Grace Hopper Conference
Amazon scientists (from top left) Kristine Brown, Laura De Lorenzo, Yang Liu, Hannah Marlowe, Nina Mishra, Candace Thille, and Chao Wang provide their perspectives on what it will take to attract more women to pursue STEM careers.
Credit: Stacy Reilly

Seeds of inspiration

Given the recent death of US Supreme Court Justice Ruth Bader Ginsburg, and with the Grace Hopper Celebration taking place this week, we asked Amazon women scientists what it will take to attract more women to pursue STEM careers.

The AnitaB.org Grace Hopper Celebration, an event honoring Grace Hopper’s legacy by inspiring future generations of women to pursue careers in technology, takes place this week, as it has every year since 1994. Amazon is a Diamond sponsor of this year’s event.

Unlike previous years, though, this year’s celebration, which AnitaB.org produces in partnership with the Association for Computing Machinery (ACM), will be held virtually given restrictions related to COVID-19.  What hasn’t changed is the vision of AnitaB.org: a future “where the people who imagine and build technology mirror the people and societies for whom they build it.”

Based on the latest statistics from the National Center for Women & Information Technology, that future is still on the horizon. While 57 percent of US professional jobs were held by women in 2019, just 26% of professional computing jobs were occupied by women. Among the 26% of women occupying professional computing jobs, 7% were Asian women, 3% Black women, and 2% Hispanic women.

Elizabeth Nieto, Amazon’s head of global diversity and inclusion, says the company’s vision is to create a culture where the best builders, including women from all backgrounds, want to work and stay at Amazon “because they are drawn to our mission, our culture, and our leaders. We are focused on being globally inclusive and creating a culture at Amazon where everyone can reach their full potential.”

At last year’s event, Brenda Darden Wilkerson, president and CEO of AnitaB.org, told nearly 25,000 attendees, “I want our daughters to say, ‘I heard back in the day there was this problem that there weren’t enough women in tech.  What was that like?’”

In advance of this week's conference, Amazon Science asked some of the company’s women scientists when they think the industry will reach that goal, what it will take to get there, and who or what most inspired them to pursue their science careers.  Below are their responses.

Kristine Brown is a principal economist within Amazon’s human resources organization. She obtained her PhD in economics from the University of California, Berkeley.

Kristine Brown
Kristine Brown

Q. When do you think we'll reach that day that Brenda Wilkerson talked about last year?

At Amazon, I learned the importance of continuous inspection to identify opportunities for improvement, and to adapt to a shifting environment. I think the same applies here; the task of deliberately creating opportunities for others, and removing barriers to shape a more equitable and inclusive workplace will evolve over time, but it doesn’t have an end date.

Q. What will it take to get there?

The demand for science and tech talent is increasing in the traditional technology sector and in other industries that are leveraging new technologies and data to provide better services and products. The door is wide open, but you can’t walk in if you don’t know it exists, or how to get there. For me, early exposure and encouragement to explore science and math were critical. I discovered a passion for physics and that interest pushed me to develop my math and science skills. I was lucky to have this opportunity. Casting a wider net to provide early, low stakes opportunities to engage in science and tech activities, develop STEM skills, and learn about the diversity of work in this space, will help demystify the technology industry. It will also allow kids and young adults to learn whether it matches their interests and whether they have a knack for it.

Q. Who or what inspired you most to pursue your STEM career?

My fascination with the natural world was fueled by observing wildlife, peering through an observatory telescope at distant planets, and nature magazines with beautiful photos. The mind-bending questions of space and time were especially irresistible; I wanted the answers to the universe, and physics and math were the key to finding them. Later, as I became interested in understanding human behavior (which I’d argue is no less mysterious) and how government policies could improve lives, I found economics came with a familiar toolkit of mathematical modeling and scientific testing to answer these questions. I saw a career in economics as an opportunity to leverage my strengths to drive positive change.

Laura De Lorenzo is a quantum computing research scientist within the Amazon Web Services organization. She earned her PhD in applied physics from the California Institute of Technology (CalTech).

Laura De Lorenzo
Laura De Lorenzo

Q. When do you think we'll reach that day that Brenda Wilkerson talked about last year?

To be honest, I'm so uncertain as to be unwilling to hazard a guess, but I do think it is a long way off. In some STEM fields, such as medicine, the gender gap has nearly, or completely, closed within the past 50 years. In other fields, the percentage of women (measured by employment or educational degree) remains far below 50% and doesn't appear to be changing significantly year over year. The amount of progress in some fields is encouraging, but it's difficult to understand why fields like physics and computer science lag behind.  

Q. What will it take to get there?

This issue is clearly challenging and multi-faceted, so I cannot offer a single simple solution. However, I think one important aspect is a focus on young women, in the middle school to high school age group. For example, women are already underrepresented in the high school AP physics examinations. By the time students reach the undergraduate level, only about 20% of physics majors are female. I think it is essential to understand why young women make these choices. Is it a lack of role models, or self-doubt about their ability to perform well in science, or peer pressure, or something else entirely?  In the meantime, I think it is important to offer encouragement and support to young students because once women drop out of the STEM fields, it is more difficult for them to return at a later age.

Q. Who or what inspired you most to pursue your STEM career?

From a young age, my parents were always supportive of my interests in science and math, and of my career in general. My mother went to medical school in the late ‘70s, when women represented only about 20% of medical students in the US.  I always saw her as strong, hard-working, and independent, and she was a great example for me to follow. Both of my parents had high expectations for me and would never allow me to perform at less than my best. I definitely owe the largest debt of gratitude to them. However, programs such as Science Olympiad and the Pennsylvania Governor's School for Science (a five-week program for rising high school seniors), also helped me by introducing me to a peer group with similar interests, and to a larger group of role models and mentors who could help me navigate the next step.

Yang Liu is a principal scientist within the Alexa AI organization. She earned her PhD in electrical and computer engineering from Purdue University.

Yang Liu
Yang Liu

Q. When do you think we'll reach that day that Brenda Wilkerson talked about last year?

Maybe in another generation. My daughter is in first grade now. I’m hopeful we can reach that day when she finishes high school, and is choosing a college major or planning a career in STEM or the technology industry.

Q. What will it take to get there?

It will require effort from everyone in society, including educators, students, parents, and policy makers. Starting from kindergarten through high school, young girls and women need support and encouragement from parents and teachers to realize their potential and get excited by STEM careers; educators need to nurture girls’ interest in STEM and create an environment to help them do well in these subjects; and policy makers need to provide appropriate and adequate resources for teachers and students. As Hillary Clinton has written and said, it will take a village for society to address existing biases and prejudices. But with everyone’s effort, I’m confident we can get there by the time my daughter is entering the workforce.

Q. Who or what most inspired you to pursue your STEM career?

Mostly just people around me — my family, teachers from elementary schools all the way up to universities, and an overall supportive environment, including friends and peers. I grew up in China. My mom was a math teacher, and I did well in math starting in elementary school. All I got from everyone around me was support, respect, and encouragement to continue to excel in this subject. I never encountered an attitude like “girls are not good at math (or other science subjects) or don’t need to do well in math”. I made many friends (girls and boys) in schools, and was never left out because I did better than others in science. Reflecting on this, there’s no doubt I benefited from that supportive environment, leading to my future career in STEM. I don’t know for sure if there is a difference between China and US; I don’t have enough sample to draw a conclusion. I’m not even sure if there’s been a generational change within China. What I can say is that I would encourage girls and young women to pursue STEM careers.  The subjects themselves are fascinating. Right now I’m working within the Alexa organization on making computers and other devices “intelligent” by recognizing speech and understanding human language. The work is challenging, interesting, and it’s great to see how Alexa can have a positive impact on the lives of our customers. 

Hannah Marlowe is a senior data scientist within the AWS Worldwide Public Sector Professional Services Data and Machine Learning team. She earned her PhD in physics from the University of Iowa, specializing in the study of astronomical X-ray sources and space-borne instrumentation development.

Hannah Marlowe
Hannah Marlowe

Q. When do you think we'll reach that day that Brenda Wilkerson talked about last year?

The university building where I completed my PhD was an interesting time-capsule to observe some of the progress of women in physics and astronomy. The eight-level physics building, built in the ‘60s, originally featured only men’s restrooms apart from one. The lone women’s restroom was located across the hall from the administration office and included an attached kitchen (still there today), presumably so that secretaries working in the office could prepare meals during the work day. In years since, they have thankfully adjusted the restroom situation, but the basement where my team’s lab was located still only had a men’s room and it was always an interesting reminder of that past.

Today, the thought of designing a building with facilities only for men (much less a public university building) seems completely ridiculous, but it wasn’t so long ago that it apparently made practical sense. We are standing on the shoulders of giants like Ruth Bader Ginsburg and other advocates of gender equality who paved the way for the participation of women in traditionally male-dominated fields and shifted public perception of what women can and should do. It is my hope that we continue to build on the work they championed, but it will take a concerted effort. I don’t have a good answer for when I think we will get to the point that gender disparity in STEM fields is a distant memory. However, I have seen positive changes and witnessed shifts over my own career (not limited to restroom design choices) that make me optimistic that we can get there eventually.

Q. What will it take to get there?

I don’t believe there is any one right answer, but one of the most important things is making it clear to young girls and women that they belong and add value in STEM. I think people tend to gravitate to careers and roles that they have exposure to, and where they see role models that look like themselves. The other piece is not just encouraging girls and women to explore STEM, but expecting it and treating it like a normal career path versus an exceptional one. That is not to say we should be pushing girls to pursue something they aren’t interested in, but I hope that we get to a point where girls pursuing STEM seems completely boring and commonplace. That gets easier as more women enter STEM fields, and I think there is probably a tipping point where women and girls just naturally begin to gravitate in larger numbers to these fields. As a practical matter, we should also be equipping girls with all of the skills and tools that will make them successful in these fields from a young age. Anyone who isn’t exposed to math and science early is going to have to play catch-up later on, and may question their own abilities when they compare themselves to peers who have been in advanced math and science tracks throughout grade school.

Q. Who or what most inspired you to pursue your STEM career?

I feel extremely fortunate that I have mainly been able to follow my interests and what I found to be fun and personally challenging throughout school and my career so far. I also had many great influences and mentors in my life that helped me along my path. From an early age my father used to point out constellations in the sky and took my sister and me to observe comets and space shuttle launches. Once I got to high school, I had a wonderful retired NASA engineer as a physics teacher who introduced me to physics and to Carl Sagan and helped us start the first astronomy club at our school. For my undergraduate education, I chose a small women’s liberal arts college, Agnes Scott College, that had its own observatory and offered an astrophysics degree. At Agnes, I had excellent professors and the unique experience of having all of my STEM peers be women. I think that experience especially helped inoculate me for the future where I’ve more often found myself the only women in large lab groups, collaborations, and professional teams.

The last thing I would like to mention here, because I think it is really important and something I have often struggled with, is the issue of self-doubt. Self-doubt and imposter syndrome are definitely not limited to women in STEM fields, but I think being the only one around who looks like you can contribute to those feelings, and can push people away who have wonderful things to add to these fields. I have so often questioned myself and my worthiness, intelligence, and value (did I really earn that award/fellowship/job offer or was I selected just because I am a women/was in the right place at the right time/completely by mistake?). It was really important for me to know that I was not alone in doubting myself and my capabilities and I am grateful to colleagues and mentors, men and women alike, who shared their own experiences with self-doubt and imposter syndrome along the way. I’ll always remember my wonderful, brilliant, and inspiring undergraduate professor telling me about her own struggles in graduate school, and that one of the reasons she became a professor was to show us that “if she could do it, any of us could.”

Nina Mishra is a principal scientist Amazon’s Health and Wellness organization. She earned her PhD in computer science from the University of Illinois at Urbana-Champaign.

Nina Mishra
Nina Mishra

Q. When do you think we’ll reach that day that Brenda Wilkerson talked about last year?

While computer science has had a gender gap since its inception, I was convinced early on that a trifling matter like gender difference would self-correct. I was wrong. According to a 2019 Taulbee survey, 80% of PhDs are awarded to men and 20% to women. Back in 2001, the split was 78%/22% -- essentially unchanged after 18 years. The problem is not likely to improve in the next five years since the 80/20 gap persists in 2019 at the computer science bachelor’s degree level. Beyond gender gap, there is a gaping wide race gap. In 2019, less than 1% of PhDs were awarded to Black or African-American students; in 2001 this number was 1.3% -- again, essentially the same.  This gap persists early in the education pipeline.  For example, while Atlanta’s population is more than 50% black, only 3 Black students are enrolled in advanced placement computer science courses in local public high schools -- that is 3 out of 528,000! Narrowing this gap is critical for the technology industry. Companies do not want the lack of diversity in their workforce to perpetuate into their products. When will we reach that day? When we change the computer-science culture to welcome and embrace differences. 

My hope, adapting the words of others, is that the arc of social justice is long, but bends towards equality.
Nina Mishra

Q. What will it take to get there?

We cannot reach parity until we overturn the presumption that women hold different roles than men. Until we eliminate the idea that there are ‘girls’ disciplines’ and ‘boys’ disciplines’, and slights such as asking a woman in a meeting if she’s a secretary, or if she can get water for the meeting, it will be difficult to make progress.  Derogatory comments like these contribute to the ‘million cuts’ that women experience and can ultimately lead people to pursue careers where they are more wanted. I’m surprised that people are still hung up on these role associations, but the concern is real and people like Ruth Bader Ginsberg fought their entire career to overturn them. My hope, adapting the words of others, is that the arc of social justice is long, but bends towards equality.

Beyond reaching parity, underrepresented groups need to be seen and more prominently heard. All people have amazing ideas, but I have repeatedly seen ideas from underrepresented groups diminished and even discarded. When such ideas later resurface with the ownership transferred to someone in an overrepresented group, the process is demoralizing and influences people to find alternate careers. These injustices need to be reported and escalated to higher levels. The problem can only be fixed if we have an active dialogue starting from a young age.

Accessibility of resources is a consideration in some parts of the country. There are still households where students do not have a computer and others where a single computer is shared among many family members. There are households that do not have internet access. And, there are parts of the country where computer science classes and teachers aren’t available to students. People cannot choose a computer science career if they are missing these simple, starter ingredients.

Outreach is another area where we can do more. Students may wonder, `What will I do if I have a career in STEM?’. Everyone knows what a medical degree or a law degree leads to career-wise, but what does a computer science degree lead to? The common misperception is of macho geeks cranking out tons of code. For me, it is about finding ways to use data collected about some people to help millions more. It is about the amazing predictions that machine learning can make. The way that smartwatches can detect heart arrhythmias and search engines connect people to information is rooted in data and machine learning. Writing code is a means to that end. Novel and crazy ideas are what push the field forward. A more concerted effort is needed to communicate this to young students.

Q. Who or what most inspired you to pursue your STEM career?

My mother played a huge role early in life. She has a gift for explaining mathematical concepts. She taught math at a community college and also a prison. Later on, my high school math teacher played a large role. She forced students to walk to the board and write/explain their solutions. It was an early peek into the clarity one achieves by teaching their solution to others. Both taught me the precision and beauty of math. Both insisted on exacting standards for the highest quality of work. My father taught me to be bold. He has a PhD in inorganic chemistry and emphasized scientific innovation. To this day, he shares articles with the latest and greatest scientific findings, always pushing me to aim higher.

Candace Thille is director of learning science within Amazon’s Global Learning and Development organization. She obtained her master’s degree in computer science from Carnegie Mellon University and earned her PhD in education from the University of Pennsylvania.

Candace Thille
Candace Thille

Q. When do you think we'll reach that day that Brenda Wilkerson talked about last year?

I am going to change the question to respond to what I wish Brenda Darden Wilkerson had said: “I want our sons to say ‘I heard back in the day there was this problem that there weren’t enough women in tech. What was that like?” I do not mean to imply that the quote needs to be changed because the problem is only important if it is acknowledged by our sons, but rather that the problem will only be corrected when the problem, and the responsibility for correcting it, is owned by our sons too, not just our daughters.  When will we reach that day?  When gender is no longer seen as a feature of an individual that is relevant for encouraging, allocating, or selecting roles and responsibilities.

Q. What will it take to get there? 

First, an acknowledgement that the current systems and structures in STEM fields are grounded in the idea that gender and race are features of an individual that are relevant for encouraging, allocating, or selecting roles and responsibilities. Second, a commitment to ongoing inspection of those systems and structures for biases in order to change them. People would sometimes ask Ruth Bader Ginsberg “When will there be enough women on the court” and she would reply, “When there are nine”.  She would say then that “People are shocked, but there’d been nine men, and nobody’s ever raised a question about that”.  

Q. Who or what most inspired you to pursue your STEM career?

I have always been fascinated with how things work, both for the joy of understanding and to figure out how to make things work better. I have been awed by the discoveries that come from good research, and from the positive impact of using the results from research to make the world better. Both as an academic researcher and as a research scientist at Amazon, I situate my work in Pasteur's quadrant and work on projects that seek fundamental understanding of scientific problems, while also having immediate use for society.

Chao Wang is a senior applied science manager within the Alexa organization. She earned her PhD in electrical engineering and computer science from the Massachusetts Institute of Technology (MIT).

Chao Wang
Chao Wang

Q. When do you think we'll reach that day that Brenda Wilkerson talked about last year?

I’m reminded of the Bill Gates quote, “We always overestimate the change that will occur in the next two years, and underestimate the change that will occur in the next ten. Don’t let yourself be lulled into inaction.” I’d like to think we could reach that state within the next 10 years, but it will probably take another generation of change. So I think closer to 2050.

Q. What will it take to get there?

I’ll share a very different perspective. I grew up in China and the education system back then made everyone decide their major in sophomore year of high school. That system channeled students to different college entrance exams depending on the choice (so your career paths are largely determined very early on). It was a 5:2 split ratio for STEM and non-STEM (probably matching the college admission ratio), and naturally only students who were really interested in a non-STEM career path self-selected into that track. The majority chose STEM. At the time, I did notice that more female students chose the non-STEM track, but plenty of us ended up in the STEM track, too (strength in numbers). I have observed that in the US, if you are ambivalent about STEM, then the gender stereotype works against young women pursuing STEM careers. I contrast that with the early days of computing in the US, when computer programmer was considered a female job, and you had a lot of female programmers in an otherwise male dominant technology industry and computing pioneers like Dr. Grace Hopper. It all changed (for the worse) within a generation, and we can change it back with the right societal mental shift.

Q. Who or what most inspired you to pursue your STEM career?

Growing up in China I never felt that STEM was somehow an unusual choice for a young woman. Math and physics were always my favorite subjects, and no one ever discouraged me from pursuing those interests. I enjoyed the problem solving of math and physics much more than courses requiring writing or memorization. I opted for the STEM track in high school and was admitted into a top engineering school in China for my undergraduate studies. My career path was more or less decided from that point in time.


Amazon Science Newsletter Project Kuiper.jpg
Get more from Amazon Science
Sign up for our monthly newsletter

Work with us

See More Jobs
US, WA, Seattle
The Human Resources Central Science Team (HRCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.We are looking for economists who are able to provide structure around complex business problems, hone those complex problems into specific, scientific questions, and test those questions to generate insights. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team.Ideal candidates will work closely with business partners to develop science that solves the most important business challenges. They will work in a team setting with individuals from diverse disciplines and backgrounds. They will serve as an ambassador for science and a scientific resource for business teams, so that scientific processes permeate throughout the HR organization to the benefit of Amazonians and Amazon. Ideal candidates will own the development of scientific models and manage the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions.
US, WA, Seattle
The Human Resources Central Science Team (HRCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.We are looking for economists who are able to provide structure around complex business problems, hone those complex problems into specific, scientific questions, and test those questions to generate insights. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team.Ideal candidates will work closely with business partners to develop science that solves the most important business challenges. They will work in a team setting with individuals from diverse disciplines and backgrounds. They will serve as an ambassador for science and a scientific resource for business teams, so that scientific processes permeate throughout the HR organization to the benefit of Amazonians and Amazon. Ideal candidates will own the development of scientific models and manage the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions.
US, WA, Seattle
Want to watch a movie at the end of a long week, but not sure what to choose? Looking for a new show while you wait for the next season of Game of Thrones to start? So are millions of our Prime Video customers. The Prime Video Relevance team helps customers find relevant videos, channels and topics so they can find content they didn’t even known they were looking for, continuing to surprise them with the depth of our catalog.We tailor our recommendations through a variety of machine learning algorithms including deep learning neural networks, that you will help define and extend. We are looking for creative, customer and details obsessed machine learning scientists who can apply the latest research, state of the art algorithms and machine learning to build highly scalable recommendation and personalization systems. You'll have a chance to collaborate with talented teams of engineers and scientists to run these predictions on distributed systems at incredible scale and speed.As a member of the Prime Video Personalization organization, you will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At then of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide.Some examples of the things we work on:· Using Neural Networks and Deep Learning techniques to find titles that customers will enjoy· Build and operate services that deliver millions of recommendations per second· Extend models and algorithms to support our ever growing ways of consuming content (subscriptions, live, rentals etc), dealing with unique challenges such as observational bias and rapidly scaling dimensions· Constantly experimenting with changes to the underlying algorithms and models to deliver relevant content to a wide variety of customer experiencesIf you are ready to truly make an impact on a product that is used by millions of people around the world, including your own friends and family, then we would love to talk to you.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation
US, WA, Seattle
Are you excited about powering Amazon’s physical stores’ expansion through the application of Machine Learning and Big Data technologies? Do you thrive in a fast-moving, innovative environment that values data-driven decision making, scalable solutions, and sound scientific practices? We are looking for experienced scientists to build the next level of intelligence that will help Amazon physical stores grow and succeed.Our team is responsible for building the core intelligence, insights, and algorithms that support the real estate acquisition strategies for Amazon physical stores. We are tackling cutting-edge, complex problems — such as predicting the optimal location for new Amazon stores — by bringing together numerous data assets from disparate sources inside and outside of Amazon, and using best-in-class modeling solutions to extract the most information out of them.You will have a proven track-record of delivering solutions using advanced science approaches. You will be comfortable using a variety of tools and data sources to answer high-impact business questions. You will transform one-off models into automated systems. You will be able to break down complex information and insights into clear and concise language and be comfortable presenting your findings to audiences with a broad range of backgrounds.Responsibilities:· Develop production software systems utilizing advanced algorithms to solve business problems.· Analyze and validate data to ensure high data quality and reliable insights.· Partner with data engineering teams across multiple business lines to improve data assets, quality, metrics and insights.· Proactively identify interesting areas for deep dive investigations and future product development.· Design and execute experiments, and analyze experimental results in collaboration with Product Managers, Business Analysts, Economists, and other specialists.· Leverage industry best practices to establish repeatable applied science practices, principles & processes.
US, WA, Seattle
Amazon’s High Value Messaging (HVM) Analytics team (part of Customer Behavior Analytics) is looking for a Senior Applied Scientist to spearhead the rapid growth of our Marketing Measurement solutions. The team focuses on building scalable scientific models to estimate the effectiveness of Amazon marketing efforts and provide actionable insights to the various marketing teams within Amazon. We are looking for a thought leader that has an aptitude for delivering customer-focused solutions and who enjoys working on the intersection of Big-Data analytics, Machine/Deep Learning, and Causal Inference.A successful candidate will be a self-starter, comfortable with ambiguity, able to think big and be creative, while still paying careful attention to detail. You should be able to translate how data represents the customer journey, be comfortable dealing with large and complex data sets, and have experience using machine learning and econometric modeling to solve business problems. You should have strong analytical and communication skills, be able to work with product managers and software teams to define key business questions and work with the analytics team to solve them. You will join a highly collaborative and diverse working environment that will empower you to shape the future of Amazon marketing, as well as allow you to be part of the large science community within the Customer Behavior Analytics (CBA) organization.The Customer Behavior Analytics (CBA) organization owns Amazon’s insights pipeline, from data collection to deep analytics. We aspire to be the place where Amazon teams come for answers, a trusted source for data and insights that empower our systems and business leaders to make better decisions. Our outputs shape Amazon product and marketing teams’ decisions and thus how Amazon customers see, use, and value their experience.The main responsibilities for this position include:· Apply expertise in ML and causal modeling to develop systems that describe how Amazon’s marketing campaigns impact customers’ actions· Own the end-to-end development of novel scientific models that address the most pressing needs of our business stakeholders and help guide their future actions· Improve upon and simplify our existing solutions and frameworks· Review and audit modeling processes and results for other scientists, both junior and senior· Work with marketing leadership to align our measurement plan with business strategy· Formalize assumptions about how models are expected to behave, creating definitions of outliers, developing methods to systematically identify these outliers, and explaining why they are reasonable or identifying fixes for them· Identify new opportunities that are suggested by the data insights· Bring a department-wide perspective into decision making· Develop and document scientific research to be shared with the greater science community at Amazon
US, WA, Seattle
Global Talent Management (GTM) at Amazon owns a suite of products which helps drive career development for hundreds of thousands of Amazonians across the world. GTM - Science utilizes a wide array of data sources to conduct analytics and create predictive models that fuel recommendations, actions, and insights in nearly a dozen software systems. The team itself is composed of a variety of scientists and engineers with varied backgrounds, coming together to create diverse and innovative solutions to the problems faced by the one of the world’s largest and fastest growing workforces.This role will support the advancement of key workforce planning products owned by the team. The role will be a scientific lead for forecasting in the organization and a thought leader for forecasting applications throughout HR. If you’re interested in building models used regularly by thousands of Amazonians, to inform talent management decisions, this role is for you. You will support interesting, analytical problems, in an environment where you get to learn from other experienced economists and apply econometrics at massive scale.You will build econometric models, using our world class data systems, and apply economic theory to solve business problems in a fast moving environment. Economists at Amazon will be expected to develop new techniques to process large data sets, address quantitative problems, and contribute to design of automated systems around the company.· Build and operationalize econometric and statistical models· Perform model refreshes or updates to analyses as needed· Work collaboratively with economists and research scientists to assist in the design and implementation of analysis to answer challenging HR questions· Interpret and communicate results to outside customers· Aggregate and analyze data pulled from disparate sources (HR, Finance or other business systems) and related industry and external benchmarks; provide insights and a point of view on analysis and recommendations· Assist in the design and delivery of automated, scalable analytical models to stakeholders· Report results in a manner which is both statistically rigorous and compellingly relevant
US, WA, Seattle
Global Talent Management (GTM) at Amazon owns a suite of products which helps drive career development for hundreds of thousands of Amazonians across the world. GTM - Science utilizes a wide array of data sources to conduct analytics and create predictive models that fuel recommendations, actions, and insights in nearly a dozen software systems. The team itself is composed of a variety of scientists and engineers with varied backgrounds, coming together to create diverse and innovative solutions to the problems faced by the one of the world’s largest and fastest growing workforces.This role will support the advancement of key workforce planning products owned by the team. The role will be a scientific lead for forecasting in the organization and a thought leader for forecasting applications throughout HR. If you’re interested in building models used regularly by thousands of Amazonians, to inform talent management decisions, this role is for you. These are exciting fast-paced businesses in which work on extremely interesting analytical problems, in an environment where you get to learn from other experienced economists and apply econometrics at massive scale.You will build econometric models, using our world class data systems, and apply economic theory to solve business problems in a fast moving environment. Economists at Amazon will be expected to develop new techniques to process large data sets, address quantitative problems, and contribute to design of automated systems around the company.· Build and operationalize econometric and statistical models· Perform model refreshes or updates to analyses as needed· Work collaboratively with economists and research scientists to assist in the design and implementation of analysis to answer challenging HR questions· Interpret and communicate results to outside customers· Aggregate and analyze data pulled from disparate sources (HR, Finance or other business systems) and related industry and external benchmarks; provide insights and a point of view on analysis and recommendations· Assist in the design and delivery of automated, scalable analytical models to stakeholders· Report results in a manner which is both statistically rigorous and compellingly relevant
US, NY, New York
Machine learning (ML) has been strategic to Amazon from the early years. We are pioneers in areas such as recommendation engines, product search, eCommerce fraud detection, and large-scale optimization of fulfillment center operations.The Amazon ML Solutions Lab team helps AWS customers accelerate the use of machine learning to solve business and operational challenges and promote innovation in their organization. In this role, you will be designing and developing advanced ML models to solve diverse challenges and opportunities. You will be working with terabytes of text, images, and other types of data to solve real-world problems. You'll design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience.We’re looking for talented data scientists capable of applying classical ML algorithms and cutting-edge deep learning (DL) and reinforcement learning approaches to areas such as drug discovery, customer segmentation, fraud prevention, capacity planning, predictive maintenance, pricing optimization, call center analytics, player pose estimation, event detection, and virtual assistant among others.The primary responsibilities of this role are to:· Design, develop, and evaluate innovative ML/DL models to solve diverse challenges and opportunities across industries· Interact with customer directly to understand their business problems, and help them with defining and implementing scalable ML/DL solutions to solve them· Work closely with account teams, research scientist teams, and product engineering teams to drive model implementations and new algorithmsThis position requires travel of up to 25%.Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and we host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust.
US, CA, San Diego
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by protecting Amazon customers from hackers and bad actors? Do you want to build advanced algorithmic systems that help manage the trust and safety of millions of customer every day? Are you excited by the prospect of analyzing and modeling terabytes of data and create state-of-art algorithms to solve real world problems? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Amazon Account Integrity team.The Amazon Account Integrity team works to ensure that customers are protected from bad actors trying to access their accounts. Our greatest challenge is protecting customer trust without unjustly harming good customers. To strike the right balance, we invest in mechanisms which allow us to accurately identify and mitigate risk, and to quickly correct and learn from our mistakes. This strategy includes continuously evolving enforcement policies, iterating our Machine Learning risk models, and exercising high‐judgement decision‐making where we cannot apply automation.
US, CA, San Diego
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by protecting Amazon customers from hackers and bad actors? Do you want to build advanced algorithmic systems that help manage the trust and safety of millions of customer every day? Are you excited by the prospect of analyzing and modeling terabytes of data and create state-of-art algorithms to solve real world problems? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Amazon Account Integrity team.The Amazon Account Integrity team works to ensure that customers are protected from bad actors trying to access their accounts. Our greatest challenge is protecting customer trust without unjustly harming good customers. To strike the right balance, we invest in mechanisms which allow us to accurately identify and mitigate risk, and to quickly correct and learn from our mistakes. This strategy includes continuously evolving enforcement policies, iterating our Machine Learning risk models, and exercising high‐judgement decision‐making where we cannot apply automation.
US, WA, Seattle
Millions of Sellers list their products for sale on the Amazon Marketplace. Sellers are a critical part of Amazon’s ecosystem to deliver on our vision of offering the Earth’s largest selection and lowest prices. In this ecosystem, the International Seller Services org (ISS) plays a critical role in enabling Sellers across EU5, China, Japan, Australia, Brazil and Turkey to make their Selection available to customers globally and deliver the experience they have come to expect from Amazon.ISS is looking for a results driven Economist to join its Econometrics and Science team in Seattle. The Economist will work closely with other research scientists, machine learning experts, and economists to design new frameworks that systematically identify low touch machine driven recommendations that propel seller growth while creating a meaningful economic impact for Amazon. Research science at Amazon is a highly experimental activity, although theoretical analysis and innovation are also welcome. Our economists and scientists work closely with software engineers to put algorithms into practice. They also work on cross-disciplinary efforts with other scientists within Amazon.The key strategic objectives for this role include:· Model seller behavior, identify success metrics, impacts, and key drivers of seller success· Conceptualize and lead global research initiatives· Guide the technical approach for the design and implementation of successful models and algorithms in support of expert cross-functional teams delivering on demanding projects· Conduct, direct, and coordinate all phases of research projects, demonstrating skill in all stages of the analysis process, including defining key research questions, recommending measures, working with multiple data sources, evaluating methodology and design, executing analysis plans, interpreting and communicating results· Functionally decompose complex problems into simple, straight-forward solutions.If you have an entrepreneurial spirit, you know how to deliver, and you are deeply quantitative, highly innovative, and long for the opportunity to build pioneering solutions to challenging problems, we want to talk to you.Amazon is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation.
US, WA, Seattle
The Economic Technology team (ET) is looking for a Senior Applied Scientist to join our team in building Reinforcement Learning solutions at scale. The ET applies Machine Learning, Reinforcement Learning, Causal Inference, and Econometrics/Economics to derive actionable insights about the complex economy of Amazon’s retail business. We also develop Statistical Models and Algorithms to drive strategic business decisions and improve operations. We are an interdisciplinary team of Economists, Engineers, and Scientists incubating and building day one solutions using cutting-edge technology, to solve some of the toughest business problems at Amazon.You will work with business leaders, scientists, and economists to translate business and functional requirements into concrete deliverables, including the design, development, testing, and deployment of highly scalable distributed services. You will partner with scientists, economists, and engineers to help invent and implement scalable ML, RL, and econometric models while building tools to help our customers gain and apply insights. This is a unique, high visibility opportunity for someone who wants to have business impact, dive deep into large-scale economic problems, enable measurable actions on the Consumer economy, and work closely with scientists and economists. We are particularly interested in candidates with experience building predictive models and working with distributed systems.As a Senior Applied Scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions.
US, WA, Seattle
We are entering a new era where human machine interactions will have an unprecedented level of intelligence and automaticity with profound impacts on our daily lives and how businesses are conducted. Alexa holds the promise to address the last-10-ft challenge and enable novel applications across versatile domains. We are building a new Alexa team to raise the bar.We are seeking a Data Scientist to innovate across broad machine learning areas from new language models (for improved natural language understanding accuracy in complex environments) to personalized recommendation services based on real time data.This role is a great fit for a leader who is passionate about innovations and seeks growth opportunities to make disruptive impacts.
US, CA, San Francisco
Want to build the future of music and audio entertainment?Imagine being part of an agile team, where your ideas have the potential to reach millions. Envision working within a startup atmosphere, while being able to leverage the resources of a Fortune-500 company. Picture working on bleeding-edge consumer-facing products, where every team member is a critical voice in the decision-making process. Welcome to Amazon Music’s New Projects team.Our team builds new experiences for Amazon Music listeners. We help our customers discover up-and-coming creators, while also having access to their favorite music and podcasts. We build systems that are distributed around the world, spanning our music apps, web player, and voice-forward experiences on mobile and Amazon Echo devices, powered by Alexa. Amazon Music products support our mission of delivering audio entertainment in new and exciting ways that listeners love.Amazon Music’s New Projects team is looking for founding team members across a variety of functions, including software engineering/development, product, marketing, design, and more. Come make history, as we launch new projects for millions of listeners.
US, WA, Seattle
Are you passionate about conducting research to drive changes and improve the employee experience of a million Amazonians globally? The Organizational Research and Measurement (ORM) team is hiring a Senior Data Scientist to help us lead research initiatives to measure and improve Amazon’s organizational culture as it relates to health and safety of our employees. The role will drive behavioral and organizational changes, support data-driven decision making by business leaders, and facilitate development of innovative products that improve the safety outcomes and overall employee experience in the World Wide Consumer organization.The candidate will join a diverse team of social scientists, statisticians and computer scientists who are working on science initiatives to optimize the employee experience across the full employee lifecycle, from first contact through exit, through the use of technology and cutting edge social science research.The ideal candidate should have a strong business acumen as well as a broad technical skillset and flexible analytical approach. This role will need to navigate complex and ambiguous business challenges by asking the right questions, understanding what methodologies to employ, and communicating results to multiple audiences (e.g., technical peers, functional teams, business leaders).Major responsibilities will include:· Conduct experimental and quasi-experimental studies to measure the impact of various initiatives and policies on Amazon's safety culture and safety outcomes.· Query data from multiple sources, perform data cleaning and exploration, and drive advanced statistical analysis.· Develop high-quality, evidence-based documents that provide insights to business leaders and gain stakeholder buy-in.· Serve as a subject matter expert on topics related to research design, measurement, and analysis.· Collaborate with other ORM and Amazon scientists with expertise in areas such as machine learning, econometrics, psychometrics, natural language processing, computer vision, forecasting, and optimization.
US, WA, Seattle
We are a team of doers working passionately to apply cutting-edge advances in technology to solve real-world problems. As an Applied Scientist at the intersection of machine learning and the life sciences, you will participate in developing exciting products for customers. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the cutting edge of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with others teams.
US, WA, Seattle
We are a team of doers working passionately to apply cutting-edge advances in technology to solve real-world problems. As an Applied Scientist at the intersection of machine learning and the life sciences, you will participate in developing exciting products for customers. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the cutting edge of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with others teams.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses.If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you.Major responsibilities· · Use machine learning and analytical techniques to create scalable solutions for business problems· · Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes· · Design, development, evaluate and deploy innovative and highly scalable models for predictive learning· · Research and implement novel machine learning and statistical approaches· · Work closely with software engineering teams to drive real-time model implementations and new feature creations· · Work closely with business owners and operations staff to optimize various business operations· · Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation· · Mentor other scientists and engineers in the use of ML techniques
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses.If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you.Major responsibilities· · Use machine learning and analytical techniques to create scalable solutions for business problems· · Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes· · Design, development, evaluate and deploy innovative and highly scalable models for predictive learning· · Research and implement novel machine learning and statistical approaches· · Work closely with software engineering teams to drive real-time model implementations and new feature creations· · Work closely with business owners and operations staff to optimize various business operations· · Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation· · Mentor other scientists and engineers in the use of ML techniques
US, CA, Irvine
Are you excited about customer-facing research and reinventing the way people think about long-held assumptions? At Amazon, we are constantly inventing and re-inventing to be the most customer-centric company in the world. To get there, we need exceptionally talented, bright, and driven people. Amazon is one of the most recognizable brand names in the world and we distribute millions of products each year to our loyal customers.The F3 (Fresh, Food, Fast) organization leads the innovation of Amazon’s ultra-fast grocery product initiatives. Our key vision is to transform the online grocery experience and provide a wide grocery selection in order to be the primary destination to fulfill customer’s food shopping needs. The F3 Supply Chain team builds and operates world class grocery supply chain systems and infrastructure to deliver growth for the business globally. We’re growing in scale and volume, by orders of magnitude. We are a team of passionate tech builders who work endlessly to make life better for our customers through amazing, thoughtful, and creative new grocery shopping experiences. To succeed, we need senior technical leaders to forge a path into the future by building innovative, maintainable, and scalable systems.The ideal candidate will be responsible for quantitative data analysis, building models and prototypes for supply chain systems, and developing state-of-the-art optimization algorithms to scale. This team plays a significant role in various stages of the innovation pipeline from identifying business needs, developing new algorithms, prototyping/simulation, to implementation by working closely with colleagues in engineering, product management, operations, retail and finance.As a member of the research team, you will play an integral part on our Supply Chain team with the following technical and leadership responsibilities:· Interact with engineering, operations, science and business teams to develop an understanding and domain knowledge of processes, system structures, and business requirements· Apply domain knowledge and business judgment to identify opportunities and quantify the impact aligning research direction to business requirements and make the right judgment on research project prioritization· Develop scalable mathematical models to derive optimal or near-optimal solutions to existing and new supply chain challenges· Create prototypes and simulations to test devised solutions· Advocate technical solutions to business stakeholders, engineering teams, as well as executive-level decision makers· Work closely with engineers to integrate prototypes into production system· Create policy evaluation methods to track the actual performance of devised solutions in production systems, identify areas with potential for improvement and work with internal teams to improve the solution with new features· Mentor team members for their career development and growth· Present business cases and document models, analyses, and their results in order to influence important decisions