A blue plaque at Kings College in Cambridge commemorating former student and computer pioneer Alan Turing
A blue plaque at Kings College in Cambridge, UK, commemorating former student and computer pioneer Alan Turing.
chrisdorney/Getty Images

Does the Turing Test pass the test of time?

Four Amazon scientists weigh in on whether the famed mathematician's definition of artificial intelligence is still applicable, and what might surprise him most today.

On Oct. 1, 1950, the journal Mind featured a 27-page entry authored by Alan Turing. More than 70 years later, that paper — "Computing Machinery and Intelligence" — which posed the question, “Can machines think?” remains foundational in artificial intelligence.

However, while the paper is iconic, the original goal of building a system comparable to human intelligence has proved elusive. In fact, Alexa VP and Head Scientist Rohit Prasad has written, “I believe the goal put forth by Turing is not a useful one for AI scientists like myself to work toward. The Turing Test is fraught with limitations, some of which Turing himself debated in his seminal paper.”

Clockwise from top left: Yoelle Maarek, vice president of research and science for Alexa Shopping; Alex Smola, AWS vice president and distinguished scientist; Gaurav Sukhatme, the USC Fletcher Jones Foundation Endowed Chair in Computer Science and Computer Engineering and an Amazon Scholar; Nikko Strom, Alexa AI vice president and distinguished scientist.
Clockwise from top left: Yoelle Maarek, vice president of research and science for Alexa Shopping; Alex Smola, AWS vice president and distinguished scientist; Gaurav Sukhatme, the USC Fletcher Jones Foundation Endowed Chair in Computer Science and Computer Engineering and an Amazon Scholar; Nikko Ström, Alexa AI vice president and distinguished scientist.

In light of the 2021 AAAI Conference on Artificial Intelligence, we asked scientists and scholars at Amazon how they view that paper today. We spoke with Yoelle Maarek, vice president of research and science for Alexa Shopping; Alex Smola, AWS vice president and distinguished scientist; Nikko Ström, Alexa AI vice president and distinguished scientist; and Gaurav Sukhatme, the USC Fletcher Jones Foundation Endowed Chair in Computer Science and Computer Engineering and an Amazon Scholar.

We asked them whether Turing’s definition of artificial intelligence still applies, what they think Turing would be surprised by in 2020, and which of today’s problems researchers will still be puzzling over 70 years from now.

Q. Does Turing’s definition of AI (essentially “a test of a machine's ability to exhibit intelligent behavior equivalent to, or indistinguishable from, that of a human”) still apply, or does it need to be updated?

Smola: “The core of the question remains as relevant as it was 70 years ago. That said, I would argue that rather than seeking binary (yes/no) tests for AI we should have something more gradual. For instance, the argument could be about how long a machine can fool a human. Alexa and others by now do a pretty good job for many queries for single turn, and there are even multi-turn systems that are pretty capable. In fact, you can test out some of them as part of the Alexa Prize (‘Alexa, let’s chat’). Using time, you can measure progress more finely, e.g., by the number of minutes (or turns) it takes to uncover the imposter, rather than a fixed time limit.”

Evaluating AI on the basis of being indistinguishable from human intelligence makes as much sense as evaluating airplanes based on being indistinguishable from birds.
Nikko Strom

Maarek: “It is clear it is not a perfect definition. First, I doubt there exists a universally agreed-upon definition of intelligence, and it is not clear what ‘a human’ refers to. Is that any human? Can a machine be indistinguishable from some humans and not from others? It is, however, a simplifier that can still be used for inspiration. And it does bring inspiration, see for instance the outstanding progress in chess or Go. There are, of course, so many other areas where machines still require learning, and these challenges keep inspiring scientists. Two such areas, among others, on which we are focusing in Alexa Shopping Research are to make advancements in conversational shopping (as a subfield of conversational AI) and computational humor. With even small progress in these hard AI challenges, I am sure we will bring tremendous value to our customers and even make them smile.”

Ström: “Evaluating AI on the basis of being indistinguishable from human intelligence makes as much sense as evaluating airplanes based on being indistinguishable from birds. We may never have a single definition, but a common thread is generalizability, i.e., the ability to be successful in novel situations, not considered during the design of the system. To achieve such generalization, an AI needs the ability to reason and plan, have a representation of world-knowledge, an ability to learn and remember, and an ability to regulate and integrate those cognitive capabilities toward goals.

"The AI also needs to be an active participant in the world, and when evaluating intelligence, one needs to consider not just whether goals are met, but how efficiently goals are reached based on efficacy metrics that depend on the application — e.g., cost, energy use, speed, et cetera. My prediction is that once one or several successful such systems exist, a standard model will emerge that becomes a de facto definition of AI.”

Sukhatme: “I think the idea that we want a machine to have the ‘ability to exhibit intelligent behavior equivalent to, or indistinguishable from, that of a human’ still applies when thinking about AI. However, this idea has over the years been interpreted very narrowly when it comes to the ‘test’ – i.e. people look for human-like performance on some narrow task. I think we need to remind people that intelligence is very broad set of capabilities and we need to acknowledge that humans have deep understanding of the world, are social, have empathy, can and do learn continually and can do a very broad range of things. If we are to say that we’ve built a machine or system that exhibits AI, I would want to see it exhibit behavior indistinguishable from humans on a similar breadth of abilities.”

Q. In terms of AI, what do you think would surprise Turing today?

I think he'd be surprised at how far we’ve come in terms of the technological artifacts we’ve produced. And he’d be disappointed in how un-intelligent they are
Gaurav Sukhatme

Sukhatme: “I think he’d be surprised at how far we’ve come in terms of the technological artifacts we’ve produced. And he’d be disappointed in how un-intelligent they are.”

Maarek: “Hard to answer, as this is pure speculation. But I would like to believe that computational humor would be one of them, simply because it makes us all smile.”

Ström: “The resolution of Moravec's paradox. Machine learning and, in particular, deep learning, is now enabling us to solve sensorimotor tasks in robotics, and sensory tasks such as object recognition and speech recognition. Yet general intelligence is still a hard, largely unsolved, problem. I also think Turing would be fascinated by quantum computers.”

Smola: “The thing that would surprise Turing the most is probably the amount of data and its ready availability. The fact that we can build language models on more than 1 trillion characters of text, or that we have hundreds of millions of images available, is probably the biggest differentiator. It’s only thanks to these mountains of data that we’ve been able to build systems that generate speech (e.g. Amazon Polly), that translate text (e.g. Amazon Translate), that recognize speech (e.g. Transcribe), that recognize images, faces in images, or that are able to analyze poses in video.

"At the same time, it’s unclear whether he would have anticipated the exponential growth in computation. The UNIVAC was capable of performing around 4,000 floating point operators (FLOPS) per second. Our latest P4 servers can carry out around 1-2 PetaFLOPS, so that’s 1,000,000,000,000,000 multiply-adds — and you can rent them for around $30 an hour.”

Q. Which of today’s theoretical questions will scientists still be puzzling about in 2090?

Sukhatme: “How do human brains do what they do in such an energy efficient manner? What is consciousness?”

Maarek: “In terms of theoretical computer science problems, I believe that hard AI problems like Winograd Schema Challenge, will be resolved. But I want to believe that other AI challenges, like giving a true sense of humor to machines, won’t be solved yet. It's humbling to think that in 1534 the French writer François Rabelais said, 'le rire est le propre de l’homme' — which can be translated as 'the laugh is unique to humans'. It’s probably why my team is researching computational humor — it’s fun and hard.”

Ström: “In 70 years, I predict that AI has been solved for practical purposes and is used for cognitive tasks, small and large. So that is not it. Some long-standing profound questions like NP=P will still be unsolved. The physics model of time, space, energy and matter will still not be complete, and the question about how life spontaneously emerges from lifeless building-blocks will still puzzle both human and synthetic scientists. Unless we get lucky, 70 years will also not be enough to determine if there is alien intelligent life in our galaxy.”

In the foreground, a welcome to Bletchley Park offers a guide, in the background a group of tourists get a guided tour. This area was used in World War 2 to break the German Enigma Codes.
A group of tourists get a guided tour of the grounds of Bletchley Park. This area was used in World War 2 to break the German Enigma Codes.
NeonJellyfish/Getty Images

Smola: “That’s really difficult since most projections don’t hold up well, even for a decade or so. In 2016, when I interviewed for a job and was deciding between Amazon and another major company, I was told at that other company that I was making a mistake in betting on AI in the cloud. Problems that will keep us awake, probably forever, are how to appropriately balance innovation while also protecting individual liberties. Those challenges will require continuous and careful consideration by multiple stakeholders in academia, industry, government, and our society. Likewise, we will never be able to have a full characterization of the empirical power of our statistical tools. In simple terms, we’ll likely always encounter algorithms that work way better than they should in theory. Lastly, there’s the issue of actually gaining causal understanding from data as to how the world works. This is hard and has been vexing (natural) scientists for centuries.

"Areas where we will likely see a lot of progress include autonomous systems. There’s so much economic promise in self-driving vehicles that I think we will eventually deliver something that works. The algorithms used for cars can also be adapted for a wide variety of other problems such as manufacturing, maintenance, et cetera. The next decade or two will be amazing — and we’ll likely also see great progress on the Turing test itself.”

Research areas

Related content

US, WA, Seattle
Are you a brilliant mind seeking to push the boundaries of what's possible with intelligent robotics? Join our elite team of researchers and engineers - led by Pieter Abeel, Rocky Duan, and Peter Chen - at the forefront of applied science, where we're harnessing the latest advancements in large language models (LLMs) and generative AI to reshape the world of robotics and unlock new realms of innovation. As an Applied Science Intern, you'll have the unique opportunity to work alongside world-renowned experts, gaining invaluable hands-on experience with cutting-edge robotics technologies. You'll dive deep into exciting research projects at the intersection of AI and robotics. This internship is not just about executing tasks – it's about being a driving force behind groundbreaking discoveries. You'll collaborate with cross-functional teams, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning to tackle real-world problems and deliver impactful solutions. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied robotics and AI, where your contributions will shape the future of intelligent systems and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available in San Francisco, CA and Seattle, WA. The ideal candidate should possess: - Strong background in machine learning, deep learning, and/or robotics - Publication record at science conferences such as NeurIPS, CVPR, ICRA, RSS, CoRL, and ICLR. - Experience in areas such as multimodal LLMs, world models, image/video tokenization, real2Sim/Sim2real transfer, bimanual manipulation, open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, and end-to-end vision-language-action models. - Proficiency in Python, Experience with PyTorch or JAX - Excellent problem-solving skills, attention to detail, and the ability to work collaboratively in a team Join us at the forefront of applied robotics and AI, and be a part of the team that's reshaping the future of intelligent systems. Apply now and embark on an extraordinary journey of discovery and innovation! Key job responsibilities - Develop novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of LLMs and generative AI for robotics - Tackle challenging, groundbreaking research problems on production-scale data, with a focus on robotic perception, manipulation, and control - Collaborate with cross-functional teams to solve complex business problems, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning - Demonstrate the ability to work independently, thrive in a fast-paced, ever-changing environment, and communicate effectively with diverse stakeholders
US, WA, Seattle
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers like Pieter Abbeel, Rocky Duan, and Peter Chen to lead key initiatives in robotic intelligence. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as perception, manipulation, scence understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between cutting-edge research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives in robotics foundation models, driving breakthrough approaches through hands-on research and development in areas like open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Guide technical direction for specific research initiatives, ensuring robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with engineering teams to optimize and scale models for real-world applications - Influence technical decisions and implementation strategies within your area of focus A day in the life - Develop and implement novel foundation model architectures, working hands-on with our extensive compute infrastructure - Guide fellow scientists in solving complex technical challenges, from sim2real transfer to efficient multi-task learning - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster - Mentor team members while maintaining significant hands-on contribution to technical solutions Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team, led by pioneering AI researchers Pieter Abbeel, Rocky Duan, and Peter Chen, is building the future of intelligent robotics through groundbreaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
IL, Haifa
We’re looking for a Principal Applied Scientist in the Personalization team with experience in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problem Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, WA, Seattle
The Private Brands Discovery team designs innovative machine learning solutions to drive customer awareness for Amazon’s own brands and help customers discover products they love. Private Brands Discovery is an interdisciplinary team of Scientists and Engineers, who incubate and build disruptive solutions using cutting-edge technology to solve some of the toughest science problems at Amazon. To this end, the team employs methods from Natural Language Processing, Deep learning, multi-armed bandits and reinforcement learning, Bayesian Optimization, causal and statistical inference, and econometrics to drive discovery across the customer journey. Our solutions are crucial for the success of Amazon’s own brands and serve as a beacon for discovery solutions across Amazon. This is a high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and engineers. As a scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions.. With a focus on bias for action, this individual will be able to work equally well with Science, Engineering, Economics and business teams. Key job responsibilities - 5+ yrs of relevant, broad research experience after PhD degree or equivalent. - Advanced expertise and knowledge of applying observational causal interference methods - Strong background in statistics methodology, applications to business problems, and/or big data. - Ability to work in a fast-paced business environment. - Strong research track record. - Effective verbal and written communications skills with both economists and non-economist audiences.
DE, Aachen
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The AWS Marketplace & Partner Services Science team is hiring an Applied Scientist to develop science products that support AWS initiatives to grow AWS Partners. The team is seeking candidates with strong background in machine learning and engineering, creativity, curiosity, and great business judgment. As an applied scientist on the team, you will work on targeting and lead prioritization related AI/ML products, recommendation systems, and deliver them into the production ecosystem. You are comfortable with ambiguity and have a deep understanding of ML algorithms and an analytical mindset. You are capable of summarizing complex data and models through clear visual and written explanations. You thrive in a collaborative environment and are passionate about learning. Key job responsibilities - Work with scientists, product managers and engineers to deliver high-quality science products - Experiment with large amounts of data to deliver the best possible science solutions - Design, build, and deploy innovative ML solutions to impact AWS Co-Sell initiatives About the team The AWS Marketplace & Partner Services team is the center of Analytics, Insights, and Science supporting the AWS Specialist Partner Organization on its mission to provide customers with an outstanding experience while working with AWS partners. The Science team supports science models and recommendation systems that are deployed directly to AWS Customers, AWS partners, and internal AWS Sellers.
US, CA, Palo Alto
We’re working to improve shopping on Amazon using the conversational capabilities of large language models, and are searching for pioneers who are passionate about technology, innovation, and customer experience, and are ready to make a lasting impact on the industry. You'll be working with talented scientists and engineers to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey! Key job responsibilities We seek strong Applied Scientists with domain expertise in machine learning and deep learning, transformers, generative models, large language models, computer vision and multimodal models. You will devise innovative solutions at scale, pushing the technological and science boundaries. You will guide the design, modeling, and architectural choices of state-of-the-art large language models and multimodal models. You will devise and implement new algorithms and new learning strategies and paradigms. You will be technically hands-on and drive the execution from ideation to productionization. You will work in collaborative environment with other technical and business leaders, to innovate on behalf of the customer.
US, CA, Palo Alto
We’re working to improve shopping on Amazon using the conversational capabilities of large language models, and are searching for pioneers who are passionate about technology, innovation, and customer experience, and are ready to make a lasting impact on the industry. You’ll be working with talented scientists, engineers, and technical program managers (TPM) to innovate on behalf of our customers. If you’re fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey!
US, CA, East Palo Alto
The Customer Engagement Technology team leads AI/LLM-driven customer experience transformation using task-oriented dialogue systems. We develop multi-modal, multi-turn, goal-oriented dialog systems that can handle customer issues at Amazon scale across multiple languages. These systems are designed to adapt to changing company policies and invoke correct APIs to automate solutions to customer problems. Additionally, we enhance associate productivity through response/action recommendation, summarization to capture conversation context succinctly, retrieving precise information from documents to provide useful information to the agent, and machine translation to facilitate smoother conversations when the customer and agent speak different languages. Key job responsibilities Research and development of LLM-based chatbots and conversational AI systems for customer service applications. Design and implement state-of-the-art NLP and ML models for tasks such as language understanding, dialogue management, and response generation. Collaborate with cross-functional teams, including data scientists, software engineers, and product managers, to integrate LLM-based solutions into Amazon's customer service platforms. 4. Develop and implement strategies for data collection, annotation, and model training to ensure high-quality and robust performance of the chatbots. Conduct experiments and evaluations to measure the performance of the developed models and systems, and identify areas for improvement. Stay up-to-date with the latest advancements in NLP, LLMs, and conversational AI, and explore opportunities to incorporate new techniques and technologies into Amazon's customer service solutions. Collaborate with internal and external research communities, participate in conferences and publications, and contribute to the advancement of the field. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
US, MA, Boston
The Amazon Dash Cart team is seeking a highly motivated Research Scientist (Level 5) to join our team that is focused on building new technologies for grocery stores. We are a team of scientists invent new algorithms (especially artificial intelligence, computer vision and sensor fusion) to improve customer experiences in grocery shopping. The Amazon Dash Cart is a smart shopping cart that uses sensors to keep track of what a shopper has added. Once done, they can bypass the checkout lane and just walk out. The cart comes with convenience features like a store map, a basket that can weigh produce, and product recommendations. Amazon Dash Cart’s are available at Amazon Fresh, Whole Foods. Learn more about the Dash Cart at https://www.amazon.com/b?ie=UTF8&node=21289116011. Key job responsibilities As a research scientist, you will help solve a variety of technical challenges and mentor other engineers. You will play an active role in translating business and functional requirements into concrete deliverables and build quick prototypes or proofs of concept in partnership with other technology leaders within the team. You will tackle challenging, novel situations every day and given the size of this initiative, you’ll have the opportunity to work with multiple technical teams at Amazon in different locations. You should be comfortable with a degree of ambiguity that’s higher than most projects and relish the idea of solving problems that, frankly, haven’t been solved before - anywhere. Along the way, we guarantee that you’ll learn a ton, have fun and make a positive impact on millions of people. About the team Amazon Dash cart allows shoppers to checkout without lines — you just place the items in the cart and the cart will take care of the rest. When you’re done shopping, you leave the store through a designated dash lane. We charge the payment method in your Amazon account as you walk through the dash lane and send you a receipt. Check it out at https://www.amazon.com/b?ie=UTF8&node=21289116011. Designed and custom-built by Amazonians, our Dash cart uses a variety of technologies including computer vision, sensor fusion, and advanced machine learning.