AmazonScience_LeadImage_JointAssortment_01.jpg
"Joint Assortment and Inventory Planning for Heavy Tailed Demand" was authored by, top row, Omar El Housni, visiting assistant professor at Cornell Tech, and Omar Mouchtaki, a PhD student at Columbia Business School; second row, Guillermo Gallego, professor of engineering at The Hong Kong University of Science and Technology, and Vineet Goyal, Amazon Scholar and a professor in the Industrial Engineering and Operations Research Department at Columbia; third row, Salal Humair, Amazon senior principal research scientist, and Sangjo Kim, assistant professor at Shanghai University of Finance and Economics; and bottom row, Ali Sadighian, Amazon senior science manager, and Jingchen Wu, a senior research scientist.

Developing a model to offer fashion products that cater to diverse tastes

Scientists are working to address assortment optimization and inventory planning challenges for fashion products.

One ongoing challenge faced by online retailers is how to optimally select the subset of fashion products to offer and how much inventory to procure before the start of the selling season. Deciding which subset of products to offer from a larger catalog of products is known as the assortment optimization problem. Assortment optimization and inventory planning for fashion products is made complex not only because of the need to forecast demand months in advance for new products, but also because customers may choose to substitute between different products if their first choice is not available. In the online world, an additional complexity is that customers interact with the website in a very different way than the way they purchase in brick-and-mortar stores.

“Addressing assortment and inventory planning together is a hard problem around which we have limited published literature, and limited applied solutions in industry,” says Salal Humair, a senior principal scientist in Amazon’s Supply Chain Optimization Technologies (SCOT) organization.

Now, thanks to ideas sparked in part by a former Amazon intern, a team of scientists at Amazon and Columbia University have taken significant steps toward developing a practical solution for this highly complex problem.

“We wanted to develop a scientific way to solve this very hard problem which is implementable and scalable in practice,” says Humair, who is responsible for developing optimization models for Amazon’s supply chain planning decisions.

The result is a paper that published in May 2021 which Humair co-authored with other Amazon scientists and university collaborators: “Joint Assortment and Inventory Planning for Heavy Tailed Demand”.

In the paper, the authors describe an approach that “balances expected revenue and inventory costs by identifying a subset of products that can pool demand from the universe of products, without excessively cannibalizing revenue due to the substitution behavior of customers.” The authors “also present a multi-step choice model that captures the complex choice process in an online retail setting, usually characterized by a large universe of products and a heavy-tailed distribution of mean demands.”

The project originated after Omar El Housni, then a graduate student at Columbia University, had completed two internships in SCOT. Inspired by his experience, he and Vineet Goyal, a professor in the Industrial Engineering and Operations Research Department at Columbia, developed a research proposal with their Amazon partners to address assortment and inventory planning together. Goyal, who is also an Amazon Scholar, focuses his research on sequential decision problems under uncertainty.

Salal Humair, senior principal research scientist; Vineet Goyal, Amazon Scholar and a professor in the Industrial Engineering and Operations Research Department at Columbia; and Ali Sadighian, senior science manager, explain how their group came up with a model that successfully captures some of the complexities of the customer’s decision-making process.

Ali Sadighian, a senior science manager at SCOT who had been El Housni’s manager during his internship, worked on the proposal with Goyal, El Housni and Humair. Goyal then applied for and received a 2018 Amazon Research Award, which helped fund another of Vineet’s students, Omar Mouchtaki, to work on the paper. Mouchtaki also interned at Amazon.

“If the internships hadn't happened, we would not have explored this problem,” says Goyal. Sadighian notes that Amazon science interns are exposed to a wealth of problems that they often continue to think about even after the end of the experience, which was the case with El Housni. “When you expose the right person to the right domain, you get these great collaborations,” says Sadighian.

Although the research in the paper did not rely on Amazon data, its conclusions are relevant to the company’s operations.

“We wanted to create an approximation of reality that is useful for Amazon too,” says Sadighian. “So, it doesn't need to be based on Amazon data, but it needs to somewhat reflect reality, and how you present a plausible approximation of reality as it pertains to Amazon is a tough problem.”

Amazon Science asked Sadighian, Goyal, and Salal three questions about how their group came up with a model that successfully captures some of the complexities of the customer’s decision-making process and informs inventory planning for products that can be easily substituted for one another.

Q. Why is it particularly challenging to predict the demand for substitutable products and how does Amazon’s scale add to the complexity of this problem?

Goyal: When you have substitutable products, especially at the scale of Amazon, the demand of each individual product actually depends on what else you are offering. The demand depends on what selection you carry and the number of selection possibilities is enormous at Amazon scale. So that is the underlying complexity in modeling demand for substitutable products.

There is another complexity addressed in this paper. Even if the demand model is known, planning for the inventory is still a complicated problem because of the substitution happening in a dynamic manner.

Let's say we offer three types of chocolate with different cocoa percentages: 90%, 80%, and 70%. The customers all prefer 90% the most, but will substitute to chocolates with lower percentages of cocoa if 90% is not available. We start with enough inventory for all of them. In the beginning, only 90% chocolate will sell. Once it runs out, 80% sells and then 70%. So, the demand of each product will depend on what other products still exist in the selection and this is a dynamic process.

Sadighian: It is not easy to develop a tractable model for the behavior of customers who, in the presence of a product, have one behavior, and in the absence of that product, have other behaviors. Now, consider that sometimes the same product might have different functions for different customers, and thence customers might go in different directions to substitute them.

Humair: If you have three products and their demand is independent, you forecast every one of them and the sum of their demands will be the sum of the individual forecasts. But, in this case, what's happening is that if I have two products, and I'm adding a third, depending on which third I add, the forecast for all three will change. I can create a number of potential subsets and every subset will have a different forecast for each one of the items depending on which other items are put in that subset. That leads to an exponential number of possibilities for forecasts. It depends on the subset of the catalog and number of subsets is astronomically large.

Q. How are you able to capture within this model the complex choice process of the customer in an online retail setting?

Humair: The process by which customers make choices on the Amazon Store is extremely complex. Describing that process in mathematical form is one problem. Now the second problem is, if that process is so complicated, we don't want the assortment and inventory optimization model to be so tied into that complexity. One of the clever approaches we took is that we put an abstraction layer between the customer choice process and the problem of what subset and how much to buy. And the way we do that is building on something that Vineet has really pioneered in his research. It's called a Markov chain choice model.

Goyal: This Markov chain choice model is defined by a substitution matrix: What is the probability of substituting to another product if your first choice is not available? So, although the choice process itself is complex, we abstracted away the complexity using this substitution matrix. And therefore, we're able to design an algorithm that does not really change with the complexities of the choice process. Tomorrow, we may introduce another novelty in the model that captures reality better in the choice process, but we still would be able to use the same algorithm, because there's this abstraction layer that allows us to go from any model on the customer choice side to the optimization algorithm on the assortment and inventory side.

Sadighian: The way I think about it is that, whenever you make a product-purchase decision, you have a large number of signals thrown at you. But we should realize that if we focus on a few crucial pieces of information, the other details become less relevant. To take the chocolate example: the color, the shape, all of those may be important. But at the end of the day, just tell me (Ali) the cocoa percentage and maybe that's the most important thing for me. The beauty of an abstraction is that it tells you: “Relax, you don't need to throw in everything and the kitchen sink to make a decision. You only need to know a few pieces of (potentially synthesized) crucial information.”

Q. What is unique about this model and what are the limitations of previous models that this work overcomes?

Goyal: Prior work in this area relied on the structural form of the choice process. So, the assortment optimization algorithms used the properties of the choice process. And if the modeling of that choice process changes slightly, that optimization algorithm doesn't remain usable. So, abstracting it away gives us this significant benefit, and I think is one thing unique to this work.

Humair: What we have done is taken the first step towards solving a more complicated version of the assortment and inventory optimization problem, which is a sequential decision-making problem. You solve the same problem as we are doing in this paper, but you do it with only a limited amount of information, i.e., the catalog of the current vendor. And then you go to the next vendor and decide the additional assortment. What is very promising about this work is that it gives you the stepping stone to actually solving real and practical problems, in a manner that each step forward can build on the past work rather than having to throw it away.

Sadighian: This is the very first step, but maybe one of the most concrete first steps toward solving practical assortment and inventory problems. These first steps either put you on the right path, which we hope is the case, or they send you into the weeds. There is a tremendous amount of work left to be done. But the fact that it shows you the light at the end of the tunnel is maybe the biggest piece of the puzzle for me coming out of this.

I’d like to highlight the genesis of this work. It all started with Omar El Housni interning with us while he was Vineet’s student. Another student of Vineet, Omar Mouchtaki, who interned with us this year is also working on this problem. These relationships demonstrate that if you pick a rich area, there are many avenues to be explored. Omar El Housni is now a professor at Cornell Tech and I suspect he will continue to work on this area. Even if there are bits and pieces that we cannot talk about because they are Amazon internal research, the external evidence of our work (this paper) is out there and our colleagues are continuing to work on it. There is so much left to be done that, that I don't see how we can afford not to continue working on it.

We study a joint assortment and inventory optimization problem faced by an online retailer who needs to decide on both the assortment along with the inventories of a set of N substitutable products before the start of the selling season to maximize the expected profit. The problem raises both algorithmic and modeling challenges. One of the main challenges is to tractably model dynamic stock-out based substitution

Related content

GB, Cambridge
Our team undertakes research together with multiple organizations to advance the state-of-the-art in speech technologies. We not only work on giving Alexa, the ground-breaking service that powers Echo, her voice, but we also develop cutting-edge technologies with Amazon Studios, the provider of original content for Prime Video. Do you want to be part of the team developing the latest technology that impacts the customer experience of ground-breaking products? Then come join us and make history. We are looking for a passionate, talented, and inventive Senior Applied Scientist with a background in Machine Learning to help build industry-leading Speech, Language and Video technology. As a Senior Applied Scientist at Amazon you will work with talented peers to develop novel algorithms and modelling techniques to drive the state of the art in speech and vocal arts synthesis. Position Responsibilities: - Participate in the design, development, evaluation, deployment and updating of data-driven models for digital vocal arts applications. - Participate in research activities including the application and evaluation and digital vocal and video arts techniques for novel applications. - Research and implement novel ML and statistical approaches to add value to the business. - Mentor junior engineers and scientists. We are open to hiring candidates to work out of one of the following locations: Cambridge, GBR
US, WA, Seattle
The Amazon Economics Team is hiring Economist Interns. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets to solve real-world business problems. Some knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL, UNIX, Sawtooth, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, data scientists and MBAʼs. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with future job market placement. Roughly 85% of interns from previous cohorts have converted to full-time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, NY, New York
Amazon is investing heavily in building a world-class advertising business, and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. We deliver billions of ad impressions and millions of clicks daily and break fresh ground to create world-class products. We are highly motivated, collaborative, and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. Our systems and algorithms operate on one of the world's largest product catalogs, matching shoppers with advertised products with a high relevance bar and strict latency constraints. Sponsored Products Detail Page Blended Widgets team is chartered with building novel product recommendation experiences. We push the innovation frontiers for our hundreds of millions of customers WW to aid product discovery while helping shoppers to find relevant products easily. Our team is building differentiated recommendations that highlight specific characteristics of products (either direct attributes, inferred or machine learned), and leveraging generative AI to provide interactive shopping experiences. We are looking for a Senior Applied Scientist who can delight our customers by continually learning and inventing. Our ideal candidate is an experienced Applied Scientist who has a track-record of performing deep analysis and is passionate about applying advanced ML and statistical techniques to solve real-world, ambiguous and complex challenges to optimize and improve the product performance, and who is motivated to achieve results in a fast-paced environment. The position offers an exceptional opportunity to grow your technical and non-technical skills and make a real difference to the Amazon Advertising business. As a Senior Applied Scientist on this team, you will: * Be the technical leader in Machine Learning; lead efforts within this team and collaborate across teams * Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, perform hands-on analysis and modeling of enormous data sets to develop insights that improve shopper experiences and merchandise sales * Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. * Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. * Research new and innovative machine learning approaches. * Promote the culture of experimentation and applied science at Amazon Team video https://youtu.be/zD_6Lzw8raE We are also open to consider the candidate in Seattle, or Palo Alto. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA
US, VA, Arlington
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! The Search Sourcing and Relevance team parses billions of ads to surface the best ad to show to Amazon shoppers. The team strives to understand customer intent and identify relevant ads that enable them to discover new and alternate products. This also enables sellers on Amazon to showcase their products to customers, which may, at times, be buried deeper in the search results. By showing the right ads to customers at the right time, this team improves the shopper experience, increase advertiser ROI, and improves long-term monetization. This is a talented team of machine learning scientists and software engineers working on complex solutions to understand the customer intent and present them with ads that are not only relevant to their actual shopping experience but also non-obtrusive. This area is of strategic importance to Amazon Retail and Marketplace business, driving long term growth. Key job responsibilities As a Senior Applied Scientist on this team, you will: - Be the technical leader in Machine Learning; lead efforts within this team and across other teams. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches. - Recruit Applied Scientists to the team and provide mentorship. About the team Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA
US, VA, Arlington
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use reduced-form causal analysis and/or structural economic modeling methods to evaluate the impact of policies on employee outcomes, and examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA
US, WA, Seattle
We are expanding our Global Risk Management & Claims team and insurance program support for Amazon’s growing risk portfolio. This role will partner with our risk managers to develop pricing models, determine rate adequacy, build underwriting and claims dashboards, estimate reserves, and provide other analytical support for financially prudent decision making. As a member of the Global Risk Management team, this role will provide actuarial support for Amazon’s worldwide operation. Key job responsibilities ● Collaborate with risk management and claims team to identify insurance gaps, propose solutions, and measure impacts insurance brings to the business ● Develop pricing mechanisms for new and existing insurance programs utilizing actuarial skills and training in innovative ways ● Build actuarial forecasts and analyses for businesses under rapid growth, including trend studies, loss distribution analysis, ILF development, and industry benchmarks ● Design actual vs expected and other metrics dashboards to assist decision makings in pricing analysis ● Create processes to monitor loss cost and trends ● Propose and implement loss prevention initiatives with impact on insurance pricing in mind ● Advise underwriting decisions with analysis on driver risk profile ● Support insurance cost budgeting activities ● Collaborate with external vendors and other internal analytics teams to extract insurance insight ● Conduct other ad hoc pricing analyses and risk modeling as needed We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | New York, NY, USA | Seattle, WA, USA
US, NY, New York
The Amazon SCOT Forecasting team seeks a Senior Applied Scientist to join our team. Our research team conducts research into the theory and application of reinforcement learning. This research is shared in top journals and conferences and has a significant impact on the field. Through our launch of several Deep RL models into production, our work also affects decision making in the real world. Members of our group have varied interests—from the mathematical foundations of reinforcement learning, to language modeling, to maintaining the performance of generative models in the face of copyrights, and more. Recent work has focused on sample efficiency of RL algorithms, treatment effect estimation, and RL agents integrating real-world constraints, as applied in supply chains. Previous publications include: - Linear Reinforcement Learning with Ball Structure Action Space - Meta-Analysis of Randomized Experiments with Applications to Heavy-Tailed Response Data - A Few Expert Queries Suffices for Sample-Efficient RL with Resets and Linear Value Approximation - Deep Inventory Management - What are the Statistical Limits of Offline RL with Linear Function Approximation? Working collaboratively with a group of fellow scientists and engineers, you will identify complex problems and develop solutions in the RL space. We encourage collaboration across teammates and their areas of specialty, leading to creative and ambitious projects with the goal of publication and production. Key job responsibilities - Drive collaborative research and creative problem solving - Constructively critique peer research; mentor junior scientists - Create experiments and prototype implementations of new algorithms and techniques - Collaborate with engineering teams to design and implement software built on these new algorithms - Contribute to progress of the Amazon and broader research communities by producing publications We are open to hiring candidates to work out of one of the following locations: New York, NY, USA
US, CA, Virtual Location - California
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate and grow their personal interests and passions. We're always live at Twitch. About the Role: As a Data Scientist, Analytics member of the Data Platform - Insights team, you'll provide data analysis and support for platform, service, and operational engineering teams at Twitch, shaping the way success is measured. Defining what questions should be asked and scaling analytics methods and tools to support our growing business. Additionally, you will help support the vision for business analytics, solutions architecture for data related business constructs, as well as tactical execution such as experiment analysis and campaign performance reporting. You are paving the way for high-quality, high-velocity decisions and will report to the Manager, Data Science. For this role, we're looking for an experienced data staff who will oversee data instrumentation, dashboard/report building, metrics reviews, inform team investments, guidance on success/failure metrics and ad-hoc analysis. You will also work with technical and non-technical staff members throughout the company, and your effort will have an impact on hundreds of partners at Twitch You Will: - Work with members of Platforms & Services to guide them towards better decision making from the available data. - Promote data knowledge and insights through managing communications with partners and other teams, collaborate with colleagues to complete data projects and ensure all parties can use the insights to further improve. - Maintain a customer-centric focus while being a domain and product expert through data, develop trust amongst peers, and ensure that the teams and programs have access to data to make decisions - Manage ambiguous problems and adapt tools to answer complicated questions. - Identify the trade-offs between speed and quality of different approaches. - Create analytical frameworks to measure team success by partnering with teams to establish success metrics, create approaches to track the data and troubleshoot errors, measure and evaluate the data to develop a common language for all colleagues to understand these metrics. - Operationalize data processes to provide partners with ad-hoc analysis, automated dashboards, and self-service reporting tools so that everyone gets a good sense of the state of the business Perks: - Medical, Dental, Vision & Disability Insurance - 401(k), Maternity & Parental Leave - Flexible PTO - Commuter Benefits - Amazon Employee Discount - Monthly Contribution & Discounts for Wellness Related Activities & Programs (e.g., gym memberships, off-site massages), -Breakfast, Lunch & Dinner Served Daily - Free Snacks & Beverages We are open to hiring candidates to work out of one of the following locations: Irvine, CA, USA | Seattle, WA, USA | Virtual Location - CA
US, WA, Bellevue
Have you ever ordered a product on Amazon and when that box with the smile arrived you wondered how it got to you so fast? Have you wondered where it came from and how much it cost Amazon to deliver it to you? Have you also wondered what are different ways that the transportation assets can be used to delight the customer even more. If so, the Amazon transportation Services, Product and Science is for you . We manage the delivery of tens of millions of products every week to Amazon’s customers, achieving on-time delivery in a cost-effective manner. We are looking for an enthusiastic, customer obsessed Applied Scientist with strong scientific thinking, good software and statistics experience, skills to help manage projects and operations, improve metrics, and develop scalable processes and tools. The primary role of an Applied Scientist within Amazon is to address business challenges through building a compelling case, and using data to influence change across the organization. This individual will be given responsibility on their first day to own those business challenges and the autonomy to think strategically and make data driven decisions. Decisions and tools made in this role will have significant impact to the customer experience, as it will have a major impact on how we operate the middle mile network. Ideal candidates will be a high potential, strategic and analytic graduate with a PhD in (Operations Research, Statistics, Engineering, and Supply Chain) ready for challenging opportunities in the core of our world class operations space. Great candidates have a history of operations research, machine learning , and the ability to use data and research to make changes. This role requires robust skills in research and implementation of scalable products and models . This individual will need to be able to work with a team, but also be comfortable making decisions independently, in what is often times an ambiguous environment. Responsibilities may include: - Develop input and assumptions based preexisting models to estimate the costs and savings opportunities associated with varying levels of network growth and operations - Creating metrics to measure business performance, identify root causes and trends, and prescribe action plans - Managing multiple projects simultaneously - Working with technology teams and product managers to develop new tools and systems to support the growth of the business - Communicating with and supporting various internal stakeholders and external audiences We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, CA, Los Angeles
The Alexa team is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background, to help build industry-leading Speech and Language technology. Key job responsibilities As an Applied Scientist with the Alexa team, you will work with talented peers to develop novel algorithms and modeling techniques to advance the state of the art in spoken language understanding. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The Alexa team has a mission to push the envelope in Automatic Speech Recognition (ASR), Natural Language Understanding (NLU), and Audio Signal Processing, in order to provide the best-possible experience for our customers. We are open to hiring candidates to work out of one of the following locations: Los Angeles, CA, USA