"This technology will be transformative in ways we can barely comprehend"

A judge and some of the finalists from the Alexa Prize Grand Challenge 3 talk about the competition, the role of COVID-19, and the future of socialbots.

Human beings are social creatures, and conversations are what connect us—they enable us to share everything from the prosaic to the profound with the people that matter to us. Living through an era marked by pandemic-induced isolation means many of those conversations have shifted online, but the connection they provide remains essential.

So what happens when you replace one of the human participants in a conversation with a socialbot? What does it mean to have an engaging conversation with an AI assistant? How can that kind of conversation prove to be valuable, and can it provide its own kind of connection?

Application period for next Alexa Prize challenge opens

The Amazon Alexa Prize team encourages all interested teams to apply for the Grand Challenge 4 by 11:59 p.m. PST on October 6, 2020.

The participants in this year’s Alexa Prize contest are driven by those questions. Amazon recently announced that a team from Emory University has won the 2020 Alexa Prize. We talked to that team, along with a judge from this year’s competition, as well as representatives from the other finalist teams at Czech Technical University, Stanford University, University of California, Davis, and University of California, Santa Cruz. We wanted to learn what drives them to participate, how COVID-19 has influenced their work and what they see as the possibilities and challenges for socialbots moving forward.

Winners of the Alexa Prize SocialBot Grand Challenge 3 discuss their research

Q: What inspired you to participate in this year’s competition?

Sarah Fillwock, team leader, Emora, Emory University: We had a group of students who were interested in dialogue system research, some of whom had actually participated in the Alexa Prize in its previous years, and we all knew that the Alexa Prize offers a really unique opportunity for anyone interested in this type of work. It is really exciting to use the Alexa device platform to launch a socialbot, because we are able to get hundreds of conversations a day between our socialbot and human users, which really allows for quick turnaround time when assessing whether or not our hypotheses and strategies are improving the performance of our dialogue system.

Marilyn Walker, faculty advisor, Athena, University of California, Santa Cruz: In our Natural Language and Dialogue Systems lab, our main research focus is dialogue management and language generation. Conversational AI is a very challenging problem, and we felt like we could have a research impact in this area. The field has been developing extremely quickly recently, and the Alexa Prize offers an opportunity to try out cutting-edge technologies in dialogue management and language generation on a large Alexa user population.

Amazon Alexa Prize Finalists 2020
The five Alexa Prize finalist teams: Czech Technical University in Prague; Emory University; Stanford University; the University of California, Davis; and the University of California, Santa Cruz.

Vrindavan (Davan) Harrison, team leader, Athena, UCSC: As academics, our primary focus is on research. This year’s competition aimed at being more research-oriented, allowing the teams to spend more time on developing new ideas.

Kai-Hui Liang, team lead, Gunrock, University of California, Davis: Our experience in last year’s competition motivated us to join again as we realized there is still a large room for improvement. I’m especially interested in how to find topics that engage users the most, including trying different ways to elicit and reason about users’ interests. How can we retrieve content that is relevant and interesting, and make the dialog flow more naturally?

Jan Pichl, team leader, Alquist, Czech Technical University: Since the first year of the Alexa Prize competition, we have been developing Alquist to deliver a wide range of topics with a closer focus on the most popular ones. The first Alquist guided a user through the conversation quite strictly. We learned quickly that we needed to introduce more flexibility and let the user be "in charge". With that in mind, we have been pushing Alquist in that direction. Moreover, we want Alquist to manage dialogue utilizing the knowledge graph, and suggest relevant information based on the previously discussed topics and entities.

Christopher D. Manning, faculty advisor, Chirpy Cardinal, Stanford University: It was our first time doing the Alexa Prize, and the team really hadn’t done advance preparation, so it’s all been a wild ride—by which I mean a lot of work and stress for everyone on the team. But it was super exciting that we were largely able to catch up with other leading teams who have been doing the competition for several years.

Hugh Howey, judge and science fiction author: Artificial intelligence is a passionate interest of mine. As a science fiction author, I have the freedom to write about most anything, but the one topic I keep coming back to is the impact that thinking machines already have on our lives and how that impact will only expand in the future. So any chance to be involved with those doing work and research in the field is a no-brainer for me. I leapt at the chance like a Boston Dynamics dog.

Q: What excites you about the potential of socialbots?

Hugh Howey (Judge): This technology will be transformative in ways we can barely comprehend. Right now, the human/computer interface is a bottleneck. It takes a long time for us to tell our computers what we want them to do, and they'll generally only do that thing the one time and forget what it learned. In the future, more and more of the trivial will be automated. This will free up human capital to tackle larger problems. It will also bring us together by removing language barriers, by helping those with disabilities, and eventually this technology will be available to anyone who needs it.

Jinho D. Choi, faculty advisor, Emory: It has been reported that more than 44 million adults in US have mental health issues such as anxiety or depression. We believe that developing an innovative socialbot that comforts people can really help those with mental health conditions, who are generally afraid of talking to other human beings. You may wonder how artificial intelligence can convey a human emotion such as caring. However, humans have used their own creations, such as arts and music, to comfort themselves. It is our vision to advance AI, the greatest invention of humankind, to help individuals learn more about their inner selves so they can feel more positive about themselves, and have a bigger impact in the world.

Ashwin Paranjape, co-team leader, Stanford: As socialbots become more sophisticated and prevalent, increasing numbers of people are chatting with them regularly. As the name suggests, socialbots have the potential to fulfill social needs, such as chit-chatting about everyday life, or providing support to a person struggling with mental health difficulties. Furthermore, socialbots could become a primary user interface through which we engage with the world—for example, chatting about the news, or discussing a book.

Sarah Fillwock, Emory: Our experience in this competition has really solidified this idea of the potential of socialbots being value to people who need support and are in troubling situations. I think that the most compelling role for socialbots in global challenges is to provide a supportive environment to allow people to express themselves, and explore their feelings with regard to whatever dramatic event is going on. This is especially important for vulnerable populations, such as those who do not have a strong social circle or have reduced social contact with others, prohibiting them from being able to achieve the feeling of being valued and understood.

Q: What are the main challenges to realizing that potential?

Abigail See, co-team leader, Stanford: Currently, socialbots struggle to make sense of long, involved conversations, and this limits their ability to talk about any topic in depth. To do this better, socialbots will need to understand what a particular user wants—not only in terms of discussion topics, but also what kind of conversation they want to have. Another important challenge is to allow users to take more initiative, and drive the conversation themselves. Currently, socialbots tend to take more initiative, to ensure the conversation stays within their capabilities. If we can make our socialbots more flexible, they will be much more useful and engaging to people.

Sarah Fillwock, Emory: One major challenge facing the field of dialogue system research is establishing a best practice for evaluation of the performance of dialogue approaches. There is currently a diverse set of evaluation strategies that the research community uses to determine how well their new dialogue approach performs. Another challenge is that dialogues are more than just a pattern-matching problem. Having a back-and-forth dialogue on any topic with another agent tends to involve planning towards achieving specific goals during the conversation as new information about your speaking partner is revealed. Dialogues also rely a lot on having a foundation of general world knowledge that you use to fully understand the implications of what the other person is saying.

Amazon releases Topical Chat dataset

The text-based collection of more than 235,000 utterances will help support high-quality, repeatable research in the field of dialogue systems.

Marilyn Walker, UCSC: There’s a shortage of large annotated conversational corpora for the task of open-domain conversation. For example, progress in NLU has been supported by large annotated corpora, such as Penn Treebank, however, there are currently no such publicly available corpora for open-domain conversation. Also, a rich model of individual users would enable much more natural conversations, but privacy issues currently make it difficult to build such models.

Hugh Howey (Judge): The challenge will be for our ethics and morality to keep up with our gizmos. We will be far more powerful in the future. I only hope we'll be more responsible as well.

Q: What role has the COVID-19 pandemic played in your work?

Jurik Juraska, team member, UCSC: The most immediate effect the onset of the pandemic had on our socialbot was, of course, that it could not just ignore this new dynamic situation. Our socialbot had to acknowledge this new development, as that was what most people were talking about at that point. We would thus have Athena bring up the topic at the beginning of the conversation, sympathizing with the users' current situation, but avoiding wallowing in the negative aspects of it. In the feedback that some users left, there were a number of expressions of gratitude for the ability to have a fun interaction with a socialbot at a time when direct social interaction with friends and family was greatly restricted.

Kai-Hui Liang, UC Davis: We noticed an evident difference in the way Alexa users reacted to popular topics. For example, before COVID-19, many users gave engaging responses when discussing their favorite sports to watch, their travel experiences, or events they plan to do over the weekend. After the breakout of COVID-19, more users replied saying there’s no sports game to watch or they are not able to travel. Therefore, we adapted our topics to better fit the situation. We added discussion about their life experience during the quarantine (eg. how their diet has changed or if they walk outside daily to stay healthy). We also observed more users having negative feelings potentially due to the quarantine. For instance, some users said they feel lonely and they miss their friends or family. Therefore, we enhanced our comforting module that expresses empathy through active listening.

Abigail See, Stanford: As the pandemic unfolded, we saw in real time how users changed their expectations of our socialbot. Not only did they want our bot to deliver up-to-date information, they also wanted it to show emotional understanding for the situation they were in.

Sarah Fillwock, Emory: When COVID became a significant societal issue, we tried two things: we had an experience-oriented COVID topic where our bot discussed with people how they felt about COVID in a sympathetic and reassuring atmosphere, and we had a fact-oriented COVID topic that gave objective information. What we observed was that people had a much stronger positive reaction to the experience-oriented COVID-19 approach than the fact-oriented COVID-19 approach, and seemed to prefer it when talking. This really gave us some empirical evidence that social agents have a strong potential to be helpful in times of turmoil by giving people a safe and caring space to talk about these major events in their life since people responded positively to our approach at doing this.

Q: Lastly, are there any particular advancements in the fields of NLU, dialogue management, conversational AI, etc., that you find promising?

Jan Pichl, Czech Technical University: It is exciting to see the capabilities of the Transformer-based models these days. They are able to generate large articles or even whole stories that are coherent. However, they demand a lot of computation power during the training phase and even during the runtime. Additionally, it is still challenging to use them in a socialbot when you need to work with constantly changing information about the world.

Abigail See, Stanford: As NLP researchers, we are amazed by the incredible pace of progress in the field. Since the last Alexa Prize in 2018, there have been game-changing advancements, particularly in the use of large pretrained language models to understand and generate language. The Alexa Prize offers a unique opportunity for us to apply these techniques, which so far have mostly been tested only on neat, well-defined tasks, and put them in front of real people, with all the messiness that entails! In particular, we were excited to explore the possibility of using neural generative models to chat with people. As recently as the 2018 Alexa Prize, these models generally performed poorly, and so were not used by any of the finalist teams. However, this year, these systems became an important backbone of our system.

Sarah Fillwock, Emory: The work people have been putting into incorporating common sense knowledge and common sense reasoning into dialogue systems is one of the most interesting directions of the current conversational AI field. A lot of the common sense knowledge we use is not explicitly detailed in any type of data set as people have learned them through physical experience or inference over time, so there isn’t necessarily any convenient way to currently accomplish this goal. There have been a lot of attempts to see how far a language modeling approach to dialogue agents can go, but even using huge dialogue data sets and highly complex models still results in hit-and-miss success at common sense information. I am really looking forward to the dialogue approaches and dialogue resources that more explicitly try to model this type of common sense knowledge.

Research areas

Latest news

The latest updates, stories, and more about Alexa Prize.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field or relevant science experience (publications/scientific prototypes) in lieu of Masters - Experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment - Papers published in AI/ML venues of repute
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
US, WA, Bellevue
Our mission is to provide consistent, accurate, and relevant delivery information to every single page on every Amazon-owned site. MILLIONS of customers will be impacted by your contributions: The changes we make directly impact the customer experience on every Amazon site. This is a great position for someone who likes to leverage Machine learning technologies to solve the real customer problems, and also wants to see and measure their direct impact on customers. We are a cross-functional team that owns the ENTIRE delivery experience for customers: From the business requirements to the technical systems that allow us to directly affect the on-site experience from a central service, business and technical team members are integrated so everyone is involved through the entire development process. You will have a chance to develop the state-of-art machine learning, including deep learning and reinforcement learning models, to build targeting, recommendation, and optimization services to impact millions of Amazon customers. Do you want to join an innovative team of scientists and engineers who use machine learning and statistical techniques to deliver the best delivery experience on every Amazon-owned site? Are you excited by the prospect of analyzing and modeling terabytes of data on the cloud and create state-of-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the DEX AI team. Key job responsibilities - Research and implement machine learning techniques to create scalable and effective models in Delivery Experience (DEX) systems - Solve business problems and identify business opportunities to provide the best delivery experience on all Amazon-owned sites. - Design and develop highly innovative machine learning and deep learning models for big data. - Build state-of-art ranking and recommendations models and apply to Amazon search engine. - Analyze and understand large amounts of Amazon’s historical business data to detect patterns, to analyze trends and to identify correlations and causalities - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
US, WA, Seattle
The Amazon Photos team is looking for a world-class Applied Scientist to join us and use AI to help customers relive their cherished memories. Our team of scientists have developed algorithms and models that power Amazon Photos features for millions of photos and videos daily. As part of the team, we expect that you will develop innovative solutions to hard problems at massive scale, and publish your findings in at peer reviewed conferences and workshops. With all the recent advancements in Vision-Language models, Amazon Photos has completely re-thought the product roadmap and is looking for Applied Scientists to deliver both the short-term roadmap working closely with Product and Engineering and make investments for the long-term. Our research themes include, but are not limited to: foundational models, contrastive learning, diffusion models, few-shot and zero-shot learning, transfer learning, unsupervised and semi-supervised methods, active learning and semi-automated data annotation, deep learning, and large scale image and video detection and recognition. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Visual-Language Model space - Design and execute experiments to evaluate the performance of different models, and iterate quickly to improve results - Create robust evaluation frameworks for assessing model performance across different domains and use cases - Think big about the Visual-Language Model space over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems within Amazon Photos - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports About the team Amazon Photos is the one of the main digital products offered to Prime subscribers along with Amazon Music and Amazon Video. Amazon Photos provides unlimited photo storage and 5 GB for videos to Prime members and is a top Prime benefit in multiple marketplaces. AI-driven experiences based on image and video understanding are core to customer delight for the business. These experiences are delivered in our mobile, web and desktop apps, in Fire TV, and integrated into Alexa devices such as Echo Show. We solve real-world problems using AI while being a positive force for good.