Headshots of female Amazon scientists participating in the Grace Hopper Conference.
Amazon scientists (from top left) Kristine Brown, Laura De Lorenzo, Yang Liu, Hannah Marlowe, Nina Mishra, Candace Thille, and Chao Wang provide their perspectives on what it will take to attract more women to pursue STEM careers.
Credit: Stacy Reilly

Seeds of inspiration

Given the recent death of US Supreme Court Justice Ruth Bader Ginsburg, and with the Grace Hopper Celebration taking place this week, we asked Amazon women scientists what it will take to attract more women to pursue STEM careers.

The AnitaB.org Grace Hopper Celebration, an event honoring Grace Hopper’s legacy by inspiring future generations of women to pursue careers in technology, takes place this week, as it has every year since 1994. Amazon is a Diamond sponsor of this year’s event.

Unlike previous years, though, this year’s celebration, which AnitaB.org produces in partnership with the Association for Computing Machinery (ACM), will be held virtually given restrictions related to COVID-19.  What hasn’t changed is the vision of AnitaB.org: a future “where the people who imagine and build technology mirror the people and societies for whom they build it.”

Based on the latest statistics from the National Center for Women & Information Technology, that future is still on the horizon. While 57 percent of US professional jobs were held by women in 2019, just 26% of professional computing jobs were occupied by women. Among the 26% of women occupying professional computing jobs, 7% were Asian women, 3% Black women, and 2% Hispanic women.

Elizabeth Nieto, Amazon’s head of global diversity and inclusion, says the company’s vision is to create a culture where the best builders, including women from all backgrounds, want to work and stay at Amazon “because they are drawn to our mission, our culture, and our leaders. We are focused on being globally inclusive and creating a culture at Amazon where everyone can reach their full potential.”

At last year’s event, Brenda Darden Wilkerson, president and CEO of AnitaB.org, told nearly 25,000 attendees, “I want our daughters to say, ‘I heard back in the day there was this problem that there weren’t enough women in tech.  What was that like?’”

In advance of this week's conference, Amazon Science asked some of the company’s women scientists when they think the industry will reach that goal, what it will take to get there, and who or what most inspired them to pursue their science careers.  Below are their responses.

Kristine Brown is a principal economist within Amazon’s human resources organization. She obtained her PhD in economics from the University of California, Berkeley.

Kristine Brown
Kristine Brown

Q. When do you think we'll reach that day that Brenda Wilkerson talked about last year?

At Amazon, I learned the importance of continuous inspection to identify opportunities for improvement, and to adapt to a shifting environment. I think the same applies here; the task of deliberately creating opportunities for others, and removing barriers to shape a more equitable and inclusive workplace will evolve over time, but it doesn’t have an end date.

Q. What will it take to get there?

The demand for science and tech talent is increasing in the traditional technology sector and in other industries that are leveraging new technologies and data to provide better services and products. The door is wide open, but you can’t walk in if you don’t know it exists, or how to get there. For me, early exposure and encouragement to explore science and math were critical. I discovered a passion for physics and that interest pushed me to develop my math and science skills. I was lucky to have this opportunity. Casting a wider net to provide early, low stakes opportunities to engage in science and tech activities, develop STEM skills, and learn about the diversity of work in this space, will help demystify the technology industry. It will also allow kids and young adults to learn whether it matches their interests and whether they have a knack for it.

Q. Who or what inspired you most to pursue your STEM career?

My fascination with the natural world was fueled by observing wildlife, peering through an observatory telescope at distant planets, and nature magazines with beautiful photos. The mind-bending questions of space and time were especially irresistible; I wanted the answers to the universe, and physics and math were the key to finding them. Later, as I became interested in understanding human behavior (which I’d argue is no less mysterious) and how government policies could improve lives, I found economics came with a familiar toolkit of mathematical modeling and scientific testing to answer these questions. I saw a career in economics as an opportunity to leverage my strengths to drive positive change.

Laura De Lorenzo is a quantum computing research scientist within the Amazon Web Services organization. She earned her PhD in applied physics from the California Institute of Technology (CalTech).

Laura De Lorenzo
Laura De Lorenzo

Q. When do you think we'll reach that day that Brenda Wilkerson talked about last year?

To be honest, I'm so uncertain as to be unwilling to hazard a guess, but I do think it is a long way off. In some STEM fields, such as medicine, the gender gap has nearly, or completely, closed within the past 50 years. In other fields, the percentage of women (measured by employment or educational degree) remains far below 50% and doesn't appear to be changing significantly year over year. The amount of progress in some fields is encouraging, but it's difficult to understand why fields like physics and computer science lag behind.  

Q. What will it take to get there?

This issue is clearly challenging and multi-faceted, so I cannot offer a single simple solution. However, I think one important aspect is a focus on young women, in the middle school to high school age group. For example, women are already underrepresented in the high school AP physics examinations. By the time students reach the undergraduate level, only about 20% of physics majors are female. I think it is essential to understand why young women make these choices. Is it a lack of role models, or self-doubt about their ability to perform well in science, or peer pressure, or something else entirely?  In the meantime, I think it is important to offer encouragement and support to young students because once women drop out of the STEM fields, it is more difficult for them to return at a later age.

Q. Who or what inspired you most to pursue your STEM career?

From a young age, my parents were always supportive of my interests in science and math, and of my career in general. My mother went to medical school in the late ‘70s, when women represented only about 20% of medical students in the US.  I always saw her as strong, hard-working, and independent, and she was a great example for me to follow. Both of my parents had high expectations for me and would never allow me to perform at less than my best. I definitely owe the largest debt of gratitude to them. However, programs such as Science Olympiad and the Pennsylvania Governor's School for Science (a five-week program for rising high school seniors), also helped me by introducing me to a peer group with similar interests, and to a larger group of role models and mentors who could help me navigate the next step.

Yang Liu is a principal scientist within the Alexa AI organization. She earned her PhD in electrical and computer engineering from Purdue University.

Yang Liu
Yang Liu

Q. When do you think we'll reach that day that Brenda Wilkerson talked about last year?

Maybe in another generation. My daughter is in first grade now. I’m hopeful we can reach that day when she finishes high school, and is choosing a college major or planning a career in STEM or the technology industry.

Q. What will it take to get there?

It will require effort from everyone in society, including educators, students, parents, and policy makers. Starting from kindergarten through high school, young girls and women need support and encouragement from parents and teachers to realize their potential and get excited by STEM careers; educators need to nurture girls’ interest in STEM and create an environment to help them do well in these subjects; and policy makers need to provide appropriate and adequate resources for teachers and students. As Hillary Clinton has written and said, it will take a village for society to address existing biases and prejudices. But with everyone’s effort, I’m confident we can get there by the time my daughter is entering the workforce.

Q. Who or what most inspired you to pursue your STEM career?

Mostly just people around me — my family, teachers from elementary schools all the way up to universities, and an overall supportive environment, including friends and peers. I grew up in China. My mom was a math teacher, and I did well in math starting in elementary school. All I got from everyone around me was support, respect, and encouragement to continue to excel in this subject. I never encountered an attitude like “girls are not good at math (or other science subjects) or don’t need to do well in math”. I made many friends (girls and boys) in schools, and was never left out because I did better than others in science. Reflecting on this, there’s no doubt I benefited from that supportive environment, leading to my future career in STEM. I don’t know for sure if there is a difference between China and US; I don’t have enough sample to draw a conclusion. I’m not even sure if there’s been a generational change within China. What I can say is that I would encourage girls and young women to pursue STEM careers.  The subjects themselves are fascinating. Right now I’m working within the Alexa organization on making computers and other devices “intelligent” by recognizing speech and understanding human language. The work is challenging, interesting, and it’s great to see how Alexa can have a positive impact on the lives of our customers. 

Hannah Marlowe is a senior data scientist within the AWS Worldwide Public Sector Professional Services Data and Machine Learning team. She earned her PhD in physics from the University of Iowa, specializing in the study of astronomical X-ray sources and space-borne instrumentation development.

Hannah Marlowe
Hannah Marlowe

Q. When do you think we'll reach that day that Brenda Wilkerson talked about last year?

The university building where I completed my PhD was an interesting time-capsule to observe some of the progress of women in physics and astronomy. The eight-level physics building, built in the ‘60s, originally featured only men’s restrooms apart from one. The lone women’s restroom was located across the hall from the administration office and included an attached kitchen (still there today), presumably so that secretaries working in the office could prepare meals during the work day. In years since, they have thankfully adjusted the restroom situation, but the basement where my team’s lab was located still only had a men’s room and it was always an interesting reminder of that past.

Today, the thought of designing a building with facilities only for men (much less a public university building) seems completely ridiculous, but it wasn’t so long ago that it apparently made practical sense. We are standing on the shoulders of giants like Ruth Bader Ginsburg and other advocates of gender equality who paved the way for the participation of women in traditionally male-dominated fields and shifted public perception of what women can and should do. It is my hope that we continue to build on the work they championed, but it will take a concerted effort. I don’t have a good answer for when I think we will get to the point that gender disparity in STEM fields is a distant memory. However, I have seen positive changes and witnessed shifts over my own career (not limited to restroom design choices) that make me optimistic that we can get there eventually.

Q. What will it take to get there?

I don’t believe there is any one right answer, but one of the most important things is making it clear to young girls and women that they belong and add value in STEM. I think people tend to gravitate to careers and roles that they have exposure to, and where they see role models that look like themselves. The other piece is not just encouraging girls and women to explore STEM, but expecting it and treating it like a normal career path versus an exceptional one. That is not to say we should be pushing girls to pursue something they aren’t interested in, but I hope that we get to a point where girls pursuing STEM seems completely boring and commonplace. That gets easier as more women enter STEM fields, and I think there is probably a tipping point where women and girls just naturally begin to gravitate in larger numbers to these fields. As a practical matter, we should also be equipping girls with all of the skills and tools that will make them successful in these fields from a young age. Anyone who isn’t exposed to math and science early is going to have to play catch-up later on, and may question their own abilities when they compare themselves to peers who have been in advanced math and science tracks throughout grade school.

Q. Who or what most inspired you to pursue your STEM career?

I feel extremely fortunate that I have mainly been able to follow my interests and what I found to be fun and personally challenging throughout school and my career so far. I also had many great influences and mentors in my life that helped me along my path. From an early age my father used to point out constellations in the sky and took my sister and me to observe comets and space shuttle launches. Once I got to high school, I had a wonderful retired NASA engineer as a physics teacher who introduced me to physics and to Carl Sagan and helped us start the first astronomy club at our school. For my undergraduate education, I chose a small women’s liberal arts college, Agnes Scott College, that had its own observatory and offered an astrophysics degree. At Agnes, I had excellent professors and the unique experience of having all of my STEM peers be women. I think that experience especially helped inoculate me for the future where I’ve more often found myself the only women in large lab groups, collaborations, and professional teams.

The last thing I would like to mention here, because I think it is really important and something I have often struggled with, is the issue of self-doubt. Self-doubt and imposter syndrome are definitely not limited to women in STEM fields, but I think being the only one around who looks like you can contribute to those feelings, and can push people away who have wonderful things to add to these fields. I have so often questioned myself and my worthiness, intelligence, and value (did I really earn that award/fellowship/job offer or was I selected just because I am a women/was in the right place at the right time/completely by mistake?). It was really important for me to know that I was not alone in doubting myself and my capabilities and I am grateful to colleagues and mentors, men and women alike, who shared their own experiences with self-doubt and imposter syndrome along the way. I’ll always remember my wonderful, brilliant, and inspiring undergraduate professor telling me about her own struggles in graduate school, and that one of the reasons she became a professor was to show us that “if she could do it, any of us could.”

Nina Mishra is a principal scientist Amazon’s Health and Wellness organization. She earned her PhD in computer science from the University of Illinois at Urbana-Champaign.

Nina Mishra
Nina Mishra

Q. When do you think we’ll reach that day that Brenda Wilkerson talked about last year?

While computer science has had a gender gap since its inception, I was convinced early on that a trifling matter like gender difference would self-correct. I was wrong. According to a 2019 Taulbee survey, 80% of PhDs are awarded to men and 20% to women. Back in 2001, the split was 78%/22% -- essentially unchanged after 18 years. The problem is not likely to improve in the next five years since the 80/20 gap persists in 2019 at the computer science bachelor’s degree level. Beyond gender gap, there is a gaping wide race gap. In 2019, less than 1% of PhDs were awarded to Black or African-American students; in 2001 this number was 1.3% -- again, essentially the same.  This gap persists early in the education pipeline.  For example, while Atlanta’s population is more than 50% black, only 3 Black students are enrolled in advanced placement computer science courses in local public high schools -- that is 3 out of 528,000! Narrowing this gap is critical for the technology industry. Companies do not want the lack of diversity in their workforce to perpetuate into their products. When will we reach that day? When we change the computer-science culture to welcome and embrace differences. 

My hope, adapting the words of others, is that the arc of social justice is long, but bends towards equality.
Nina Mishra

Q. What will it take to get there?

We cannot reach parity until we overturn the presumption that women hold different roles than men. Until we eliminate the idea that there are ‘girls’ disciplines’ and ‘boys’ disciplines’, and slights such as asking a woman in a meeting if she’s a secretary, or if she can get water for the meeting, it will be difficult to make progress.  Derogatory comments like these contribute to the ‘million cuts’ that women experience and can ultimately lead people to pursue careers where they are more wanted. I’m surprised that people are still hung up on these role associations, but the concern is real and people like Ruth Bader Ginsberg fought their entire career to overturn them. My hope, adapting the words of others, is that the arc of social justice is long, but bends towards equality.

Beyond reaching parity, underrepresented groups need to be seen and more prominently heard. All people have amazing ideas, but I have repeatedly seen ideas from underrepresented groups diminished and even discarded. When such ideas later resurface with the ownership transferred to someone in an overrepresented group, the process is demoralizing and influences people to find alternate careers. These injustices need to be reported and escalated to higher levels. The problem can only be fixed if we have an active dialogue starting from a young age.

Accessibility of resources is a consideration in some parts of the country. There are still households where students do not have a computer and others where a single computer is shared among many family members. There are households that do not have internet access. And, there are parts of the country where computer science classes and teachers aren’t available to students. People cannot choose a computer science career if they are missing these simple, starter ingredients.

Outreach is another area where we can do more. Students may wonder, `What will I do if I have a career in STEM?’. Everyone knows what a medical degree or a law degree leads to career-wise, but what does a computer science degree lead to? The common misperception is of macho geeks cranking out tons of code. For me, it is about finding ways to use data collected about some people to help millions more. It is about the amazing predictions that machine learning can make. The way that smartwatches can detect heart arrhythmias and search engines connect people to information is rooted in data and machine learning. Writing code is a means to that end. Novel and crazy ideas are what push the field forward. A more concerted effort is needed to communicate this to young students.

Q. Who or what most inspired you to pursue your STEM career?

My mother played a huge role early in life. She has a gift for explaining mathematical concepts. She taught math at a community college and also a prison. Later on, my high school math teacher played a large role. She forced students to walk to the board and write/explain their solutions. It was an early peek into the clarity one achieves by teaching their solution to others. Both taught me the precision and beauty of math. Both insisted on exacting standards for the highest quality of work. My father taught me to be bold. He has a PhD in inorganic chemistry and emphasized scientific innovation. To this day, he shares articles with the latest and greatest scientific findings, always pushing me to aim higher.

Candace Thille is director of learning science within Amazon’s Global Learning and Development organization. She obtained her master’s degree in computer science from Carnegie Mellon University and earned her PhD in education from the University of Pennsylvania.

Candace Thille
Candace Thille

Q. When do you think we'll reach that day that Brenda Wilkerson talked about last year?

I am going to change the question to respond to what I wish Brenda Darden Wilkerson had said: “I want our sons to say ‘I heard back in the day there was this problem that there weren’t enough women in tech. What was that like?” I do not mean to imply that the quote needs to be changed because the problem is only important if it is acknowledged by our sons, but rather that the problem will only be corrected when the problem, and the responsibility for correcting it, is owned by our sons too, not just our daughters.  When will we reach that day?  When gender is no longer seen as a feature of an individual that is relevant for encouraging, allocating, or selecting roles and responsibilities.

Q. What will it take to get there? 

First, an acknowledgement that the current systems and structures in STEM fields are grounded in the idea that gender and race are features of an individual that are relevant for encouraging, allocating, or selecting roles and responsibilities. Second, a commitment to ongoing inspection of those systems and structures for biases in order to change them. People would sometimes ask Ruth Bader Ginsberg “When will there be enough women on the court” and she would reply, “When there are nine”.  She would say then that “People are shocked, but there’d been nine men, and nobody’s ever raised a question about that”.  

Q. Who or what most inspired you to pursue your STEM career?

I have always been fascinated with how things work, both for the joy of understanding and to figure out how to make things work better. I have been awed by the discoveries that come from good research, and from the positive impact of using the results from research to make the world better. Both as an academic researcher and as a research scientist at Amazon, I situate my work in Pasteur's quadrant and work on projects that seek fundamental understanding of scientific problems, while also having immediate use for society.

Chao Wang is a senior applied science manager within the Alexa organization. She earned her PhD in electrical engineering and computer science from the Massachusetts Institute of Technology (MIT).

Chao Wang
Chao Wang

Q. When do you think we'll reach that day that Brenda Wilkerson talked about last year?

I’m reminded of the Bill Gates quote, “We always overestimate the change that will occur in the next two years, and underestimate the change that will occur in the next ten. Don’t let yourself be lulled into inaction.” I’d like to think we could reach that state within the next 10 years, but it will probably take another generation of change. So I think closer to 2050.

Q. What will it take to get there?

I’ll share a very different perspective. I grew up in China and the education system back then made everyone decide their major in sophomore year of high school. That system channeled students to different college entrance exams depending on the choice (so your career paths are largely determined very early on). It was a 5:2 split ratio for STEM and non-STEM (probably matching the college admission ratio), and naturally only students who were really interested in a non-STEM career path self-selected into that track. The majority chose STEM. At the time, I did notice that more female students chose the non-STEM track, but plenty of us ended up in the STEM track, too (strength in numbers). I have observed that in the US, if you are ambivalent about STEM, then the gender stereotype works against young women pursuing STEM careers. I contrast that with the early days of computing in the US, when computer programmer was considered a female job, and you had a lot of female programmers in an otherwise male dominant technology industry and computing pioneers like Dr. Grace Hopper. It all changed (for the worse) within a generation, and we can change it back with the right societal mental shift.

Q. Who or what most inspired you to pursue your STEM career?

Growing up in China I never felt that STEM was somehow an unusual choice for a young woman. Math and physics were always my favorite subjects, and no one ever discouraged me from pursuing those interests. I enjoyed the problem solving of math and physics much more than courses requiring writing or memorization. I opted for the STEM track in high school and was admitted into a top engineering school in China for my undergraduate studies. My career path was more or less decided from that point in time.

Related content

GB, London
Are you excited about applying economic models and methods using large data sets to solve real world business problems? Then join the Economic Decision Science (EDS) team. EDS is an economic science team based in the EU Stores business. The teams goal is to optimize and automate business decision making in the EU business and beyond. An internship at Amazon is an opportunity to work with leading economic researchers on influencing needle-moving business decisions using incomparable datasets and tools. It is an opportunity for PhD students and recent PhD graduates in Economics or related fields. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL would be a plus. As an Economics Intern, you will be working in a fast-paced, cross-disciplinary team of researchers who are pioneers in the field. You will take on complex problems, and work on solutions that either leverage existing academic and industrial research, or utilize your own out-of-the-box pragmatic thinking. In addition to coming up with novel solutions and prototypes, you may even need to deliver these to production in customer facing products. Roughly 85% of previous intern cohorts have converted to full time economics employment at Amazon.
US, CA, Cupertino
We're looking for an Applied Scientist to help us secure Amazon's most critical data. In this role, you'll work closely with internal security teams to design and build AR-powered systems that protect our customers' data. You will build on top of existing formal verification tools developed by AWS and develop new methods to apply those tools at scale. You will need to be innovative, entrepreneurial, and adaptable. We move fast, experiment, iterate and then scale quickly, thoughtfully balancing speed and quality. Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. Key job responsibilities Deeply understand AR techniques for analyzing programs and other systems, and keep up with emerging ideas from the research community. Engage with our customers to develop understanding of their needs. Propose and develop solutions that leverage symbolic reasoning services and concepts from programming languages, theorem proving, formal verification and constraint solving. Implement these solutions as services and work with others to deploy them at scale across Payments and Healthcare. Author papers and present your work internally and externally. Train new teammates, mentor others, participate in recruiting and interviewing, and participate in our tactical and strategic planning. About the team Our small team of applied scientists works within a larger security group, supporting thousands of engineers who are developing Amazon's payments and healthcare services. Security is a rich area for automated reasoning. Most other approaches are quite ad-hoc and take a lot of human effort. AR can help us to reason deliberately and systematically, and the dream of provable security is incredibly compelling. We are working to make this happen at scale. We partner closely with our larger security group and with other automated reasoning teams in AWS that develop core reasoning services.
US, NY, New York
Search Thematic Ad Experience (STAX) team within Sponsored Products is looking for a leader to lead a team of talented applied scientists working on cutting-edge science to innovate on ad experiences for Amazon shoppers!. You will manage a team of scientists, engineers, and PMs to innovate new widgets on Amazon Search page to improve shopper experience using state-of-the-art NLP and computer vision models. You will be leading some industry first experiences that has the potential to revolutionize how shopping looks and feels like on Amazon, and e-commerce marketplaces in general. You will have the opportunity to design the vision on how ad experiences look on Amazon search page, and use the combination of advanced techniques and continuous experimentation to realize this vision. Your work will be core to Amazon’s advertising business. You will be a significant contributor in building the future of sponsored advertising, directly impacting the shopper experience for our hundreds of millions of shoppers worldwide, while delivering significant value for hundreds of thousands of advertisers across the purchase journey with ads on Amazon. Key job responsibilities * Be the technical leader in Machine Learning; lead efforts within the team, and collaborate and influence across the organization. * Be a critic, visionary, and execution leader. Invent and test new product ideas that are powered by science that addresses key product gaps or shopper needs. * Set, plan, and execute on a roadmap that strikes the optimal balance between short term delivery and long term exploration. You will influence what we invest in today and tomorrow. * Evangelize the team’s science innovation within the organization, company, and in key conferences (internal and external). * Be ruthless with prioritization. You will be managing a team which is highly sought after. But not all can be done. Have a deep understanding of the tradeoffs involved and be fierce in prioritizing. * Bring clarity, direction, and guidance to help teams navigate through unsolved problems with the goal to elevate the shopper experience. We work on ambiguous problems and the right approach is often unknown. You will bring your rich experience to help guide the team through these ambiguities, while working with product and engineering in crisply defining the science scope and opportunities. * Have strong product and business acumen to drive both shopper improvements and business outcomes. A day in the life * Lead a multidisciplinary team that embodies “customer obsessed science”: inventing brand new approaches to solve Amazon’s unique problems, and using those inventions in software that affects hundreds of millions of customers * Dive deep into our metrics, ongoing experiments to understand how and why they are benefitting our shoppers (or not) * Design, prototype and validate new widgets, techniques, and ideas. Take end-to-end ownership of moving from prototype to final implementation. * Be an advocate and expert for STAX science to leaders and stakeholders inside and outside advertising. About the team We are the Search thematic ads experience team within Sponsored products - a fast growing team of customer-obsessed engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives to drive value for both our customers and advertisers, through continuous innovation. We focus on new ads experiences globally to help shoppers make the most informed purchase decision while helping shortcut the time to discovery that shoppers are highly likely to engage with. We also harvest rich contextual and behavioral signals that are used to optimize our backend models to continually improve the shopper experience. We obsess about our customers and are continuously seeking opportunities to delight them.
US, CA, Palo Alto
Amazon is the 4th most popular site in the US. Our product search engine, one of the most heavily used services in the world, indexes billions of products and serves hundreds of millions of customers world-wide. We are working on a new initiative to transform our search engine into a shopping engine that assists customers with their shopping missions. We look at all aspects of search CX, query understanding, Ranking, Indexing and ask how we can make big step improvements by applying advanced Machine Learning (ML) and Deep Learning (DL) techniques. We’re seeking a thought leader to direct science initiatives for the Search Relevance and Ranking at Amazon. This person will also be a deep learning practitioner/thinker and guide the research in these three areas. They’ll also have the ability to drive cutting edge, product oriented research and should have a notable publication record. This intellectual thought leader will help enhance the science in addition to developing the thinking of our team. This leader will direct and shape the science philosophy, planning and strategy for the team, as we explore multi-modal, multi lingual search through the use of deep learning . We’re seeking an individual that can enhance the science thinking of our team: The org is made of 60+ applied scientists, (2 Principal scientists and 5 Senior ASMs). This person will lead and shape the science philosophy, planning and strategy for the team, as we push into Deep Learning to solve problems like cold start, discovery and personalization in the Search domain. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon [Earth's most customer-centric internet company]. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California.
JP, 13, Tokyo
Our mission is to help every vendor drive the most significant impact selling on Amazon. Our team invent, test and launch some of the most innovative services, technology, processes for our global vendors. Our new AVS Professional Services (ProServe) team will go deep with our largest and most sophisticated vendor customers, combining elite client-service skills with cutting edge applied science techniques, backed up by Amazon’s 20+ years of experience in Japan. We start from the customer’s problem and work backwards to apply distinctive results that “only Amazon” can deliver. Amazon is looking for a talented and passionate Applied Science Manager to manage our growing team of Applied Scientists and Business Intelligence Engineers to build world class statistical and machine learning models to be delivered directly to our largest vendors, and working closely with the vendors' senior leaders. The Applied Science Manager will set the strategy for the services to invent, collaborating with the AVS business consultants team to determine customer needs and translating them to a science and development roadmap, and finally coordinating its execution through the team. In this position, you will be part of a larger team touching all areas of science-based development in the vendor domain, not limited to Japan-only products, but collaborating with worldwide science and business leaders. Our current projects touch on the areas of causal inference, reinforcement learning, representation learning, anomaly detection, NLP and forecasting. As the AVS ProServe Applied Science Manager, you will be empowered to expand your scope of influence, and use ProServe as an incubator for products that can be expanded to all Amazon vendors, worldwide. We place strong emphasis on talent growth. As the Applied Science Manager, you will be expected in actively growing future Amazon science leaders, and providing mentoring inside and outside of your team. Key job responsibilities The Applied Science Manager is accountable for: (1) Creating a vision, a strategy, and a roadmap tackling the most challenging business questions from our leading vendors, assess quantitatively their feasibility and entitlement, and scale their scope beyond the ProServe team. (2) Coordinate execution of the roadmap, through direct reports, consisting of scientists and business intelligence engineers. (3) Grow and manage a technical team, actively mentoring, developing, and promoting team members. (4) Work closely with other science managers, program/product managers, and business leadership worldwide to scope new areas of growth, creating new partnerships, and proposing new business initiatives. (5) Act as a technical supervisor, able to assess scientific direction, technical design documents, and steer development efforts to maximize project delivery.
US, NY, New York
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! The Supply team (within Sponsored Products) is looking for an Applied Scientist to join a fast-growing team with the mandate of creating new ad experiences that elevate the shopping experience for hundreds of millions customers worldwide. The Applied Scientist will take end-to-end ownership of driving new product/feature innovation by applying advanced statistical and machine learning models. The role will handle petabytes of unstructured data (images, text, videos) to extract insights into what metadata can be useful for us to highlight to simplify purchase decisions, and propose new experiences that increase shopper engagement. Why you love this opportunity Amazon is investing heavily in building a world-class advertising business. This team is responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Key job responsibilities As an Applied Scientist on this team you will: Build machine learning models and perform data analysis to deliver scalable solutions to business problems. Perform hands-on analysis and modeling with very large data sets to develop insights that increase traffic monetization and merchandise sales without compromising shopper experience. Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production. Design and run A/B experiments that affect hundreds of millions of customers, evaluate the impact of your optimizations and communicate your results to various business stakeholders. Work with scientists and economists to model the interaction between organic sales and sponsored content and to further evolve Amazon's marketplace. Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. Research new predictive learning approaches for the sponsored products business. Write production code to bring models into production. A day in the life You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven fundamentally from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding.
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. We are seeking a Principal Scientist with deep expertise in Search. Your responsibility will be to advance the state-of-the-art for search science that leads to world-class products that impact Amazon's customers. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). About the team This is a position on Core Ranking and Experimentation team in Palo Alto, CA. The team works on a variety of topics in search ranking and relevance, such as multi-objective optimization, personalization, and fast online experimentation. We work closely with teams in various parts of the stack to ensure that our science is translated to customer facing products.
US, WA, Bellevue
Amazon is looking for a passionate, talented, and inventive Applied Scientists with a strong machine learning background to help build industry-leading Speech and Language technology. Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Automatic Speech Recognition (ASR), Machine Translation (MT), Natural Language Understanding (NLU), Machine Learning (ML) and Computer Vision (CV). As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services that make use of speech and language technology. You will gain hands on experience with Amazon’s heterogeneous speech, text, and structured data sources, and large-scale computing resources to accelerate advances in spoken language understanding. We are hiring in all areas of human language technology: ASR, MT, NLU, text-to-speech (TTS), and Dialog Management, in addition to Computer Vision.
CA, ON, Toronto
WE ARE OPEN TO HIRING THIS ROLE IN SF BAY AREA, SEATTLE, TORONTO, OR VIRGINIA (HQ2). Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! The Sponsored Products Demand Identification and Campaign Optimization (DEICO) team is responsible for building experiences across all seller and advertiser touchpoints to generate performant Sponsored Products demand and improved campaign performance through guardrail-based controls. We do this through 1) Creating performant demand focusing on Amazon supplier use cases (e.g. launching a new ASIN) through presets for campaign creation. 2) Making existing demand performant through diagnosing gaps and providing proactive and targeted recommendations, and 3) Developing and launching new campaign optimization rules that allow advertisers to provide performance guardrails and automate optimization of their campaigns. Within these domains, we focus on creating holistic recommendations through machine learning for products to advertise and optimal presets across every parameter that go into Sponsored Products ad campaign setup, as well as consolidated recommendations that improve performance of existing Sponsored Product campaigns. As an Applied Scientist on this team, you will: • Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. • Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. • Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. • Run A/B experiments, gather data, and perform statistical analysis. • Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. • Research new and innovative machine learning approaches. • Recruit Applied Scientists to the team and provide mentorship. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video https://youtu.be/zD_6Lzw8raE
IN, KA, Bangalore
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. The ATT team, based in Bangalore, is responsible for ensuring that ads are compliant to world-wide advertising policies and are of high quality, leading to higher conversion for the advertisers and providing a great experience for the shoppers. Machine learning, particularly multi-modal data understanding, is fundamental to the way we drive our business, meet our goals and satisfy our customers. ATT team invests in researching and developing state of art models that analyze various type of ad assets – text, audio, images and videos - to ensure compliance to advertising policies. We also help advertisers create more successful ads by creating ML models to assist ad generation as well as to provide data-driven interpretable insights. Key job responsibilities Major responsibilities · Deliver key goals to enhance advertiser experience and protect shopper trust by innovative use of computer vision, NLP and statistical techniques · Drive core business analytics and data science explorations to inform key business decisions and algorithm roadmap · Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation · Hire and develop top talent in machine learning and data science and accelerate the pace of innovation in the group · Work proactively with engineering teams and product managers to evangelize new algorithms and drive the implementation of large-scale complex ML models in production