A day in the life Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
JP, 13, Tokyo
AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services. The Generative Artificial Intelligence (AI) Innovation Center team at AWS provides opportunities to innovate in a fast-paced organization that contributes to game-changing projects and technologies leveraging cutting-edge generative AI algorithms. As an Applied Scientist, you'll partner with technology and business teams to build solutions that surprise and delight our customers. We’re looking for Applied Scientists capable of using generative AI and other ML techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. #aws-jp-proserv-ap #AWSJapan Key job responsibilities - Collaborate with scientists and engineers to research, design and develop cutting-edge generative AI algorithms to address real-world challenges - Work across customer engagement to understand what adoption patterns for generative AI are working and rapidly share them across teams and leadership - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths for generative AI - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction. A day in the life Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. What if I don’t meet all the requirements? That’s okay! We hire people who have a passion for learning and are curious. You will be supported in your career development here at AWS. You will have plenty of opportunities to build your technical, leadership, business and consulting skills. Your onboarding will set you up for success, including a combination of formal and informal training. You’ll also have a chance to gain AWS certifications and access mentorship programs. You will learn from and collaborate with some of the brightest technical minds in the industry today.
US, VA, Arlington
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center at AWS is a new strategic team that helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, data scientists, engineers, and solution architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Data Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities As an Data Scientist, you will - Collaborate with AI/ML scientists and architects to Research, design, develop, and evaluate cutting-edge generative AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction A day in the life About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.