"This technology will be transformative in ways we can barely comprehend"

A judge and some of the finalists from the Alexa Prize Grand Challenge 3 talk about the competition, the role of COVID-19, and the future of socialbots.

Human beings are social creatures, and conversations are what connect us—they enable us to share everything from the prosaic to the profound with the people that matter to us. Living through an era marked by pandemic-induced isolation means many of those conversations have shifted online, but the connection they provide remains essential.

So what happens when you replace one of the human participants in a conversation with a socialbot? What does it mean to have an engaging conversation with an AI assistant? How can that kind of conversation prove to be valuable, and can it provide its own kind of connection?

Application period for next Alexa Prize challenge opens

The Amazon Alexa Prize team encourages all interested teams to apply for the Grand Challenge 4 by 11:59 p.m. PST on October 6, 2020.

The participants in this year’s Alexa Prize contest are driven by those questions. Amazon recently announced that a team from Emory University has won the 2020 Alexa Prize. We talked to that team, along with a judge from this year’s competition, as well as representatives from the other finalist teams at Czech Technical University, Stanford University, University of California, Davis, and University of California, Santa Cruz. We wanted to learn what drives them to participate, how COVID-19 has influenced their work and what they see as the possibilities and challenges for socialbots moving forward.

Winners of the Alexa Prize SocialBot Grand Challenge 3 discuss their research

Q: What inspired you to participate in this year’s competition?

Sarah Fillwock, team leader, Emora, Emory University: We had a group of students who were interested in dialogue system research, some of whom had actually participated in the Alexa Prize in its previous years, and we all knew that the Alexa Prize offers a really unique opportunity for anyone interested in this type of work. It is really exciting to use the Alexa device platform to launch a socialbot, because we are able to get hundreds of conversations a day between our socialbot and human users, which really allows for quick turnaround time when assessing whether or not our hypotheses and strategies are improving the performance of our dialogue system.

Marilyn Walker, faculty advisor, Athena, University of California, Santa Cruz: In our Natural Language and Dialogue Systems lab, our main research focus is dialogue management and language generation. Conversational AI is a very challenging problem, and we felt like we could have a research impact in this area. The field has been developing extremely quickly recently, and the Alexa Prize offers an opportunity to try out cutting-edge technologies in dialogue management and language generation on a large Alexa user population.

Amazon Alexa Prize Finalists 2020
The five Alexa Prize finalist teams: Czech Technical University in Prague; Emory University; Stanford University; the University of California, Davis; and the University of California, Santa Cruz.

Vrindavan (Davan) Harrison, team leader, Athena, UCSC: As academics, our primary focus is on research. This year’s competition aimed at being more research-oriented, allowing the teams to spend more time on developing new ideas.

Kai-Hui Liang, team lead, Gunrock, University of California, Davis: Our experience in last year’s competition motivated us to join again as we realized there is still a large room for improvement. I’m especially interested in how to find topics that engage users the most, including trying different ways to elicit and reason about users’ interests. How can we retrieve content that is relevant and interesting, and make the dialog flow more naturally?

Jan Pichl, team leader, Alquist, Czech Technical University: Since the first year of the Alexa Prize competition, we have been developing Alquist to deliver a wide range of topics with a closer focus on the most popular ones. The first Alquist guided a user through the conversation quite strictly. We learned quickly that we needed to introduce more flexibility and let the user be "in charge". With that in mind, we have been pushing Alquist in that direction. Moreover, we want Alquist to manage dialogue utilizing the knowledge graph, and suggest relevant information based on the previously discussed topics and entities.

Christopher D. Manning, faculty advisor, Chirpy Cardinal, Stanford University: It was our first time doing the Alexa Prize, and the team really hadn’t done advance preparation, so it’s all been a wild ride—by which I mean a lot of work and stress for everyone on the team. But it was super exciting that we were largely able to catch up with other leading teams who have been doing the competition for several years.

Hugh Howey, judge and science fiction author: Artificial intelligence is a passionate interest of mine. As a science fiction author, I have the freedom to write about most anything, but the one topic I keep coming back to is the impact that thinking machines already have on our lives and how that impact will only expand in the future. So any chance to be involved with those doing work and research in the field is a no-brainer for me. I leapt at the chance like a Boston Dynamics dog.

Q: What excites you about the potential of socialbots?

Hugh Howey (Judge): This technology will be transformative in ways we can barely comprehend. Right now, the human/computer interface is a bottleneck. It takes a long time for us to tell our computers what we want them to do, and they'll generally only do that thing the one time and forget what it learned. In the future, more and more of the trivial will be automated. This will free up human capital to tackle larger problems. It will also bring us together by removing language barriers, by helping those with disabilities, and eventually this technology will be available to anyone who needs it.

Jinho D. Choi, faculty advisor, Emory: It has been reported that more than 44 million adults in US have mental health issues such as anxiety or depression. We believe that developing an innovative socialbot that comforts people can really help those with mental health conditions, who are generally afraid of talking to other human beings. You may wonder how artificial intelligence can convey a human emotion such as caring. However, humans have used their own creations, such as arts and music, to comfort themselves. It is our vision to advance AI, the greatest invention of humankind, to help individuals learn more about their inner selves so they can feel more positive about themselves, and have a bigger impact in the world.

Ashwin Paranjape, co-team leader, Stanford: As socialbots become more sophisticated and prevalent, increasing numbers of people are chatting with them regularly. As the name suggests, socialbots have the potential to fulfill social needs, such as chit-chatting about everyday life, or providing support to a person struggling with mental health difficulties. Furthermore, socialbots could become a primary user interface through which we engage with the world—for example, chatting about the news, or discussing a book.

Sarah Fillwock, Emory: Our experience in this competition has really solidified this idea of the potential of socialbots being value to people who need support and are in troubling situations. I think that the most compelling role for socialbots in global challenges is to provide a supportive environment to allow people to express themselves, and explore their feelings with regard to whatever dramatic event is going on. This is especially important for vulnerable populations, such as those who do not have a strong social circle or have reduced social contact with others, prohibiting them from being able to achieve the feeling of being valued and understood.

Q: What are the main challenges to realizing that potential?

Abigail See, co-team leader, Stanford: Currently, socialbots struggle to make sense of long, involved conversations, and this limits their ability to talk about any topic in depth. To do this better, socialbots will need to understand what a particular user wants—not only in terms of discussion topics, but also what kind of conversation they want to have. Another important challenge is to allow users to take more initiative, and drive the conversation themselves. Currently, socialbots tend to take more initiative, to ensure the conversation stays within their capabilities. If we can make our socialbots more flexible, they will be much more useful and engaging to people.

Sarah Fillwock, Emory: One major challenge facing the field of dialogue system research is establishing a best practice for evaluation of the performance of dialogue approaches. There is currently a diverse set of evaluation strategies that the research community uses to determine how well their new dialogue approach performs. Another challenge is that dialogues are more than just a pattern-matching problem. Having a back-and-forth dialogue on any topic with another agent tends to involve planning towards achieving specific goals during the conversation as new information about your speaking partner is revealed. Dialogues also rely a lot on having a foundation of general world knowledge that you use to fully understand the implications of what the other person is saying.

Amazon releases Topical Chat dataset

The text-based collection of more than 235,000 utterances will help support high-quality, repeatable research in the field of dialogue systems.

Marilyn Walker, UCSC: There’s a shortage of large annotated conversational corpora for the task of open-domain conversation. For example, progress in NLU has been supported by large annotated corpora, such as Penn Treebank, however, there are currently no such publicly available corpora for open-domain conversation. Also, a rich model of individual users would enable much more natural conversations, but privacy issues currently make it difficult to build such models.

Hugh Howey (Judge): The challenge will be for our ethics and morality to keep up with our gizmos. We will be far more powerful in the future. I only hope we'll be more responsible as well.

Q: What role has the COVID-19 pandemic played in your work?

Jurik Juraska, team member, UCSC: The most immediate effect the onset of the pandemic had on our socialbot was, of course, that it could not just ignore this new dynamic situation. Our socialbot had to acknowledge this new development, as that was what most people were talking about at that point. We would thus have Athena bring up the topic at the beginning of the conversation, sympathizing with the users' current situation, but avoiding wallowing in the negative aspects of it. In the feedback that some users left, there were a number of expressions of gratitude for the ability to have a fun interaction with a socialbot at a time when direct social interaction with friends and family was greatly restricted.

Kai-Hui Liang, UC Davis: We noticed an evident difference in the way Alexa users reacted to popular topics. For example, before COVID-19, many users gave engaging responses when discussing their favorite sports to watch, their travel experiences, or events they plan to do over the weekend. After the breakout of COVID-19, more users replied saying there’s no sports game to watch or they are not able to travel. Therefore, we adapted our topics to better fit the situation. We added discussion about their life experience during the quarantine (eg. how their diet has changed or if they walk outside daily to stay healthy). We also observed more users having negative feelings potentially due to the quarantine. For instance, some users said they feel lonely and they miss their friends or family. Therefore, we enhanced our comforting module that expresses empathy through active listening.

Abigail See, Stanford: As the pandemic unfolded, we saw in real time how users changed their expectations of our socialbot. Not only did they want our bot to deliver up-to-date information, they also wanted it to show emotional understanding for the situation they were in.

Sarah Fillwock, Emory: When COVID became a significant societal issue, we tried two things: we had an experience-oriented COVID topic where our bot discussed with people how they felt about COVID in a sympathetic and reassuring atmosphere, and we had a fact-oriented COVID topic that gave objective information. What we observed was that people had a much stronger positive reaction to the experience-oriented COVID-19 approach than the fact-oriented COVID-19 approach, and seemed to prefer it when talking. This really gave us some empirical evidence that social agents have a strong potential to be helpful in times of turmoil by giving people a safe and caring space to talk about these major events in their life since people responded positively to our approach at doing this.

Q: Lastly, are there any particular advancements in the fields of NLU, dialogue management, conversational AI, etc., that you find promising?

Jan Pichl, Czech Technical University: It is exciting to see the capabilities of the Transformer-based models these days. They are able to generate large articles or even whole stories that are coherent. However, they demand a lot of computation power during the training phase and even during the runtime. Additionally, it is still challenging to use them in a socialbot when you need to work with constantly changing information about the world.

Abigail See, Stanford: As NLP researchers, we are amazed by the incredible pace of progress in the field. Since the last Alexa Prize in 2018, there have been game-changing advancements, particularly in the use of large pretrained language models to understand and generate language. The Alexa Prize offers a unique opportunity for us to apply these techniques, which so far have mostly been tested only on neat, well-defined tasks, and put them in front of real people, with all the messiness that entails! In particular, we were excited to explore the possibility of using neural generative models to chat with people. As recently as the 2018 Alexa Prize, these models generally performed poorly, and so were not used by any of the finalist teams. However, this year, these systems became an important backbone of our system.

Sarah Fillwock, Emory: The work people have been putting into incorporating common sense knowledge and common sense reasoning into dialogue systems is one of the most interesting directions of the current conversational AI field. A lot of the common sense knowledge we use is not explicitly detailed in any type of data set as people have learned them through physical experience or inference over time, so there isn’t necessarily any convenient way to currently accomplish this goal. There have been a lot of attempts to see how far a language modeling approach to dialogue agents can go, but even using huge dialogue data sets and highly complex models still results in hit-and-miss success at common sense information. I am really looking forward to the dialogue approaches and dialogue resources that more explicitly try to model this type of common sense knowledge.

Research areas

Latest news

The latest updates, stories, and more about Alexa Prize.
US, VA, Arlington
As a Survey Research Scientist within the Reputation Marketing & Insights team, your primary responsibility will be to help manage our employee communications research program, including a global tracking survey. The work will challenge you to be resourceful, think big while staying connected to the details, translate survey, focus group results, and advanced analytics into strategic direction, and embrace a high degree of change and ambiguity at speed. The scope and scale of what we strive to achieve is immense, but it is also meaningful and energizing. This is an individual contributor role. The right candidate possesses endless curiosity and passion for understanding employee perceptions and what drives them. You have end-to-end experience conducting qualitative research, robust large-scale surveys, campaign measurement, as well as advanced modeling skills to uncover perception drivers. You have proficiency in diving deep into large amounts of data and translating research into actionable insights/recommendations for internal communicators. You are an excellent writer who can effectively communicate data-driven insights and recommendations through written documents, presentations, and other internal communication channels. You are a creative problem-solver who seeks to deeply understand the business/communications so you can tailor research that informs stakeholder decision making and strategic messaging tactics. Key job responsibilities - Design and manage the execution of a global tracking survey focused on employee communications - Develop research to identify and test messages to drive employee perceptions - Use advanced statistical methodologies to better understand the relationship between key internal communications metrics and other related measures of perception (e.g., regression, structural equation modeling, latent growth curve modeling, Shapley analysis, etc.) - Develop causal and semi-causal measurement techniques to evaluate the perception impact of internal communications campaigns - Identify opportunities to simplify existing research processes and operate more nimbly - Engage in strategic discussions with internal partner teams to ensure our research generates actionable and on-point findings About the team This team sits within the CCR organization. Our focus is on conducting research that identifies messaging opportunities and informs communication strategies for Amazon as a brand.
US, CA, Santa Clara
Want to work on frontier, world class, AI-powered experiences for health customers and health providers? The Health Science & Analytics group in Amazon's Health Store & Technology organization is looking for a Senior Manager of Applied Science to lead a group of applied scientists and engineers to work hand in hand with physicians to build the future of AI-powered healthcare experiences. We have an ambitious roadmap which includes scaling recently launched products which are already delighting products and the opportunity to build disruptive, new experiences. This role will be responsible for leading the science and technology teams driving these key innovations on behalf of our customers. Key job responsibilities - Independently manage a team of scientists and engineers to sustainably deliver science driven products. - Define the vision and long-term technical roadmap to achieve multi-year business objectives. - Maintain and raise the science bar of the team’s deliverables and keep the broader Amazon Health Services organization apprised of the latest relevant technical developments in the field. - Work across business, clinical, and technical leaders to disambiguate product requirements and socialize progress towards key goals and deliverables. - Proactively identify risks and shape the technical roadmap in anticipation of industry trends in emerging AI subfields.
US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. You can work in San Francisco, CA or Seattle, WA. Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount
IN, KA, Bengaluru
AWS Infrastructure Services owns the design, planning, delivery, and operation of all AWS global infrastructure. In other words, we’re the people who keep the cloud running. We support all AWS data centers and all of the servers, storage, networking, power, and cooling equipment that ensure our customers have continual access to the innovation they rely on. We work on the most challenging problems, with thousands of variables impacting the supply chain — and we’re looking for talented people who want to help. You’ll join a diverse team of software, hardware, and network engineers, supply chain specialists, security experts, operations managers, and other vital roles. You’ll collaborate with people across AWS to help us deliver the highest standards for safety and security while providing seemingly infinite capacity at the lowest possible cost for our customers. And you’ll experience an inclusive culture that welcomes bold ideas and empowers you to own them to completion. Do you love problem solving? Are you looking for real world Supply Chain challenges? Do you have a desire to make a major contribution to the future, in the rapid growth environment of Cloud Computing? Amazon Web Services is looking for a highly motivated, Data Scientist to help build scalable, predictive and prescriptive business analytics solutions that supports AWS Supply Chain and Procurement organization. You will be part of the Supply Chain Analytics team working with Global Stakeholders, Data Engineers, Business Intelligence Engineers and Business Analysts to achieve our goals. We are seeking an innovative and technically strong data scientist with a background in optimization, machine learning, and statistical modeling/analysis. This role requires a team member to have strong quantitative modeling skills and the ability to apply optimization/statistical/machine learning methods to complex decision-making problems, with data coming from various data sources. The candidate should have strong communication skills, be able to work closely with stakeholders and translate data-driven findings into actionable insights. The successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and ability to work in a fast-paced and ever-changing environment. Key job responsibilities 1. Demonstrate thorough technical knowledge on feature engineering of massive datasets, effective exploratory data analysis, and model building using industry standard time Series Forecasting techniques like ARIMA, ARIMAX, Holt Winter and formulate ensemble model. 2. Proficiency in both Supervised(Linear/Logistic Regression) and UnSupervised algorithms(k means clustering, Principle Component Analysis, Market Basket analysis). 3. Experience in solving optimization problems like inventory and network optimization . Should have hands on experience in Linear Programming. 4. Work closely with internal stakeholders like the business teams, engineering teams and partner teams and align them with respect to your focus area 5. Detail-oriented and must have an aptitude for solving unstructured problems. You should work in a self-directed environment, own tasks and drive them to completion. 6. Excellent business and communication skills to be able to work with business owners to develop and define key business questions and to build data sets that answer those questions 7. Work with distributed machine learning and statistical algorithms to harness enormous volumes of data at scale to serve our customers About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, NY, New York
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, WA, Bellevue
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! As a Quantitative Researcher on our team, you will be working at the intersection of mathematics, computer science, and finance, you will collaborate with a diverse team of engineers in a fast-paced, intellectually challenging environment where innovative thinking is encouraged and rewarded. We operate at Amazon's large scale with the energy of a nimble start-up. If you have a learner's mindset, enjoy solving challenging problems, and value an inclusive team culture, you will thrive in this role, and we hope to hear from you. Key job responsibilities * Conduct statistical analyses on web-scale datasets to develop state-of-the-art multimodal large language models * Conceptualize and develop mathematical models, data sampling and preparation strategies to continuously improve existing algorithms * Identify and utilize data sources to drive innovation and improvements to our LLMs About the team We are passionate engineers and scientists dedicated to pushing the boundaries of innovation. We evaluate and represent the customer perspective through accurate benchmarking.
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with world-class scientists and engineers to develop novel data, modeling and engineering solutions to support the responsible AI initiatives at AGI. Your work will directly impact our customers in the form of products and services that make use of audio technology. About the team While the rapid advancements in Generative AI have captivated global attention, we see these as just the starting point. Our team is dedicated to pushing the boundaries of what’s possible, leveraging Amazon’s unparalleled ML infrastructure, computing resources, and commitment to responsible AI principles. And Amazon’s leadership principle of customer obsession guides our approach, prioritizing our customers’ needs and preferences each step of the way.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Senior Applied Scientist, to lead the development and implementation of algorithms and models for supervised fine-tuning and reinforcement learning through human feedback; with a focus across text, image, and video modalities. As a Senior Applied Scientist, you will play a critical role in driving the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team