AmazonScience_LeadImage_JointAssortment_01.jpg
"Joint Assortment and Inventory Planning for Heavy Tailed Demand" was authored by, top row, Omar El Housni, visiting assistant professor at Cornell Tech, and Omar Mouchtaki, a PhD student at Columbia Business School; second row, Guillermo Gallego, professor of engineering at The Hong Kong University of Science and Technology, and Vineet Goyal, Amazon Scholar and a professor in the Industrial Engineering and Operations Research Department at Columbia; third row, Salal Humair, Amazon senior principal research scientist, and Sangjo Kim, assistant professor at Shanghai University of Finance and Economics; and bottom row, Ali Sadighian, Amazon senior science manager, and Jingchen Wu, a senior research scientist.

Developing a model to offer fashion products that cater to diverse tastes

Scientists are working to address assortment optimization and inventory planning challenges for fashion products.

One ongoing challenge faced by online retailers is how to optimally select the subset of fashion products to offer and how much inventory to procure before the start of the selling season. Deciding which subset of products to offer from a larger catalog of products is known as the assortment optimization problem. Assortment optimization and inventory planning for fashion products is made complex not only because of the need to forecast demand months in advance for new products, but also because customers may choose to substitute between different products if their first choice is not available. In the online world, an additional complexity is that customers interact with the website in a very different way than the way they purchase in brick-and-mortar stores.

“Addressing assortment and inventory planning together is a hard problem around which we have limited published literature, and limited applied solutions in industry,” says Salal Humair, a senior principal scientist in Amazon’s Supply Chain Optimization Technologies (SCOT) organization.

Now, thanks to ideas sparked in part by a former Amazon intern, a team of scientists at Amazon and Columbia University have taken significant steps toward developing a practical solution for this highly complex problem.

“We wanted to develop a scientific way to solve this very hard problem which is implementable and scalable in practice,” says Humair, who is responsible for developing optimization models for Amazon’s supply chain planning decisions.

The result is a paper that published in May 2021 which Humair co-authored with other Amazon scientists and university collaborators: “Joint Assortment and Inventory Planning for Heavy Tailed Demand”.

In the paper, the authors describe an approach that “balances expected revenue and inventory costs by identifying a subset of products that can pool demand from the universe of products, without excessively cannibalizing revenue due to the substitution behavior of customers.” The authors “also present a multi-step choice model that captures the complex choice process in an online retail setting, usually characterized by a large universe of products and a heavy-tailed distribution of mean demands.”

The project originated after Omar El Housni, then a graduate student at Columbia University, had completed two internships in SCOT. Inspired by his experience, he and Vineet Goyal, a professor in the Industrial Engineering and Operations Research Department at Columbia, developed a research proposal with their Amazon partners to address assortment and inventory planning together. Goyal, who is also an Amazon Scholar, focuses his research on sequential decision problems under uncertainty.

Salal Humair, senior principal research scientist; Vineet Goyal, Amazon Scholar and a professor in the Industrial Engineering and Operations Research Department at Columbia; and Ali Sadighian, senior science manager, explain how their group came up with a model that successfully captures some of the complexities of the customer’s decision-making process.

Ali Sadighian, a senior science manager at SCOT who had been El Housni’s manager during his internship, worked on the proposal with Goyal, El Housni and Humair. Goyal then applied for and received a 2018 Amazon Research Award, which helped fund another of Vineet’s students, Omar Mouchtaki, to work on the paper. Mouchtaki also interned at Amazon.

“If the internships hadn't happened, we would not have explored this problem,” says Goyal. Sadighian notes that Amazon science interns are exposed to a wealth of problems that they often continue to think about even after the end of the experience, which was the case with El Housni. “When you expose the right person to the right domain, you get these great collaborations,” says Sadighian.

Although the research in the paper did not rely on Amazon data, its conclusions are relevant to the company’s operations.

“We wanted to create an approximation of reality that is useful for Amazon too,” says Sadighian. “So, it doesn't need to be based on Amazon data, but it needs to somewhat reflect reality, and how you present a plausible approximation of reality as it pertains to Amazon is a tough problem.”

Amazon Science asked Sadighian, Goyal, and Salal three questions about how their group came up with a model that successfully captures some of the complexities of the customer’s decision-making process and informs inventory planning for products that can be easily substituted for one another.

Q. Why is it particularly challenging to predict the demand for substitutable products and how does Amazon’s scale add to the complexity of this problem?

Goyal: When you have substitutable products, especially at the scale of Amazon, the demand of each individual product actually depends on what else you are offering. The demand depends on what selection you carry and the number of selection possibilities is enormous at Amazon scale. So that is the underlying complexity in modeling demand for substitutable products.

There is another complexity addressed in this paper. Even if the demand model is known, planning for the inventory is still a complicated problem because of the substitution happening in a dynamic manner.

Let's say we offer three types of chocolate with different cocoa percentages: 90%, 80%, and 70%. The customers all prefer 90% the most, but will substitute to chocolates with lower percentages of cocoa if 90% is not available. We start with enough inventory for all of them. In the beginning, only 90% chocolate will sell. Once it runs out, 80% sells and then 70%. So, the demand of each product will depend on what other products still exist in the selection and this is a dynamic process.

Sadighian: It is not easy to develop a tractable model for the behavior of customers who, in the presence of a product, have one behavior, and in the absence of that product, have other behaviors. Now, consider that sometimes the same product might have different functions for different customers, and thence customers might go in different directions to substitute them.

Humair: If you have three products and their demand is independent, you forecast every one of them and the sum of their demands will be the sum of the individual forecasts. But, in this case, what's happening is that if I have two products, and I'm adding a third, depending on which third I add, the forecast for all three will change. I can create a number of potential subsets and every subset will have a different forecast for each one of the items depending on which other items are put in that subset. That leads to an exponential number of possibilities for forecasts. It depends on the subset of the catalog and number of subsets is astronomically large.

Q. How are you able to capture within this model the complex choice process of the customer in an online retail setting?

Humair: The process by which customers make choices on the Amazon Store is extremely complex. Describing that process in mathematical form is one problem. Now the second problem is, if that process is so complicated, we don't want the assortment and inventory optimization model to be so tied into that complexity. One of the clever approaches we took is that we put an abstraction layer between the customer choice process and the problem of what subset and how much to buy. And the way we do that is building on something that Vineet has really pioneered in his research. It's called a Markov chain choice model.

Goyal: This Markov chain choice model is defined by a substitution matrix: What is the probability of substituting to another product if your first choice is not available? So, although the choice process itself is complex, we abstracted away the complexity using this substitution matrix. And therefore, we're able to design an algorithm that does not really change with the complexities of the choice process. Tomorrow, we may introduce another novelty in the model that captures reality better in the choice process, but we still would be able to use the same algorithm, because there's this abstraction layer that allows us to go from any model on the customer choice side to the optimization algorithm on the assortment and inventory side.

Sadighian: The way I think about it is that, whenever you make a product-purchase decision, you have a large number of signals thrown at you. But we should realize that if we focus on a few crucial pieces of information, the other details become less relevant. To take the chocolate example: the color, the shape, all of those may be important. But at the end of the day, just tell me (Ali) the cocoa percentage and maybe that's the most important thing for me. The beauty of an abstraction is that it tells you: “Relax, you don't need to throw in everything and the kitchen sink to make a decision. You only need to know a few pieces of (potentially synthesized) crucial information.”

Q. What is unique about this model and what are the limitations of previous models that this work overcomes?

Goyal: Prior work in this area relied on the structural form of the choice process. So, the assortment optimization algorithms used the properties of the choice process. And if the modeling of that choice process changes slightly, that optimization algorithm doesn't remain usable. So, abstracting it away gives us this significant benefit, and I think is one thing unique to this work.

Humair: What we have done is taken the first step towards solving a more complicated version of the assortment and inventory optimization problem, which is a sequential decision-making problem. You solve the same problem as we are doing in this paper, but you do it with only a limited amount of information, i.e., the catalog of the current vendor. And then you go to the next vendor and decide the additional assortment. What is very promising about this work is that it gives you the stepping stone to actually solving real and practical problems, in a manner that each step forward can build on the past work rather than having to throw it away.

Sadighian: This is the very first step, but maybe one of the most concrete first steps toward solving practical assortment and inventory problems. These first steps either put you on the right path, which we hope is the case, or they send you into the weeds. There is a tremendous amount of work left to be done. But the fact that it shows you the light at the end of the tunnel is maybe the biggest piece of the puzzle for me coming out of this.

I’d like to highlight the genesis of this work. It all started with Omar El Housni interning with us while he was Vineet’s student. Another student of Vineet, Omar Mouchtaki, who interned with us this year is also working on this problem. These relationships demonstrate that if you pick a rich area, there are many avenues to be explored. Omar El Housni is now a professor at Cornell Tech and I suspect he will continue to work on this area. Even if there are bits and pieces that we cannot talk about because they are Amazon internal research, the external evidence of our work (this paper) is out there and our colleagues are continuing to work on it. There is so much left to be done that, that I don't see how we can afford not to continue working on it.

We study a joint assortment and inventory optimization problem faced by an online retailer who needs to decide on both the assortment along with the inventories of a set of N substitutable products before the start of the selling season to maximize the expected profit. The problem raises both algorithmic and modeling challenges. One of the main challenges is to tractably model dynamic stock-out based substitution

Related content

US, WA, Seattle
The Mission of Amazon's Artificial General Intelligence (AGI) team is to "Build world-class general-purpose intelligence services that benefits every Amazon business and humanity." Are you a data enthusiast and explorer? Are you someone who is passionate about using data to direct decision making and solve complex and large-scale challenges? If so, then this position is for you! In this role, you will apply advanced analytics and data science techniques, AI/ML, and statistical concepts to derive insights from massive datasets and work on LLMs to build future of Personalization in Conversational Assistants. The ideal candidate should have expertise in AI/ML, statistical analysis, and the ability to write code for building models and pipelines to automate data and analytics processing. They will help us design experiments, build and fine-tune models, and develop appropriate metrics to deeply understand the strengths and weaknesses of science artifacts. They will build dashboards to automate data collection and reporting of relevant data streams, providing leadership and stakeholders with transparency into our system's performance. They will turn their findings into actions by writing detailed reports and providing recommendations on where we should focus our efforts to have the largest customer impact. Key job responsibilities A successful candidate will be a self-starter, comfortable with ambiguity with strong attention to detail, and have the ability to work in a fast-paced and ever-changing environment. They will also help coach/mentor junior scientists in the team. The ideal candidate should possess excellent verbal and written communication skills, capable of effectively communicating results and insights to both technical and non-technical audiences We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Seattle, WA, USA
GB, London
Economic Decision Science is a central science team working across a variety of topics in the EU Stores business and beyond. We work closely EU business leaders to drive change at Amazon. We focus on solving long-term, ambiguous and challenging problems, while providing advisory support to help solve short-term business pain points. Key topics include pricing, product selection, delivery speed, profitability, and customer experience. We tackle these issues by building novel econometric models, machine learning systems, and high-impact experiments which we integrate into business, financial, and system-level decision making. Our work is highly collaborative and we regularly partner with EU- and US-based interdisciplinary teams. We are looking for a Senior Economist who is able to provide structure around complex business problems, hone those complex problems into specific, scientific questions, and test those questions to generate insights. The ideal candidate will work with various science, engineering, operations and analytics teams to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. If you have an entrepreneurial spirit, you know how to deliver results fast, and you have a deeply quantitative, highly innovative approach to solving problems, and long for the opportunity to build pioneering solutions to challenging problems, we want to talk to you. Key job responsibilities - Provide data-driven guidance and recommendations on strategic questions facing the EU Retail leadership - Scope, design and implement version-zero (V0) models and experiments to kickstart new initiatives, thinking, and drive system-level changes across Amazon - Build a long-term research agenda to understand, break down, and tackle the most stubborn and ambiguous business challenges - Influence business leaders and work closely with other scientists at Amazon to deliver measurable progress and change We are open to hiring candidates to work out of one of the following locations: London, GBR
US, WA, Seattle
The JP Economics and Decision Science Team is looking for an Intern Economist with experience in empirical economic analysis to conduct research on the impact evaluation and prediction of marketing campaigns in Amazon Japan's online retail business. The successful candidate will work closely with the team to improve the efficiency of designing marketing campaigns. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics and applied microeconomics and familiarity with Stata, R, or Python are necessary. Experience with SQL would be a plus, but not required. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will work in a team of economists, data scientists, and engineers and in collaboration with product and finance managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities • Use regression analysis to estimate econometric models and develop forecasting solutions that can predict marketing campaign effectiveness. • Collaborate with other economists and data scientists to validate and refine the econometric models. • Work with product managers and software developers to integrate the forecasting models into the campaign management system. • Monitor the accuracy and effectiveness of the forecasting models and make adjustments as necessary. • Communicate your findings and recommendations to team members and stakeholders. A day in the life - Discussions with business partners, as well as product managers and tech leaders to understand the business problem. - Brainstorming with other scientists and economists to design the right model for the problem in hand. - Present the results and new ideas for existing or forward looking problems to leadership. - Deep dive into the data. - Modeling and creating working prototypes. - Analyze the results and review with partners. About the team We are a team of economists, data scientists, and business intelligence engineers supporting Amazon Japan's Customer Growth and Engagement (CGE) org as the one-stop data science enabler. We use analytical insights and products to empower CGE and align strategic decisions across partner teams (e.g., Operations, Delivery Experience, Pricing). We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Bellevue
The Fulfillment by Amazon (FBA) team is looking for a passionate, curious, and creative Senior Applied Scientist, with expertise in machine learning and a proven record of solving business problems through scalable ML solutions, to join our top-notch cross-domain FBA science team. We want to learn seller behaviors, understand seller experience, build automated LLM-based solutions to sellers, design seller policies and incentives, and develop science products and services that empower third-party sellers to grow their businesses. We also predict potentially costly defects that may occur during packing, shipping, receiving and storing the inventory. We aim to prevent such defects before occurring while we are also fulfilling customer demand as quickly and efficiently as possible, in addition to managing returns and reimbursements. To do so, we build and innovate science solutions at the intersection of machine learning, statistics, economics, operations research, and data analytics. As a senior applied scientist, you will propose and deploy solutions that will likely draw from a range of scientific areas such as supervised and unsupervised learning, recommendation systems, statistical learning, LLMs, and reinforcement learning. This role has high visibility to senior Amazon business leaders and involves working with other scientists, and partnering with engineering and product teams to integrate scientific work into production systems. Key job responsibilities - As a senior member of the science team, you will play an integral part in building Amazon's FBA management system. - Research and develop machine learning models to solve diverse business problems faced in Seller inventory management systems. - Define a long-term science vision and roadmap for the team, driven fundamentally from our customers' needs, translating those directions into specific plans for research and applied scientists, as well as engineering and product teams. - Drive and execute machine learning projects/products end-to-end: from ideation, analysis, prototyping, development, metrics, and monitoring. - Review and audit modeling processes and results for other scientists, both junior and senior. - Advocate the right ML solutions to business stakeholders, engineering teams, as well as executive level decision makers A day in the life In this role, you will be a technical leader in machine learning with significant scope, impact, and high visibility. Your solutions may lead to billions of dollars impact on either the topline or the bottom line of Amazon third-party seller business. As a senior scientist on the team, you will be involved in every aspect of the process - from idea generation, business analysis and scientific research, through to development and deployment of advanced models - giving you a real sense of ownership. From day one, you will be working with experienced scientists, engineers, and designers who love what they do. You are expected to make decisions about technology, models and methodology choices. You will strive for simplicity, and demonstrate judgment backed by mathematical proof. You will also collaborate with the broader decision and research science community in Amazon to broaden the horizon of your work and mentor engineers and scientists. The successful candidate will have the strong expertise in applying machine learning models in an applied environment and is looking for her/his next opportunity to innovate, build, deliver, and impress. We are seeking someone who wants to lead projects that require innovative thinking and deep technical problem-solving skills to create production-ready machine learning solutions. The candidate will need to be entrepreneurial, wear many hats, and work in a fast-paced, high-energy, highly collaborative environment. We value highly technical people who know their subject matter deeply and are willing to learn new areas. We look for individuals who know how to deliver results and show a desire to develop themselves, their colleagues, and their career. About the team Fulfillment by Amazon (FBA) is a service that allows sellers to outsource order fulfillment to Amazon, allowing sellers to leverage Amazon’s world-class facilities to provide customers Prime delivery promise. Sellers gain access to Prime members worldwide, see their sales lift, and are free to focus their time and resources on what they do best while Amazon manages fulfillment. Over the last several years, sellers have enjoyed strong business growth with FBA shipping more than half of all products offered by Amazon. FBA focuses on helping sellers with automating and optimizing the third-party supply chain. FBA sellers leverage Amazon’s expertise in machine learning, optimization, data analytics, econometrics, and market design to deliver the best inventory management experience to sellers. We work full-stack, from foundational backend systems to future-forward user interfaces. Our culture is centered on rapid prototyping, rigorous experimentation, and data-driven decision-making. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Bellevue
The Fulfillment by Amazon (FBA) team is looking for a passionate, curious, and creative Applied Scientist, with expertise and experience in machine learning, to join our top-notch cross-domain FBA science team. We want to learn seller behaviors, understand seller experience, build automated LLM-based solutions to sellers, design seller policies and incentives, and develop science products and services that empower third-party sellers to grow their businesses. We also predict potentially costly defects that may occur during packing, shipping, receiving and storing the inventory. We aim to prevent such defects before occurring while we are also fulfilling customer demand as quickly and efficiently as possible, in addition to managing returns and reimbursements. To do so, we build and innovate science solutions at the intersection of machine learning, statistics, economics, operations research, and data analytics. As an applied scientist, you will design and implement ML solutions that will likely draw from a range of scientific areas such as supervised and unsupervised learning, recommendation systems, statistical learning, LLMs, and reinforcement learning. This role has high visibility to senior Amazon business leaders and involves working with other senior and principal scientists, and partnering with engineering and product teams to integrate scientific work into production systems. Key job responsibilities - Research and develop machine learning models to solve diverse FBA business problems. - Translate business requirements/problems into specific plans for research and applied scientists, as well as engineering and product teams. - Drive and execute machine learning projects/products end-to-end: from ideation, analysis, prototyping, development, metrics, and monitoring. - Work closely with teams of scientists, product managers, program managers, software engineers to drive production model implementations. - Build scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. - Advocate technical solutions to business stakeholders, engineering teams, as well as executive level decision makers A day in the life In this role, you will work in machine learning with significant scope, impact, and high visibility. Your solutions may lead to billions of dollars impact on either the topline or the bottom line of Amazon third-party seller business. As an applied scientist, you will be involved in every aspect of the scientific development process - from idea generation, business analysis and scientific research, through to development and deployment of advanced models - giving you a real sense of ownership. From day one, you will be working with experienced scientists, engineers, and designers who love what they do. You are expected to make decisions about technology, models and methodology choices. You will strive for simplicity, and demonstrate judgment backed by mathematical proof. You will also collaborate with the broader decision and research science community in Amazon to broaden the horizon of your work and mentor engineers and scientists. The successful candidate will have the strong expertise in applying machine learning models in an applied environment and is looking for her/his next opportunity to innovate, build, deliver, and impress. We are seeking someone who wants to lead projects that require innovative thinking and deep technical problem-solving skills to create production-ready machine learning solutions. We value highly technical people who know their subject matter deeply and are willing to learn new areas. We look for individuals who know how to deliver results and show a desire to develop themselves, their colleagues, and their career. About the team Fulfillment by Amazon (FBA) is a service that allows sellers to outsource order fulfillment to Amazon, allowing sellers to leverage Amazon’s world-class facilities to provide customers Prime delivery promise. Sellers gain access to Prime members worldwide, see their sales lift, and are free to focus their time and resources on what they do best while Amazon manages fulfillment. Over the last several years, sellers have enjoyed strong business growth with FBA shipping more than half of all products offered by Amazon. FBA focuses on helping sellers with automating and optimizing the third-party supply chain. FBA sellers leverage Amazon’s expertise in machine learning, optimization, data analytics, econometrics, and market design to deliver the best inventory management experience to sellers. We work full-stack, from foundational backend systems to future-forward user interfaces. Our culture is centered on rapid prototyping, rigorous experimentation, and data-driven decision-making. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Seattle
Outbound Communications own the worldwide charter for delighting our customers with timely, relevant notifications (email, mobile, SMS and other channels) to drive awareness and discovery of Amazon’s products and services. We meet customers at their channel of preference with the most relevant content at the right time and frequency. We directly create and operate marketing campaigns, and we have also enabled select partner teams to build programs by reusing and extending our infrastructure. We optimize for customers to receive the most relevant and engaging content across all of Amazon worldwide, and apply the appropriate guardrails to ensure a consistent and high-quality CX. Outbound Communications seek a talented Applied Scientist to join our team to develop the next generation of automated and personalized marketing programs to help Amazon customers in their shopping journeys worldwide. Come join us in our mission today! Key job responsibilities As an Applied Scientist on the team, you will lead the roadmap and strategy for applying science to solve customer problems in the automated marketing domain. This is an opportunity to come in on Day 0 and lead the science strategy of one of the most interesting problem spaces at Amazon - understanding the Amazon customer to build deeply personalized and adaptive messaging experiences. You will be part of a multidisciplinary team and play an active role in translating business and functional requirements into concrete deliverables. You will work closely with product management and the software development team to put solutions into production. You will apply your skills in areas such as deep learning and reinforcement learning while building scalable industrial systems. You will have a unique opportunity to produce and deliver models that help build best-in-class customer experiences and build systems that allow us to deploy these models to production with low latency and high throughput. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to develop novel algorithms and modeling techniques to advance the state of the art with multimodal systems. Your work will directly impact our customers in the form of products and services that make use of vision and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate development with multimodal Large Language Models (LLMs) and Generative Artificial Intelligence (Gen AI) in Computer Vision. About the team The AGI team has a mission to push the envelope with multimodal LLMs and Gen AI in Computer Vision, in order to provide the best-possible experience for our customers. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Bellevue
We are looking for a passionate, talented, and resourceful Applied Scientist with background in Natural Language Processing (NLP), Reinforcement Learning, or Recommender Systems to invent and build scalable solutions for a state-of-the-art conversational assistant. The ideal candidate should have a robust foundation in machine learning and a keen interest in advancing the field. The ideal candidate would also enjoy operating in dynamic environments, have the self-motivation to take on challenging problems to deliver big customer impact, and move fast to ship solutions and then iterate on user feedback and interactions. About the team The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist to help build industry-leading conversational technologies that customers love. Our mission is to push the envelope in Artificial Intelligence (AI), Natural Language Understanding (NLU), Machine Learning (ML), Dialog Management, Automatic Speech Recognition (ASR), and Audio Signal Processing, in order to provide the best-possible experience for our customers We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Boston, MA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
CN, 11, Beijing
Amazon Search JP builds features powering product search on the Amazon JP shopping site and expands the innovations to world wide. As an Applied Scientist on this growing team, you will take on a key role in improving the NLP and ranking capabilities of the Amazon product search service. Our ultimate goal is to help customers find the products they are searching for, and discover new products they would be interested in. We do so by developing NLP components that cover a wide range of languages and systems. As an Applied Scientist for Search JP, you will design, implement and deliver search features on Amazon site, helping millions of customers every day to find quickly what they are looking for. You will propose innovation in NLP and IR to build ML models trained on terabytes of product and traffic data, which are evaluated using both offline metrics as well as online metrics from A/B testing. You will then integrate these models into the production search engine that serves customers, closing the loop through data, modeling, application, and customer feedback. The chosen approaches for model architecture will balance business-defined performance metrics with the needs of millisecond response times. Key job responsibilities - Designing and implementing new features and machine learned models, including the application of state-of-art deep learning to solve search matching, ranking and Search suggestion problems. - Analyzing data and metrics relevant to the search experiences. - Working with teams worldwide on global projects. Your benefits include: - Working on a high-impact, high-visibility product, with your work improving the experience of millions of customers - The opportunity to use (and innovate) state-of-the-art ML methods to solve real-world problems with tangible customer impact - Being part of a growing team where you can influence the team's mission, direction, and how we achieve our goals We are open to hiring candidates to work out of one of the following locations: Beijing, 11, CHN | Shanghai, 31, CHN
US, WA, Seattle
The Automated Reasoning Group in AWS Platform is looking for an Applied Scientist with experience in building scalable solver solutions that delight customers. You will be part of a world-class team building the next generation of automated reasoning tools and services. AWS has the most services and more features within those services, than any other cloud provider–from infrastructure technologies like compute, storage, and databases–to emerging technologies, such as machine learning and artificial intelligence, data lakes and analytics, and Internet of Things. You will apply your knowledge to propose solutions, create software prototypes, and move prototypes into production systems using modern software development tools and methodologies. In addition, you will support and scale your solutions to meet the ever-growing demand of customer use. You will use your strong verbal and written communication skills, are self-driven and own the delivery of high quality results in a fast-paced environment. Each day, hundreds of thousands of developers make billions of transactions worldwide on AWS. They harness the power of the cloud to enable innovative applications, websites, and businesses. Using automated reasoning technology and mathematical proofs, AWS allows customers to answer questions about security, availability, durability, and functional correctness. We call this provable security, absolute assurance in security of the cloud and in the cloud. See https://aws.amazon.com/security/provable-security/ As an Applied Scientist in AWS Platform, you will play a pivotal role in shaping the definition, vision, design, roadmap and development of product features from beginning to end. You will: - Define and implement new solver applications that are scalable and efficient approaches to difficult problems - Apply software engineering best practices to ensure a high standard of quality for all team deliverables - Work in an agile, startup-like development environment, where you are always working on the most important stuff - Deliver high-quality scientific artifacts - Work with the team to define new interfaces that lower the barrier of adoption for automated reasoning solvers - Work with the team to help drive business decisions The AWS Platform is the glue that holds the AWS ecosystem together. From identity features such as access management and sign on, cryptography, console, builder & developer tools, to projects like automating all of our contractual billing systems, AWS Platform is always innovating with the customer in mind. The AWS Platform team sustains over 750 million transactions per second. Learn and Be Curious. We have a formal mentor search application that lets you find a mentor that works best for you based on location, job family, job level etc. Your manager can also help you find a mentor or two, because two is better than one. In addition to formal mentors, we work and train together so that we are always learning from one another, and we celebrate and support the career progression of our team members. Inclusion and Diversity. Our team is diverse! We drive towards an inclusive culture and work environment. We are intentional about attracting, developing, and retaining amazing talent from diverse backgrounds. Team members are active in Amazon’s 10+ affinity groups, sometimes known as employee resource groups, which bring employees together across businesses and locations around the world. These range from groups such as the Black Employee Network, Latinos at Amazon, Indigenous at Amazon, Families at Amazon, Amazon Women and Engineering, LGBTQ+, Warriors at Amazon (Military), Amazon People With Disabilities, and more. Key job responsibilities Work closely with internal and external users on defining and extending application domains. Tune solver performance for application-specific demands. Identify new opportunities for solver deployment. About the team Solver science is a talented team of scientists from around the world. Expertise areas include solver theory, performance, implementation, and applications. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices. We are open to hiring candidates to work out of one of the following locations: Portland, OR, USA | Seattle, WA, USA